合成氨的发展对化肥的意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合成氨的发展对化肥的意义
19世纪后期,随着炼焦工业在欧洲各国的逐渐兴起,人们发现,用练焦的副产产品氨为原料,可以制成硫酸铵,作为氮肥来使用,这样,廉价的炼焦副产品又逐步成为氮肥的另一个来源。但是,还是远远满足不了需要。当时农业上所使用的氮肥主要来自有机物的副产品,比如:人和畜的粪便、花生饼、豆饼、臭鱼烂虾及动物的下脚料等等。除此之外,还有极少量的氮素来自雷雨放电而形成的氮氧化物。
随着农业生产的发展和地球人口的不断增加,天然氮化合物的数量已越来越无法满足农作物生长的需要。世界各国越来越迫切要求建立规模巨大的生产氮化合物的工业。
1898年,英国物理学家克鲁克斯,最先意识到化肥对人类的重要性,他在布里斯特召开的大英科学协会上发表演说,在列举了大量事实之后警告人们说:“由于人口增加,土地变得狭窄了,长此下去,粮食不足的时代就会到来,解决的办法是必须找到新的氮肥。”
向空气要氮肥
新的氮肥从哪里寻找?科学家们自然而然地想到了空气。科学家们已经知道,在地球周围的空气中,氮气占了相当大的一部分,约为 79%,可以说是取之不尽,用之不竭。但是,虽然空气中有大量的游离氮,但氮的化学性质却很不活泼,要直接利用它还是很困难的。科学家发现,在自然界常温状态下,游离氮只能被一种在豆科植物上生长的细菌所直接利用,这种菌叫做根瘤菌。根瘤菌有一种绝妙的本事,即它具有固氮的功能,它能够在常温下将空气中的氮气转化成自身所需要的氮肥。于是,向空气要氮肥成了科学家们追求的目标。
因此将空气中丰富的氮固定下来并转化为可被利用的形式,在20世纪初成为一项受到众多科学家注目和关切的重大课题。
哈伯就是从事合成氨的工艺条件试验和理论研究的化学家之一。利用氮、氢为原料合成氨的工业化生产曾是一个较难的课题,从第一次实验室研制到工业化投产,约经历了150年的时间。1795年有人试图在常压下进行氨合成,后来又有人在50个大气压下试验,结果都失败了。19世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可逆的,增加压力将使反应推向生成氨的方向:提高温度会将反应移向相反的方向,然而温度过低又使反应速度过小;催化剂对反应将产生重要影响。这实际上就为合成氨的试验提供了理论指导。当时物理化学的权威、德国的能斯特就明确指出:氮和氢在高压条件下是能够合成氨的,并提供了一些实验数据。法国化学家勒夏特里第一个试图进行高压合成氨的实验,但是由于氮氢混和气中混进了氧气,引起了爆炸,使他放弃了这一危险的实验。在物理化学研究领域有很好基础的哈伯决心攻克这一令人生畏的难题。哈怕首先进行一系列实验,探索合成氨的最佳物理化学条件。在实验中他所取得的某些数据与能斯特的有所不同,他并不盲从权威,而是依靠实验来检验,终于证实了能斯特的计算是错误的。在一位来自英国的学生洛森诺的协助下,哈伯成
功地设计出一套适于高压实验的装置和合成氨的工艺流程,这流程是:在炽热的焦炭上方吹入水蒸汽,可以获得几乎等体积的一氧化碳和氢气的混和气体。其中的一氧化碳在催化剂的作用下,进一步与水蒸汽反应,得到二氧化碳和氢气。然后将混和气体在一定压力下溶于水,二氧化碳被吸收,就制得了较纯净的氢气。同样将水蒸汽与适量的空气混和通过红热的炭,空气中的氧和碳便生成一氧化碳和二氧化碳而被吸收除掉,从而得到了所需要的氮气。氮气和氢气的混和气体在高温高压的条件下及催化剂的作用下合成氨。但什么样的高温和高压条件为最佳?以什么样的催化剂为最好?这还必须花大力气进行探索。以楔而不舍的精神,经过不断的实验和计算,哈伯终于在1909年取得了鼓舞人心的成果。这就是在600℃的高温、200个大气压和锇为催化剂的条件下,能得到产率约为8%的合成氨。8%的转化率不算高,当然会影响生产的经济效益。哈伯知道合成氨反应不可能达到象硫酸生产那么高的转化率,在硫酸生产中二氧化硫氧化反应的转化率几乎接近于100%。怎么办?哈伯认为若能使反应气体在高压下循环加工,并从这个循环中不断地把反应生成的氨分离出来,则这个工艺过程是可行的。于是他成功地设计了原料气的循环工艺。这就是合成氨的哈伯法。并实现工业化生产。
化肥的今天(意义)
“哈柏--博施”法是划时代的工业供氮方法,它开辟了人类直接利用游离状态氮的途径,也开创了高压合成氨的化学方法,它的意义已不仅仅是使大气中氨变成了生产化肥“取之不尽、用之不竭”的廉价来源,而且使农业生产产生了根本的变革。同时,也大大推动了与之有关的科学、技术的发展。
1913年,德国第一个合成氨装置建立后,为今天的固氮工业和氮肥工业的发展奠定了重要基础。半个多世纪以来,合成氨以惊人的速度向前发展,它给全人类带来的巨大福利是无与伦比的,正如锎元素的发展者、诺贝尔化学奖得主G.T.西博格在纪念美国化学会成立100周年大会上的演讲中所指出的那样:“无论过去、现在和可预见的将来,再也不可能找到任何一门其他工业,比化肥工业更直接关系到国计民生了……。无论从经济的发展还是人类的进步而言,合成氨的发明都是本世纪科学领域中最辉煌的成就之一。”
直到现在,世界各国的氮肥工业在基本原理上还沿用这种方法。氨的合成开创了人类科学史的重要篇章。当前,世界上 90%以上的氮肥是由合成氨加工成的。许多国家都大量生产合成氮肥,使粮食成倍增产,对农业的发展起了很大的作用。农业生产的面貌已发生了重要变化,大大促进了粮食增产。以日本为例,1950年的化肥用量为每亩50公斤,粮食单产是190公斤;1970年化肥用量为每亩135公斤,粮食单产提高到340公斤;1976年化肥用量是155公斤,单产也相应提高到 365公斤。化肥对农作物产量的作用,由此可见一斑。
当然,人类所使用的化肥并不是仍然停留在原有的水平上。目前,化肥的发展已有固体、液体之分。在固体氮肥中,尿素和硝铵的比重不断增大。液体氮肥包括液氨、氨水、氮溶液以及液体混合肥料等等。除了氮肥以外,还有磷肥和钾
肥。从发展趋势看,化学肥料的生产和施用,主要是提高肥料浓度,发展二元、三元复合肥料或液化肥料,并采用颗粒肥料和深层施肥法。虽然有机肥料不可忽视,但是,现在化学肥料仍在增产中占有重要地位。据联合国粮食组织统计, 1公斤化肥一般增产籽粒和茎秆各10公斤。所以,年近来,化肥的生产和研究水平不断提高,主要表现在:高浓度化肥逐渐代替低浓度化肥,欧美和日本生产的一种超高浓度肥料,含有效成分达 94%以上;复合肥料、混合肥料迅猛发展,目前除含铜等微量元素的新复合肥料之外,有的厂家生产的有效成份在40%以上;液体肥料和长效肥料逐年增加,这种肥料优点突出,效果良好;微量元素肥料越来越占显著地位。活性有机肥问世,生产无公害、无污染绿色食品,对人类是极为重要的贡献。除此之外,生物固氮的研究正在大力开展之中,不久将会给肥料的制造和使用带来革命性的大变化。