云南省2017年7月普通高中学业水平考试数学真题(附全解析)
2017年云南省中考数学试卷含答案解析
![2017年云南省中考数学试卷含答案解析](https://img.taocdn.com/s3/m/68d334024b35eefdc8d3332c.png)
2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.4.使有意义的x的取值范围为.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a610.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.sin60°的值为()A.B.C.D.12.下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖13.正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F 分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M 是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是﹣2.【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为:.4.使有意义的x的取值范围为x≤9.【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4.【考点】MC:切线的性质;LE:正方形的性质;MO:扇形面积的计算.【分析】连接HO,延长HO交CD于点P,证四边形AHPD为矩形知HF为⊙O 的直径,同理得EG为⊙O的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,+S△HGF可得答案.根据阴影部分面积=S⊙O【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==2+S△HGF则阴影部分面积=S⊙O=•π•22+×2×2=2π+4,故答案为:2π+4.6.已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣x+1.【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y=上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得,解得,∴y=﹣5x+5;②当a=5,b=1时,由题意,得,解得,∴y=﹣x+1.则所求解析式为y=﹣5x+5或y=﹣x+1.故答案为y=﹣5x+5或y=﹣x+1.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.8.下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)10.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.11.sin60°的值为()A.B.C.D.【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故选B.12.下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.故选A.13.正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=r,∵圆锥的体积等于9π∴9π=πr2h,∴r=3,∴h=3故选(D)14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB==70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF16.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:;(2)第n个等式是:,证明:∵====n,∴第n个等式是:.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为=.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F 分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c 即可解决问题.(2)设M(m,n),由题意•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+,﹣6)或(3﹣,﹣6).22.在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M 是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.【考点】MR:圆的综合题.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到=,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【解答】解:(1)连接OC,∵OA=OC,∴∠A=∠OCA,∵AC∥OP,∴∠A=∠BOP,∠ACO=∠COP,∴∠COP=∠BOP,∵PB是⊙O的切线,AB是⊙O的直径,∴∠OBP=90°,在△POC与△POB中,,∴△COP≌△BOP,∴∠OCP=∠OBP=90°,∴PC是⊙O的切线;(2)过O作OD⊥AC于D,∴∠ODC=∠OCP=90°,CD=AC,∵∠DCO=∠COP,∴△ODC∽△PCO,∴,∴CD•OP=OC2,∵OP=AC,∴AC=OP,∴CD=OP,∴OP•OP=OC2∴=,∴sin∠CPO==;(3)连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=15,∴BC==12,当M与A重合时,d=0,f=BC=12,∴d+f=12,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤12.。
云南省2017年7月普通高中学业水平考试数学试卷及答案
![云南省2017年7月普通高中学业水平考试数学试卷及答案](https://img.taocdn.com/s3/m/fd11738d6f1aff00bed51e5c.png)
云南省2017年7月普通高中学业水平考试数学试卷【考生注意】本试卷考试时间100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效.参考公式:如果事件A 、B 互斥,那么P(A ∪B)=P(A)+P(B).球的表面积公式:S =4πR 2,体积公式:V =43πR 3,其中R 表示球的半径.柱体的体积公式:V =S h ,其中S 表示柱体的底面面积,h 表示柱体的高.锥体的体积公式:V =13S h ,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(选择题共51分)一、选择题(本大题共17小题,每小题3分,共51分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂)1.已知集合A={1,2},B={0,m ,3},若A∩B={2},则实数m =()A.-1B.0C.2D.32.已知θθ,135sin =是第二象限的角,则θcos 的值是()A.125 B.125- C.1312 D.1312-3.如图,网格纸上小正方形的边长为1,粗实线是某个几何体的三视图,则该几何体的体积为()A.12B.8C.532D.3324.函数x x x f 8)(2-=的定义域为()A.)8[]0(∞+-∞,, B.[0,8]C.)8()0(∞+-∞,,D.(0,8)5.2363log log -的值为()A.-1B.1C.-2D.26.若向量a =(5,m ),b =(n ,﹣1),且a //b ,则m 与n 的关系是()A.05=-mn B.05=+mn C.05=-n m D.05=+n m 7.如果圆柱的底面半径为2,高为4,那么它的侧面积等于()A.24π B.20π C.16π D.12π8.运行下面的程序框图,若输入的x 的值为2,则输出y 的值是()A.2B.1C.2或1D.-29.函数x x x f -=3)(的图象()A.关于原点对称B.关于x 轴对称C.关于直线y =x 对称D.关于y 轴对称10.已知31sin -=α,则cos2α的值是()A.97 B.97- C.92 D.92-11.统计中用相关系数r 来衡量两个变量x ,y 之间线性关系的强弱,下列关于r 的描述,错误的是()A.当r 为正时,表明变量x 和y 正相关B.当r 为负时,表明变量x 和y 负相关C.如果r ∈[0.75,1],那么正相关很强D.如果r ∈[-1,-0.1],那么负相关很强12.函数)22sin(2π+=x y 的最小正周期是()A.π B.2π C.4π D.2π13.某校高三年级甲、乙两名同学8次月考数学成绩用折线图表示如图,根据折线图,下列说法错误的是()A.每次考试,甲的成绩都比乙好B.甲同学的成绩依次递增C.总体来看,甲的成绩比乙优秀D.乙同学的成绩逐次递增14.函数x x y cos sin -=的最大值是()A.2 B.2 C.0 D.115.函数x e x f x +=)(的零点所在区间是()A.)12(--,B.)01(,-C.(0,1)D.(1,2)16.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度大于1的概率为()A.51 B.32 C.31 D.2117.如图是2002年在北京召开的的第24届国际数学家大会的会标,它源于我国古代数学家赵爽的“弦图”。
2017年云南省第二次高中毕业生复习统一检测理科数学试题含答案
![2017年云南省第二次高中毕业生复习统一检测理科数学试题含答案](https://img.taocdn.com/s3/m/28c00d86a45177232e60a2df.png)
2017年云南省第二次高中毕业生复习统一检测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1。
已知集合{}⎭⎬⎫⎩⎨⎧≤--==031,3,2,1x x xT S ,则=T S ( ) A .{}2 B .{}2,1 C .{}3,1 D .{}32,1, 2.已知i 为虚数单位,若i z i z -=+=1,2121,则复数221z z 在复平面内对应点位于( )A .第一象限B . 第二象限C . 第三象限D .第四象限3。
已知等比数列{}na 的前n 项和为nS ,若63,763==S S,则数列{}n na 的前n 项和为( ) A .n n 2)1(3⨯++-B .n n 2)1(3⨯++C . nn 2)1(1⨯++ D . nn 2)1(1⨯-+4.已知平面向量a 、b 都是单位向量,若)2(b a b -⊥,则a 与b 的夹角等于( ) A .6π B .4π C. 3π D .2π5.要得到函数x y 2cos 21=的图象,只需将函数x y 2sin 21=的图象( )A .向右平移2π个单位 B .向右平移4π个单位C 。
向左平移2π个单位 D .向左平移4π个单位6.执行如图所示程序框图,如果输入的2017=k ,那么输出的=ia ( )A .3B . 6C 。
3-D .6-7。
如图是由圆柱与两个半球组合而成的几何体的三视图,则该几何体的体积与表面积分别为( )A .ππ8,310 B .ππ8,316 C.ππ10,310D .ππ10,3168。
在n x x )2(1--的二项展开式中,若第四项的系数为7-,则=n ( )A .9B .8 C. 7 D .6 9。
已知2,2>>b a ,直线b x ab y +-=与曲线1)1()1(22=-+-y x 只有一个公共点,则ab 的取值范围为( ) A .)246,4(+B .]246,4(+C 。
云南省2017年中考数学试卷(样卷)(含解析)
![云南省2017年中考数学试卷(样卷)(含解析)](https://img.taocdn.com/s3/m/d9bdd1c2910ef12d2af9e779.png)
2017年云南省中考数学试卷(样卷)一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1.﹣的倒数的绝对值是.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C= °.3.分解因式:3x2﹣12= .4.小明用S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2]计算一组数据的方差,那么x1+x2+x3+…+x10= .5.若方程3x2﹣5x﹣2=0有一根是a,则6a2﹣10a= .6.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为m(结果保留根号).二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a88.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A.312×104B.0.312×107C.3.12×106D.3.12×1079.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()A.B.C.D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.11.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>112.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°13.下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3D.同圆中的两条平行弦所夹的弧相等14.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30三、解答题(共9小题,70分)15.计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.16.先化简,再求值:(1﹣)÷,其中a=﹣1.17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?18.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?22.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.23.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2017年云南省中考数学试卷(样卷)参考答案与试题解析一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1.﹣的倒数的绝对值是.【考点】15:绝对值;17:倒数.【分析】由倒数的定义得,﹣的倒数是﹣,再由绝对值的性质得出其值.【解答】解:∵﹣的倒数是﹣,﹣的绝对值是,∴﹣的倒数的绝对值是.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C= 30 °.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠1=∠B,∠2=∠C,再根据AD是∠EAC的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD∥BC,∴∠1=∠B,∠2=∠C,又∵AD平分∠EAC,∴∠1=∠2,∴∠C=∠B=30°,故答案为:30°3.分解因式:3x2﹣12= 3(x﹣2)(x+2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).4.小明用S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2]计算一组数据的方差,那么x1+x2+x3+…+x10= 20 .【考点】W7:方差.【分析】根据方差计算公式确定这组数据的平均数,计算即可.【解答】解:∵S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2],∴这组数据的平均数是2,∴x1+x2+x3+…+x10=2×10=20,故答案为:20.5.若方程3x2﹣5x﹣2=0有一根是a,则6a2﹣10a= 4 .【考点】A3:一元二次方程的解.【分析】将a代入方程3x2﹣5x﹣2=0,得到3a2﹣5a=2,等式的两边都扩大为原来的2倍,问题可求.【解答】解:由题意,把是a的根代入3x2﹣5x﹣2=0,得:3a2﹣5a=2,∴2×(3a2﹣5a)=2×2,∴6a2﹣10a=4.6.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为50m(结果保留根号).【考点】T8:解直角三角形的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=100m,在Rt△ABD中,AB=AD•sin∠ADB=100×=50(m).故答案是:50.二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a8【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】A、原式合并得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式合并得到结果,即可做出判断;D、原式利用单项式乘单项式运算法则计算得到结果,即可做出判断.【解答】解:A、4a2﹣4a2=0,故选项错误;B、(﹣a3b)2=a6b2,故选项正确;C、a+a=2a,故选项错误;D、a2•4a4=4a6,故选项错误.故选:B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A.312×104B.0.312×107C.3.12×106D.3.12×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3120000=3.12×106,故选C.9.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形四个圆柱体的位置关系,结合四个选项选出答案.【解答】解:由图可知,左视图有二行,最下一层2个小正方体,上面左侧有一个小正方体,故选:D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【考点】H2:二次函数的图象;F3:一次函数的图象;G2:反比例函数的图象.【分析】本题需要根据抛物线的位置,反馈数据的信息,即a+b+c,b,b2﹣4ac的符号,从而确定反比例函数、一次函数的图象位置.【解答】解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选:D.11.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>1【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.12.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°【考点】MP:圆锥的计算.【分析】根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.【解答】解:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则2π×4x=,解得:n=288,故选A.13.下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3D.同圆中的两条平行弦所夹的弧相等【考点】O1:命题与定理.【分析】根据关于x轴的对称点的特征,一次函数的性质,众数是,中位数的定义,圆的性质矩形判断即可.【解答】解:A、点(1,3)关于x轴的对称点是(1,﹣3),故错误;B、函数 y=﹣2x+3中,y随x的增大而减小,故错误;C、若一组数据3,x,4,5,6的众数是3,则中位数是4.5,故错误;D、同圆中的两条平行弦所夹的弧相等,正确,故选:D.14.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【考点】38:规律型:图形的变化类.【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.三、解答题(共9小题,70分)15.计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及零指数幂的性质以及负整数指数幂的性质化简求出即可.【解答】解:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|=2×++1﹣2=.16.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】6D:分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【考点】KD:全等三角形的判定与性质.【分析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.18.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.【解答】解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+,在边AB上,不与A,B重合,即0<<2,解得0<k<6,∴当k=3时,S有最大值.S最大值=.19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;X8:利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】KD:全等三角形的判定与性质;KP:直角三角形斜边上的中线;L9:菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.21.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得, =,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.22.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.【考点】MC:切线的性质;S9:相似三角形的判定与性质.【分析】(1)连接OC,根据切线的性质可得OC⊥CD,则AD∥OC,根据等边对等角,以及平行线的性质即可证得;(2)根据圆周角定理以及三角形的外角的性质定理证明∠PFC=∠PCF,根据等角对等边即可证得;(3)证明△PCB∽△PAC,根据相似三角形的性质求得PB与PC的比值,在直角△POC中利用勾股定理即可列方程求解.【解答】解:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)PC=PF.证明:∵AB是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)连接AE.∵∠ACE=∠BCE,∴=,∴AE=BE.又∵AB是直径,∴∠AEB=90°.AB=,∴OB=OC=5.∵∠PCB=∠PAC,∠P=∠P,∴△PCB∽△PAC.∴.∵tan∠PCB=tan∠CAB=.∴=.设PB=3x,则PC=4x,在Rt△POC中,(3x+5)2=(4x)2+52,解得x1=0,.∵x>0,∴,∴PF=PC=.23.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由三角函数的定义可求得OB,再结合旋转可得到A、B、C的坐标,利用待定系数法可求得抛物线解析式;(2)①△COD为直角三角形,可知当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,当PE⊥CE时,则可得抛物线的顶点满足条件,当PE⊥CD时,过P作PG⊥x轴于点G,可证△PGE∽△COD,利用相似三角形的性质可得到关于t的方程,可求得P点坐标;②可求得直线CD的解析式,过P作PN⊥x轴于点N,交CD于点M,可用t表示出PM的长,当PM取最大值时,则△PCD的面积最大,可求得其最大值.【解答】解:(1)∵OA=1.tan∠BAO=3,∴=3,解得OB=3,又由旋转可得OB=OC=3,∴A(1,0),B(0,3),C(﹣3,0),设抛物线解析式为y=ax2+bx+c,把A、B、C三点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2﹣2x+3,(2)①由(1)可知抛物线对称轴为x=﹣1,顶点坐标为(﹣1,4),∵△COD为直角三角形,∴当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,若∠FEC=90°,则PE⊥CE,∵对称轴与x轴垂直,∴此时抛物线的顶点即为满足条件的P点,此时P点坐标为(﹣1,4);若∠EFC=90°,则PE⊥CD,如图,过P作PG⊥x轴于点G,则∠GPE+∠PEG=∠DCO+∠PEG,∴∠GPE=∠OCD,且∠PGE=∠COD=90°,∴△PGE∽△COD,∴=,∵E(﹣1,0),G(t,0),且P点横坐标为t,∴GE=﹣1﹣t,PG=﹣t2﹣2t+3,∴=,解得t=﹣2或t=3,∵P点在第二象限,∴t<0,即t=﹣2,此时P点坐标为(﹣2,3),综上可知满足条件的P点坐标为(﹣1,4)或(﹣2,3);②设直线CD解析式为y=kx+m,把C、D两点坐标代入可得,解得,∴直线CD解析式为y=x+1,如图2,过P作PN⊥x轴,交x轴于点N,交直线CD于点M,∵P点横坐标为t,∴PN=﹣t2﹣2t+3,MN=t+1,∵P点在第二象限,∴P点在M点上方,∴PM=PN﹣MN=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣t+2=﹣(t+)2+,∴当t=﹣时,PM有最大值,最大值为,∵S△PCD=S△PCM+S△PDM=PM•CN+PM•NO=PM•OC=PM,∴当PM有最大值时,△PCD的面积有最大值,∴(S △PCD )max =×=,综上可知存在点P 使△PCD 的面积最大,△PCD 的面积有最大值为.。
云南省2017年7月普通高中学业水平考试数学真题(附全解析)
![云南省2017年7月普通高中学业水平考试数学真题(附全解析)](https://img.taocdn.com/s3/m/f67d103cf02d2af90242a8956bec0975f465a4e7.png)
云南省2017年7月普通高中学业水平考试数学真题(附全解析)云南省2017年7月普通高中学业水平考试数学试卷选择题(共51分)一、选择题:本大题共17个小题,每小题3分,共51分。
在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂。
1.已知集合A={1,2},B={0,m,3},若AB={2},则实数m=()A。
-1B。
2C。
3D。
52.已知sinθ=13/15,θ是第二象限的角,则cosθ的值是()A。
12/15B。
-12/15C。
-4/5D。
4/53.如图,网格纸上小正方形的边长为1,粗实线是某个几何体的三视图,则该几何体的体积为()图略)A。
12B。
8C。
32/3D。
5/34.函数f(x)=x^2-8x的定义域为()A。
(-∞,0]∪[8,+∞)B。
[0,8]C。
(-∞,0)∪(8,+∞)D。
(0,8)5.log3(6)-log3(2)的值为()A。
-1B。
1C。
-2D。
26.若向量a=(5,m),b=(n,-1),且a//b,则m与n的关系是()A。
mn-5=0B。
mn+5=0C。
m-5n=0D。
m+5n=07.如果圆柱的底面半径为2,高为4,那么它的侧面积等于()A。
24πB。
20πC。
16πD。
12π8.运行右面的程序框图,若输入的x的值为2,则输出y 的值是()图略)A。
2B。
1C。
2或1D。
-29.函数f(x)=x^3-x的图象关于()A。
原点对称B。
y轴对称C。
直线y=x对称D。
x轴对称10.已知sinα=-1/3,则cos2α的值是()A。
7/9B。
-7/9C。
2/9D。
-2/911.统计中用相关系数r来衡量两个变量x,y之间线性关系的强弱。
下列关于r的描述,错误的是()A。
当r为正时,表明变量x和y正相关B。
当r为负时,表明变量x和y负相关C。
当r为0时,表明变量x和y不存在线性关系D。
当r为1时,表明变量x和y之间存在完全的线性关系全解析:1.因为A、B互斥,所以P(AB)=0,又因为P(A)=2/3,P(B)=1/3,所以0=2/3+1/3-m,解得m=1.2.根据勾股定理,可得cosθ=-4/5.3.该几何体为正方体,边长为2,体积为2^3=8.4.x^2-8x=(x-4)^2-16,所以定义域为(-∞,0]∪[8,+∞)。
2011-2017年云南省学业水平考试真题+直线与圆
![2011-2017年云南省学业水平考试真题+直线与圆](https://img.taocdn.com/s3/m/825dd8f1551810a6f524866a.png)
1.(2011.1)经过直线20x y -=与直线60x y +-=的交点,且与直线210x y +-=垂直的直线方程是A. 260x y -+=B. 260x y --=C. 2100x y +-=D. 280x y +-=2.(2011.1)圆心(3,2--),且过点(1,1)的圆的标准方程为A. ()()22325x y -+-=B. ()()223225x y -+-=C. ()()22325x y +++=D. ()()223225x y +++= 3.(2011.1)过点P(-2,-3)向圆2284110x y x y +--+=引两条切线,切点是T 1、T 2,则直线T 1T 2的方程是A. 65250x y ++=B. 65250x y +-=C. 1210250x y ++=D. 1210250x y +-=4.(2011.7)两条直线210x y ++=与210x y -+=的位置关系是A. 平行B. 垂直C. 相交且不垂直D. 重合5.(2011.7)已知直线的点斜式方程是21)y x -=+,那么此直线的倾斜角为A. 6πB. 3πC. 23πD. 56π6.(2011.7)若一个圆的圆心在直线2y x =上,在y 轴上截得的弦的长度等于2,且与直线0x y -相切,则这个圆的方程可能..是 A. 2220x y x y +--= B. 22240x y x y +++= C. 2220x y +-= D. 2210x y +-=7.(2012.1)过点P (-1,3),且平行于直线24+10x y -=的直线方程为A. 2+-50x y =B. 2+10x y -=C. -2+70x y =D. -250x y -= 8.(2012.1)已知直线的点斜式方程是12y x +=-,那么此直线的斜率为A. 14B. 13C.12D. 19.(2012.1)过点M(2,-2)以及圆2250x y x +-=与圆222x y +=交点的圆的方程是A. 22151042x y x +--=B. 22151042x y x +-+=C. 22151042x y x ++-=D. 22151042x y x +++= 10.(2012.7)点到直线的距离为11.(2012.7)圆心为,半径为5的圆的标准方程为12.(2012.7)已知,直线,则被所截得的弦长为13.(2013.1)圆224690x y x y ++-+=的圆心坐标是( )A.(2,3)B.(-2,-3)C. (2,-3)D. (-2,3)14.(2013.1)已知圆C 的圆心为(2,0),且圆C 与直线20x -+=相切,则圆C 的方程为_________. 15.(2013.7)直线x + y + 1= 0的倾斜角是( )A .-1B . 4π- C . 4π D . 43π 16.(2013.7)斜率为-2,在y 轴的截距为3的直线方程是( )A .2 x +y +3=0B .2 x -y +3=0C .2 x -y -3=0D .2 x +y -3=017.(2013.7)已知直线l 过点P (4,3),圆C :2225x y +=,则直线l 与圆的位置关系是( )A .相交B .相切C .相交或相切D .相离18.(2014.1)直线210x y -+=与直线12(1)y x -=+的位置关系是( )A.平行B. 垂直C. 相交但不垂直D.重合19.(2014.1)已知直线l 过点P ,圆C :224x y +=,则直线l 与圆C 的位置关系是( )A.相交 B . 相切 C.相交或相切 D.相离20.(2014.1)直线10x y ++=的纵截距是 。
2011—2017年云南省学业水平真题及高考真题训练+数列学案
![2011—2017年云南省学业水平真题及高考真题训练+数列学案](https://img.taocdn.com/s3/m/c8d91755852458fb770b562c.png)
1(2016.1)已知数列{}n a 中,13a =,1n n a ca m +=+(c ,m 为常数)(1) 当1c =,1m =时,求数列{}n a 的通项公式n a ; (2) 当2c=,1m =-时,证明:数列{}1n a -为等比数列;(3) 在(2)的条件下,记11n n b a =-,12n n S b b b =+++ ,证明:1n S <.2. (2017.1)已知C 是常数,在数列{}n a 中,21=a ,28321+++=+n n n n a ca a a(1) 设{}n a 是递增数列,求c 的取值范围 (2)若c =4,数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n s ,求证:nn n S 311321-32-<≤⨯3. (2017.7)已知n S 是等差数列{}n a 的前n 项和,且39S =,749S =。
(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T 。
4.(2015.1)5.(2014.7)已知递增等比数列{}n a 满足:14432=++a a a ,且13+a 是2a ,4a 的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求使63<n S 成立的正整数n 的最大值.6.(2014.1)已知正项数列{}n a 的前n 项和为n S ,且2*1(1)().4n n S a n N =+∈ (1)求1a 、2a ; (2)求证:数列{}n a 是等差数列; (3)令19n n b a =-,问数列{}n b 的前多少项的和最小?最小值是多少?7.(2013.7)已知数列{}n a 满足:111,41(2)2n n a a a n -==+?。
(1)求123a a a ++; (2)令13n n b a =+,求证数列{}n b 是等比数列; (3)求数列{}n b 的前n 项和n T .8.(2013.1)已知等差数列{}n a 满足12341,9a a a a =++=。
云南省2017年高中学业水平考试模拟考(一)数学(文)试题+Word版含解析
![云南省2017年高中学业水平考试模拟考(一)数学(文)试题+Word版含解析](https://img.taocdn.com/s3/m/6590b63f482fb4daa58d4be3.png)
2017年云南省高中学业水平考试模拟考(一)文科数学试卷一、选择题(共12小题,每小题5.0分,共60分)1. 设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【答案】D【解析】试题分析:阴影部分的面积为:,正方形的面积为:,故选D.考点:1、几何概型的计算,面积比【方法点晴】本题主要考查的是几何概型,属于中等题,由题作出所对应的图像,可得平面区域为如图所示的正方形区域,而区域内的任意点到原点的距离大于的区域为图中的阴影部分,由几何概型的公式可知概率即为面积之比,易得答案.2. 某化工厂单位要在600名员工中抽取60名员工调查职工身体健康状况,其中青年员工300名,中年员工200名,老年员工100名,下列说法错误的是()A. 老年人应作为重点调查对象,故老年人应该抽超过30名B. 每个人被抽到的概率相同且为C. 应使用分层抽样抽取样本调查D. 抽出的样本能在一定程度上反应总体的健康状况【答案】A【解析】试题分析:本题的抽样方法为分层抽样抽取样本调查,又由于要在600名员工中抽取60名员工调查,故抽取比例为,而老年员工100名,故老年人应该抽10名.考点:分成抽样.3. 下列两个变量之间的关系是相关关系的是()A. 正方体的棱长和体积B. 单位圆中角的度数和所对弧长C. 单产为常数时,土地面积和总产量D. 日照时间与水稻的亩产量【答案】D故选D.考点:相关关系4. 已知20名学生某次数学考试成绩(单位:分)的频率分布直方图如下图所示.则成绩落在[50,60)与[60,70)中的学生人数分别为()A. 2,3B. 2,4C. 3,2D. 4,2【答案】A【解析】根据频率分布直方图,得:,解得。
2017年云南省中考数学试卷(含答案解析版)
![2017年云南省中考数学试卷(含答案解析版)](https://img.taocdn.com/s3/m/4147051ff01dc281e53af0e8.png)
2017年云南省中考数学试卷(含答案解析版)2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x+a+5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD+DE+AE AB+BC+AC= .4.(3分)使√9−x 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5x上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 .二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×1088.(4分)下面长方体的主视图(主视图也称正视图)是( )A .B .C .D .9.(4分)下列计算正确的是( )A .2a ×3a=5aB .(﹣2a )3=﹣6a 3C .6a ÷2a=3aD .(﹣a 3)2=a 610.(4分)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形11.(4分)sin60°的值为( ) A .√3 B .√32 C .√22 D .1212.(4分)下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖13.(4分)正如我们小学学过的圆锥体积公式V=13πr 2h (π表示圆周率,r 表示圆锥的地面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于( ) A .5√3πB .5√3C .3√3πD .3√314.(4分)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC=13.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE ∽△ABC ,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AD+DE+AE AB+BC+AC =13.故答案为:13.【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使√9−x 有意义的x 的取值范围为 x ≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x ≥0. 【解答】解:依题意得:9﹣x ≥0. 解得x ≤9. 故答案是:x ≤9.【点评】考查了二次根式的意义和性质.概念:式子√a (a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=12S ⊙O +S △HGF 可得答案.【解答】解:如图,连接HO ,延长HO 交CD 于点P ,∵正方形ABCD 外切于⊙O ,∴∠A=∠D=∠AHP=90°,∴四边形AHPD 为矩形, ∴∠OPD=90°, 又∠OFD=90°, ∴点P 于点F 重合, 则HF 为⊙O 的直径, 同理EG 为⊙O 的直径,由∠B=∠OGB=∠OHB=90°且OH=OG 知,四边形BGOH 为正方形,同理四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC 2+CF 2=2√2 则阴影部分面积=12S ⊙O+S △HGF=12•π•22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣15x+1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y=5x 上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得{m+n=0n=5,解得{m=−5n=5,∴y=﹣5x+5;②当a=5,b=1时,由题意,得{5m+n=0n=1,解得{m=−15n=1,∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1.故答案为y=﹣5x+5或y=﹣15x+1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为( )A .√3 B .√32 C .√22 D .12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√32.故选B .【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A 、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B 、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C 、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3πB.5√3C.3√3πD.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180πR180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r ,∴由勾股定理可知:h=√3r ,∵圆锥的体积等于9√3π∴9√3π=13πr 2h , ∴r=3,∴h=3√3 故选(D )【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°【考点】M5:圆周角定理;KG :线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD ,然后结合等腰三角形的性质来求∠ABD 、∠ABC 的度数,从而得到∠DBC .【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC ,∴∠ABC=∠ACB=180°−40°2=70°.又EF 是线段AB 的垂直平分线, ∴AD=BD ,∴∠A=∠ABD=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.故选:A .【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .【考点】KD :全等三角形的判定与性质.【分析】先证明△ABC ≌△DEF ,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF , ∴BE+EC=CF+EC , ∴BC=EF ,在△ABC 与△DEF 中,{AB =DEBC =EF AC =DF∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4;(2)第n 个等式是:(n+1)2−n 2−12=n ,证明:∵(n+1)2−n 2−12=[(n+1)+n][(n+1)−n]−12=2n+1−12=2n 2=n ,∴第n 个等式是:(n+1)2−n 2−12=n .【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,(1000x+2)×2x=2400整理,可得:2000+4x=2400 解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=1 3.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC是以BC为底的等腰三角形,AD是边BC 上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=132,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=13 2,∴菱形AEDF的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O 是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c 即可解决问题.(2)设M(m,n),由题意12•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意12•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±√7,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;。
云南省2017年7月学业水平考试数学试卷
![云南省2017年7月学业水平考试数学试卷](https://img.taocdn.com/s3/m/89d300b18762caaedd33d496.png)
云南省2017年7月学业水平考试数学试卷一、选择题:本大题共17个小题,每小题3分,共51分.1.已知集合{}21,=A ,{}30,,m B =,若{}2=B A ,则实数=m ( ) A .1- B .0 C .2 D .3 2.已知135sin =θ,θ是第二象限的角,则cos θ的值是( ) A .125 B .125- C .1312 D .1312- 3.如图,网格纸上小正方形的边长为1,粗实线是某个几何体的三视图,则该几何体的体 积为( )A .12B .8C .532D .3324.函数x x x f 8)(2-=的定义域为( )A .(][)∞+∞-,,80 B .[]80, C .()()∞+∞-,,80 D .()80, 5.=-3log 6log 22 ( )A .1-B .1C .2D .2 6.若向量)5(m ,=a ,)1(-=,n b ,且b a //,则m 与n 的关系是( ) A .05=-mn B .05=+mn C .05=-n D .05=+n m 7.如果圆柱的底面半径为2,高为4,那么它的侧面积等于( ) A .π24 B .π20 C .π16 D .π128.运行右面的程序框图,若输入的x 的值为2,则输出y 的值是( ) A .2 B .1 C .2或1 D .2- 9.函数3()f x x x =-的图象( )A .关于原点对称B .关于y 轴对称C .关于直线x y =对称D .关于x 轴对称10.已知31sin -=α,则=α2cos ( ) A .97 B .97- C .92 D .92- 11.统计中用相关系数r 来衡量两个变量x ,y 之间线性关系的强弱.下列关于r 的描述,错误的是( )A .当r 为正时,表明变量x 和y 正相关B .当r 为负时,表明变量x 和y 负相关C .如果[]175.0,∈r ,那么正相关很强 D .如果[]1.01--∈,r ,那么负相关很强 12.函数⎪⎭⎫⎝⎛+=2π2sin 2x y 的最小正周期是( ) A .π B .2π C .4πD .π2 13.某校高三年级甲、乙两名同学8次月考数学成绩用折线图表示如图,根据折线图,下列说法错误的是( ) A .每次考试,甲的成绩都比乙好B .甲同学的成绩依次递增C .总体来看,甲的成绩比乙优秀D .乙同学的成绩逐次递增 14.函数x x y cos sin -=的最大值是( ) A .2 B .2C .0D .115.函数x x f x +=e )(的零点所在区间是( )A .()12--,B .()01,-C .()10,D .()21, 16.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度大于1的概率为( )A .51 B .32 C .31 D .21 17.如图是2002年在北京召开的的第24届国际数学家大会的会标,它源于我国古代数学家赵爽的“弦图”.根据“弦图”(由四个全等的直角三角形和一个小正方形构成,直 角三角形的两直角边的长分别为a 和b ),在从图1变化到图2的过程中,可以提炼 出的一个关系式为 ( )A .b a >B .2>+b aC .ab b a 222≥+D .ab b a 2>+ 二、填空题:本大题共5个小题,每小题4分,共20分. 18.已知a 与b 的夹角为︒60,且2=a ,1=b ,则=⋅b a .19.《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最ba1图2图题第3否开始结束x输入y 输出xy =?0<x 1-=x y 题第8是12345678020406080100120140月考次数分数甲乙题第13大公约数(“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求 其等也.以等数约之.”).据此可求得32和24的最大公约数为 .20.某广告公司有职工150人.其中业务人员100人,管理人员15人,后勤人员35人,按分层抽样的方法从中抽取一个容量为30人的样本,应抽取后勤人员 人.21.若x ,y 满足约束条件10100x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值为 .22.已知函数⎩⎨⎧≤≤<≤-+=202021)(x x x x f x ,,,若函数⎪⎩⎪⎨⎧>-≤≤--<+=2)4(22)(2)4()(x x g x x f x x g x g ,,,,则=+-)7()3(g g .三、解答题:本大题共4小题,共29分.23.(本小题满分6分)在ABC ∆中,三个内角A 、B 、C 所对边的长分别为a 、b 、c ,且︒=60A .(1)若︒=45B ,3=a ,求b ;(2)若3=b ,4=c ,求a .24(本小题满分7分)已知n S 是等差数列{}n a 的前n 项和,且93=S ,497=S . (1)求数列{}n a 的通项公式; (2)设11+=n n n a a b ,求数列{}n b 的前n 项和n T .25.(本小题满分7分) 如图,四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,M 、N 分别是PB 、PD 的中点,2=AB ,3=AD ,4=PA ,E 为棱CD 上一点. (1)求证://MN 平面ABCD ; (2)求三棱锥PAB E -的体积.26(本小题满分9分)已知点)33(,N ,直线l :02=+-y x ,圆M :4)3()2(22=-+-y x . (1)写出圆M 的圆心坐标和半径;(2)设直线l 与圆M 相交于P 、Q 两点,求PQ 的值;(3)过点N 作两条互相垂直的直线1l 、2l ,设1l 与圆M 相交于A 、C 两点,2l 与圆M 相交于B 、D 两点,求四边形ABCD 面积的最大值.PB C D AMN E参考答案一.选择题(每题3分,共51分)三.解答题 23.(1)2=b ,(2) 13=a .24.(1)12-=n a n ,(2)12+=n nT n . 25.(1)略, (2)4=-PAB E V .26.(1)圆心为)32(,M ,半径为2=r , (2)14=PQ ,(3)设圆M 到1l 、2l 距离分别为m ,n . 则242m AC -=,242n BD -= 则)4)(4(22122n m BD AC S ABCD --=⨯=, 又1222==+MNn m ,所以7)(8)4()4(2222=+-=-+-≤n m n m S ABCD .。
2017年7月云南省普通高中学业水平考试数学试卷PDF版含答案
![2017年7月云南省普通高中学业水平考试数学试卷PDF版含答案](https://img.taocdn.com/s3/m/60f604dbf705cc175527094e.png)
x 为里程数(单位: km) .
(2) 甲乙两人乘坐该线地铁分别为
25km、 49km ,谁在各自的行程内每
km 的平均价格较低?
26. (本小题满分 已知数列 (1) 求
8 分)
{ an } 满足: a1 =
1 2
, a n = 4 an- 1 + 1(n ? 2) 。
4 小题,共 34 分 . 解答应写出文字说明、证明过程或演算步骤
f ( x ) = 2sin x cos x - 1 . p 4
.
) 的值及 f ( x) 的最小正周期;
(2) 求 f ( x ) 的最大值和最小值
24. (本小题满分 如图,在长方体
8 分)
ABCD — A1B1C1D 1 中, AB =AD =1, AA 1=2.
° . 150 D
6. 已知一个算法,其流程图如右图所示,若输入 输出的结果是( )
a=3, b=4, 则
A.
7 2
B.6
C.7
)
D.12
7. 直线 x +y+1=0 的倾斜角是(
A.-1
B. -
p 4
C.
p 4
D .
3p 4
)
8. 在如图以 O 为中心的正六边形上随机投一粒黄豆,则这粒黄豆落到阴影部分的概率为(
)
A.f(x) B. f(x) C. f(x) D. f(x)
是奇函数,且在 是奇函数,且在 是偶函数,且在 是偶函数,且在
16. 若 tan a = 2 ,则 cos 2a 等于(
A. -
3 5
B.
3 5
C .2
2017年云南省中考数学试题及答案(清晰版)
![2017年云南省中考数学试题及答案(清晰版)](https://img.taocdn.com/s3/m/d3f0ff4b7f1922791788e87b.png)
10.云南省2017年中考数学试题及答案一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是.2.(3分)已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.(3分)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB =13,则AD+DE+AEAB+BC+AC= .4.(3分)使9-x有意义的x的取值范围为.5.(3分)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(3分)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()9.(4分)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6 10.(4分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)sin60°的值为()A.3B.32C.22D.1212.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62。
2017年云南省中考数学试卷及答案解析
![2017年云南省中考数学试卷及答案解析](https://img.taocdn.com/s3/m/786c8b9ef8c75fbfc77db2e4.png)
2017年云南省中考数学试卷(解析版)(全卷三个大题,共23个小题;满分120分)一、填空题(本大题共6个小题,每小题3分,共18分) 1.2的相反数是______________. 【考点】相反数 【答案】-2;2.已知关于x 的方程2501,x x a x a ++==已知关于的方程的解是则的值为__________ 【考点】方程的解 【答案】-73.如图,在△ABC 中,D 、E 分别为AB ,AC 上的点,若DE ∥BC ,AD 13AB =, 则AD+DE+AE=AB+BC+AC______________.【考点】相似三角形,等比性质 【解析】等比性质a c e a c e k k b d f b d f ++====++若,则 等比性质的原理是,a bk,c dk,e fk a c ek b d f======设则 a c e bk dk fkk b d f b d f++++==++++,故本题答案为134.9______________.x x -使有意义的的取值范围为 【考点】二次根式 【答案】9x ≤5.如图,边长为4的正方形ABCD 外切于圆O ,切点分别为E 、F 、G 、H ,则图中阴影部分的面积为____________________.【考点】多边形内切圆,切线长定理。
阴影部分面积【解析】方法很多,又是选择题,要求没有那么严谨,只要看出分割,就可以完成 【答案】42π+6.5(,)y A a b x=已知点在双曲线上,若a 、b 都是正整数,则图像经过 B(a,0)C(0,b)、两点的一次函数的解析式(也称关系式)为_______________.【考点】反比例函数,一次函数,待定系数法 【解析】因为5(,)y A a b x=点在双曲线上,所以ab=5 又因为a 、b 都是正整数,所以1551a a b b ==⎧⎧⎨⎨==⎩⎩或 所以分两种情况:①B (1,0),C (0,5),由此可得一次函数解析式为55y x =-+ ②B (5,0),C (0,1),由此可得一次函数解析式为155y x =-+ 二、选则题(本大题共8个小题,每小题只要一个正确选项,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m ,将6700000用科学计数法表示为( ) A .56.710⨯ B. 66.710⨯ C. 70.6710⨯ D. 86710⨯ 【考点】科学计算法 【答案】选B8.下面长方体的主视图(主视图也称正视图)是( ) 【考点】三视图 【答案】选C9.下列计算正确的是( )A .236a a a ⨯= B.()3326a a -=-C.623a a a ÷=D.326()a a -=【考点】整式乘除、幂的性质 【答案】选D10. 若一个多边形的内角和为900°,则这个多边形是( ) A.五边形 B.六边形 C.七边形 D.八边形 【考点】多边形内角和 【答案】选C11. sin60°的值为( )A .3 B.32 C.22 D.12【考点】特殊角三角函数 【答案】选B12. 下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4为同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定 D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 【考点】统计概率小综合【解析】B 选项中位数应为102.5;C 选项根据方差甲更稳定;D 这种事情是常识大家都懂, 故选A13.正如我们小学学过的圆锥体积公式213V r h π=(π表示圆周率,r 表示圆锥的底面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确。
2017云南高考文科数学真题及答案
![2017云南高考文科数学真题及答案](https://img.taocdn.com/s3/m/a3bb06ec376baf1ffd4fad49.png)
2017云南高考文科数学真题及答案注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A.79- B.29-C.29D.795.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]6.函数f(x)=15sin(x+3π)+cos(x−6π)的最大值为A.65B.1 C.35D.157.函数y=1+x+2sin xx的部分图像大致为A.B.C.D.8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
云南省2017年高中毕业生第一次复习统一检测(理科)数学试卷及答案
![云南省2017年高中毕业生第一次复习统一检测(理科)数学试卷及答案](https://img.taocdn.com/s3/m/242912ccf524ccbff121849e.png)
N (90, 2 ) .若分数在(70,110]内的概率为 0.7,估计这次考试分数不超过 70 分的人数
为 人.
14.已知双曲线
M:
x2 a2
y2 b2
1(a>0,b>0) 的右焦点为
F,过
F
垂直于
x
轴的直线与双曲
线 M 交于 A、B 两点,与双曲线 M 的两条渐近线交于 C,D 两点.若|AB|= 3 |CD|,则双曲线 5
M 的离心率是
.
15.计算 cos10 3 cos(100) 1 sin10
(用数字作答).
16.已知函数 f (x) 3x2 ln( 1 x2 x),x 0,若 f (x 1)<f (2x 1) ,则 x 的取值范围 3x2 ln( 1 x2 x),x<0,
乙校的合格率 P2= 50 2 100℅ 96℅ , 50
可得:甲乙两校的合格率相同,都为 96℅. (2)甲乙两校的 C 等级的学生数分别为: 0.012 10 50 6 人, X=0,1,2,3.
则
P(X=k)=
C6k C43k C130
,P( X
0) 4 120
∴n≥2
时, an
Sn
S n 1
1 2n 1
1 2n 3
(2n
2 1)(2n
3)
,
∵ a1 S1 1,
∴
an
(2n
1,n 2
1)(2n
1 ,n
3)
2.
(2)设 f (n) (1 S1)(1 S2 )(1 Sn ) , 2n 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 题图
云南省2017年7月普通高中学业水平考试
数学试卷(附全解析)
如果事件A 、B 互斥,那么.
球的表面积公式:,体积公式:,其中R 表示球的体积.
柱体的体积公式:,其中S 表示柱体的底面面积,h 表示柱体的高.
锥体的体积公式:
,其中S 表示锥体的底面面积,h 表示锥体的高. 选择题(共51分)
一、选择题:本大题共17个小题,每小题3分,共51分.在每小题给出的四
个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂. 1.已知集合{1,2}A =,{0,,3}B m =,若{2}A B =,则实数m =( ) A .-1 B .0 C .2 D .3
2.已知5
sin 13
θ=
,θ是第二象限的角,则cos θ的值是( ) A .512 B .512- C .1213 D .12
13
-
3.如图,网格纸上小正方形的边长为1,粗实线是某个几何体的三视图,则该几何体的体积为 ( ) A .12 B .8 C .
325 D .323
4
.函数()f x =( ) A .(,0][8,)-∞+∞ B .[0,8] C .(,0)(8,)-∞+∞ D .(0,8) 5.2336log log -的值为( )
()()()P A B P A P B =+24S R π=3
43V R π=V Sh =13
V Sh =
第 8 题图
A .1-
B .1
C .2-
D .2 6.若向量(5,)a m =,(,1)b n =-,//a b 且,则m 与n 的关系是( )
A .50mn -=
B .50mn +=
C .50m n -=
D 50m n += 7.如果圆柱的底面半径为2,高为4,那么它的侧面积等于( ) A .24π B .20π C .16π D .12π
8.运行右面的程序框图,若输入的x 的值为2,则输出y 的值是( )
A .2
B .1
C .2或1
D .2- 9.函数3()f x x x =-的图象( )
A .关于原点对称
B .关于y 轴对称
C .关于直线y x =对称
D .关于x 轴对称
10.已知1
sin 3
α=-,则cos2α的值是( )
A .
79
B .79-
C .29
D .2
9-
11.统计中用相关系数r 来衡量两个变量,x y 之间线性关系的强弱.下列关于r 的描述,错误的是( )
A .当r 为正时,表明变量x y 和正相关
B .当r 为负时,表明变量x y 和负相关
C .如果[0.75,1]r ∈,那么正相关很强
D .如果[1,0.1]r ∈--,那么负相关很强
12.函数2sin(2)2y x π
=+的最小正周期是( ) A .π B .2π C .4
π
D .2π
第 13 题图
分数
月考次数
13.某校高三年级甲、乙两名同学8次月考数学成绩用折线图表示如图,根据折线图,下列说法错误的是( ) A .每次考试,甲的成绩都比乙好 B .甲同学的成绩依次递增 C .总体来看,甲的成绩比乙优秀 D .乙同学的成绩逐次递增
14.函数sin cos y x x =-的最大值是( )
A .2 B
C .0
D .1 15.函数()x f x e x =+的零点所在区间是( )
A .(2,1)--
B .(1,0)-
C .(0, 1)
D .(1,2) 16.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度大于1的概率为( )
A .15
B .23
C .13
D .12
17.如图是2002年在北京召开的的第24届国际数学家大会的会标,它源于我国古代数学家赵爽的“弦图”.根据“弦图”(由四个全等的直角三角形和一个小正方形构成,直角三角形的两直角边的长分别为a 和
b ),在从图1变化到图2的过程中,可以提炼出的一个关系式为( )
A .a b >
B .2a b +>
C .222a b ab +≥ D
.a b +>
第 17 题图
图2
非选择题(共49分)
二、 填空题:本大题共5个小题,每小题4分,共20分.请把答案写在答题卡相应的位置上.
18.已知a b 与的夹角为60,且||2,||1a b ==,则a b ⋅= . 19.《九章算术》是中国古代的数学专箸,其中的“更相减损术”可以用来求两个数的最大公约数(“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”).据此可求得32和24的最大公约数为 .
20.某广告公司有职工150人.其中业务人员100人,管理人员15人,后勤人员35人,按分层抽样的方法从中抽取一个容量为30人的样本,应抽取后勤人员 人.
21.若,x y 满足约束条件10100x y x y y +-≤⎧⎪
-+≥⎨⎪≥⎩
,则2z x y =+的最小值
为 .
22.已知函数
1, 20
2, 02
()x
x x x f x +-≤<⎧⎨
≤≤⎩=,若函数
(4), 2()(), 22(4), 2g x x g x f x x g x x +<-⎧⎪
=-≤≤⎨⎪->⎩
,则(3)(7)g g -+= .
云南省普通高中学业水平考试
数学答题卡 得分
一、选择题:
(本大题共17小题,每小题3分,共51分)
二、填空题:
(本大题共5小题,每小题4分,共20分)
18. 19. 20. 21. 22. 三、解答题(本大题共4小题,共29分,解答时应写出文字说明、证明过程或演算步骤。
)
23.(本小题满分6分)
在ABC ∆中,三个内角,,A B C 所对边的长分别为,,a b c ,且60A =. (1)若45B =
,a =b ; (2)若3,4b c ==,求a .
24.(本小题满分7分)
已知n S 是等差数列{}n a 的前n 项和,且39S =,749S =.
(1)求数列{}n a 的通项公式; (2)设1
1
n n n b a a +=,求数列{}n b 的前n 项和n T .
B
A
D
C
第 25 题图
E
N
P
M
25.(本小题满分7分)
如图,四棱锥ABCD P -中,底面ABCD 是矩形,PA ABCD ⊥底面,,M N
分别是,PB PD 的中点,2,3,4AB AD PA ===,E 为棱CD 上一点.
(1)求证://MN ABCD 平面;
(2)求三棱锥E PAB -的体积.
26.(本小题满分9分)
已知点(3,3)N ,直线:20l x y -+=,圆22:(2)(3)4M x y -+-=. (1)写出圆M 的圆心坐标和半径;
(2)设直线l 与圆M 相交于P Q 、两点,求||PQ 的值;
(3)过点N 作两条互相垂直的直线12,l l ,设1l 与圆M 相交于A C 、两点,2l 与圆M 相交于B D 、两点,求四边形ABCD 面积的最大值.。