人教版八年级数学上册第十二章全等三角形全章教案

合集下载

(精)人教版数学八年级上册《全等三角形》全单元教案

(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教课剖析1、内容剖析:本章主要内容是学习全等三角形的观点、性质以及判断方法,应用全等三角形的性质和判断研究角均分线的性质,能够应用全等三等三角形的性质和判断以及角均分线的性质解决简单的几何老是,初步掌握推理证明的方法。

2、教材剖析:学生已经学过线段、角、订交线、平行线、相关三角形的一些知识,经过本章的学习能够丰富和加深学生对已学图形的认识,同时为学习其余图形打好基础,教材力争创建与生活场景邻近的、风趣的问题情境引入,使学生经历了从现实生活研究并抽象出几何模型,并应用几何模型解决实质问题的过程,在内容上重点研究三角形全等的判断方法经及应用,至于角均分线的改天换地的两上互逆定理,只需修业生认识其条件与结论之间的关系,不用介绍互逆定理的观点,经过联合详细问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培育学生的推理能力。

二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.认识全等三角形的观点和性质,能够正确地辨识全等三角形中的对应元素。

2.研究三角形全等的判断方法,能利用三角形全等进行证明,掌握综合法证明的格式。

3.利用尺规作图作一个角等于已知角、作一个角的角均分线。

4、经历角均分线的性质和判断方法的研究过程,灵巧应用角均分线的性质和判断解决问题 .三、本章教课建议(一)着重研究结论(二)着重推理能力的培育1.注意减缓坡度,顺序渐进。

2.在不一样的阶段,安排不一样的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。

3.着重剖析思路,让学生学会思虑问题,着重书写格式,让学生学会清楚地表达思虑的过程。

(三)着重联系实质三、几个值得关注的问题(一)对于内容之间的联系(二)对于证明一般状况下,证明一个几何中的命题有以下步骤:(1 )明确命题中的已知和求证;(2 )依据题意,画出图形,并用数学符号表示已知和求证;(3 )经过剖析,找出由已知推出求证的门路,写出证明过程。

人教版八年级数学上册12.2三角形全等的判定边角边教学设计

人教版八年级数学上册12.2三角形全等的判定边角边教学设计
a.引导学生探索其他全等判定方法,如SSS、ASA、AAS等,提高学生的几何素养。
b.开展课外活动,如几何图形设计比赛、尺规作图展示等,激发学生学习数学的兴趣。
7.评价环节:
a.采用多元化评价方式,如课堂表现、作业完成情况、小组合作、竞赛成绩等,全面评估学生的学习效果。
b.关注学生的个体差异,鼓励他们在原有基础上取得进步,提高自信心。
a.将学生分成小组,让他们自主探究SAS判定全等的方法,并在小组内进行交流讨论。
b.教师巡回指导,解答学生疑问,引导学生关注证明过程中的关键步骤和注意事项。
c.各小组汇报探究成果,教师点评并总结,强调SAS判定全等的条件及其证明方法。
4.应用环节:
a.设计具有梯度的问题,让学生运用SAS判定全等解决实际问题,巩固所学知识。
1.学生对SAS全等判定的理解程度,帮助他们建立清晰、严密的逻辑思维,提高证明全等关系的能力。
2.学生在解决实际问题时,可能对全等三角形的运用不够熟练,需要引导他们从实际问题中抽象出几何模型,运用所学知识解决问题。
3.部分学生对尺规作图的全等三角形可能存在恐惧心理,教师应耐心指导,帮助他们逐步克服困难,提高作图技能。
1.作业要求书写工整、条理清晰,图形准确无误。
2.作业完成后,请认真检查,确保解答正确、步骤完整。
3.遇到问题,及时与同学或老师交流,共同解决。
4.作业截止时间:下次上课前。
b.教师巡回指导:关注各小组讨论情况,解答学生疑问,引导学生深入思考。
c.小组汇报:各小组选代表汇报讨论成果,分享解题经验。
(四)课堂练习
1.教学内容:设计具有梯度、覆盖不同难度的练习题,让学生巩固SAS全等判定的应用。
2.教学活动:
a.学生独立完成练习题,教师巡回辅导,解答学生疑问。

人教版数学八年级上册12.2三角形全等的判定1教学设计

人教版数学八年级上册12.2三角形全等的判定1教学设计
4.实践操作,巩固知识
设计一些具有挑战性的实践题目,让学生动手操作,运用所学知识解决问题。在此过程中,教师要及时关注学生的学习情况,给予指导和鼓励。
5.总结反思,拓展提高
在课堂结尾,引导学生对所学知识进行总结,明确全等三角形的判定方法及其在实际问题中的应用。同时,布置课后作业,巩固所学知识。
6.教学评价
(四)课堂练习
在这一阶段,学生将通过课堂练习,巩固所学知识。
1.教师设计具有代表性的练习题,涵盖全等三角形的判定方法。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的作业进行展示和讲评,分析解题过程中的误区和注意事项。
4.针对不同层次的学生,教师进行个别辅导,提高每个学生的几何解题能力。
4.使学生能够运用全等三角形的性质和判定方法,解决一些与三角形有关的实际问题,如求角度、边长等。
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在自主探究、合作学习中,理解和掌握三角形全等的判定方法。
2.引导学生运用观察、分析、归纳等方法,从特殊到一般,总结出三角形全等的判定规律。
3.运用问题驱动、情景教学等手段,激发学生的学习兴趣,培养学生主动探究、解决问题的能力。
(三)学生小组讨论
在这一阶段,学生将通过小组合作,加深对全等三角形判定方法的理解。
1.教师给出几个具有挑战性的问题,要求学生以小组为单位进行讨论。
2.学生在小组内部分工合作,通过尺规作图、测量等方法,探究全等三角形的判定方法。
3.各小组展示自己的讨论成果,分享解题思路和经验。
4.教师对各小组的表现给予评价和指导,引导学生发现问题和解决问题。
2.讲解SSS(边-边-边)判定方法,通过图例和实际操作,让学生直观地感受如何通过三边的相等来判断两个三角形全等。

人教版八年级上册12.2直角三角形全等的判定教案

人教版八年级上册12.2直角三角形全等的判定教案
4.通过实际操作,加深对直角三角形全等判定的理解,提高动手操作能力。
二、核心素养目标
1.掌握直角三角形全等的判定方法,培养几何直观与逻辑推理能力;
2.通过实际问题的解决,提高数学抽象与模型构建的能力;
3.在探究直角三角形全等判定过程中,培养数据分析与数学运算的能力;
4.合作交流、探讨全等判定方法,提升学生沟通与合作的核心素养;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等判定的基本概念。直角三角形全等是指两个直角三角形的对应边和角完全相同。这种判定是几何学中的重要内容,它在解决实际问题中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SAS、ASA、AAS判定法来确定两个直角三角形是否全等,以及这些方法如何帮助我们解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形全等判定的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形全等的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上学习了直角三角形全等的判定,回顾整个教学过程,我觉得有几个方面值得思考。
首先,关于教学导入,我发现通过提问的方式引导学生思考日常生活中的例子,能有效激发他们的学习兴趣。然而,部分学生对这个问题似乎不太感冒,可能是因为例子不够贴近他们的生活实际。在今后的教学中,我需要更加关注学生的生活经验,寻找更合适的导入方式。
其次,在新课讲授环节,我发现学生们对SAS、ASA、AAS判定方法的理解程度不一。有些学生能迅速掌握,但也有一些学生对此感到困惑。针对这一点,我采取了举例和对比的方式进行讲解,但效果似乎并不理想。我考虑在接下来的课程中,加入更多的互动环节,让学生自己动手操作,以加深他们对这些判定方法的理解。

人教版八年级上册12.2《三角形全等的判定》(角边角)教案

人教版八年级上册12.2《三角形全等的判定》(角边角)教案
5.培养学生的创新意识:鼓励学生在掌握ASA判定方法的基础上,尝试发现和探索其他全等三角形的判定方法,激发创新意识。
三、教学难点与重点
1.教学重点
a. “角边角”(ASA)判定全等三角形的条件:两个角和它们夹的边分别相等。
b.应用ASA判定方法判断两个三角形是否全等。
c.理解全等三角形的性质,如对应边、对应角相等,对应边上的中线、高、角平分线相等。
-引导学生观察并总结规律,强调“角边角”中的“边”是特定的一条边。
-通过具体例题,让学生在实际应用中加深对“边”的理解。
针对难点b,教师可采用以下方法:
-在复杂图形中,引导学生先识别出已知的信息,如角和边,再判断是否符合ASA条件。
-通过变式练习,让学生在不同情境下运用ASA判定方法,提高识别和运用能力。
人教版八年级上册12.2《三角形全等的判定》(角边角)教案
一、教学内容
人教版八年级上册12.2《三角形全等的判定》(角边角)教案:
1.知识目标:使学生掌握“角边角”(ASA)判定全等三角形的方法。
2.能力目标:培养学生运用ASA判定方法解决实际问题的能力。
3.教学内容:
a.复习全等三角形的定义及性质。
d.通过具体例题,让学生掌握ASA判定全等三角形的步骤和技巧。
举例:在讲解ASA判定方法时,教师可借助图形,如∆ABC和∆DEF,明确指出当∠A=∠D,∠B=∠E,且边AB=DE时,根据ASA判定方法,可得出∆ABC≌∆DEF。
2.教学难点
a.理解并掌握“角边角”中的“边”是指两个角夹的那条边,而非任意一条边。
b.学习“角边角”(ASA)判定全等三角形的方法。
c.通过例题,让学生掌握ASA判定方法的运用。
d.练习:完成教材P122页练习题12.2的第1、2、3题。

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形 教案

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形  教案

全等三角形的判定复题课教学目标:熟练运用适当的方法判定两三角形全等通过探究与交流培养学生几何逻辑思维能力让学生感受和发现数学中的几何图形直观美教学重点:能够判定两个三角形的全等教学难点:能够利用条件熟练的应用适当的方法迅速的解题教学过程:教学环节、内容、步骤师生互动策划备注(活动目的)教师活动学生活动引入展导知识梳理:引导学生复习全等三角形的判定方法1、通常用于判定两三角形全等的一般方法有方法有种,分别简记为____,______,____ ,____2、对于直角三角形(即Rt△),除了一般方法外:当两直角三角形有一组斜边和直角边分别相等时,两三角形______,简记______。

3、全等三角形的______相等,______相等。

回顾旧知,为后面的学习埋下伏笔主题展导1.合作探究2.学生展评证明全等三角形全等的基本思路:一、挖掘“隐含条件”判全等引导学生总结:公共边,公共角,对顶角这些都是隐含的边,角相等的条件思考:(1)已知两边:SSS, SAS, HL(2)已知两角:ASA, AAS(3)已知一边一角:SAS, ASA,AAS, HL1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB若∠B=20°,CD=5cm,则∠C= __,BE=__,说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= __. 说说理由.学生通过自己探讨获得新知,使学生成为学习的主体,使学生学会学习,交流与合作。

3. 教师指导4. 反馈练习5.拓展延伸二、熟练转化“间接条件”判全等引导学生总结:等量加等量和相等,等量减等量差相等,都是用来间接找边和角相等的方法!5,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.能力提升:如图,在△ABC中, AC=BC,∠ACB=90°, ∠CAB的角平分线AE交边CB于E点,过E点作EF⊥AB于F,已知AB等于10㎝,求△EFB的周长?课后闯关: 略4.如图在△ABC、△ADE中∠B=∠D,AC=AE, 且∠CAE=∠BAD,1.独立思考2.小组讨论3.展示成果1.独立思考2.小组讨论3.展示成果略在教师的指导下主动构建知识的过程。

初中数学人教八年级上册(2023年更新)第十二章 全等三角形“边边边”判定三角形全等教案

初中数学人教八年级上册(2023年更新)第十二章 全等三角形“边边边”判定三角形全等教案

全等三角形的判定(SSS)教学设计三维目标:1.掌握“边边边”条件的内容,能初步应用“边边边”条件判定两个三角形全等。

2.经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程。

3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。

教学重点:探究三角形全等的条件教学难点:“边边边”判定方法和应用教学过程一、复习巩固引新知1、什么是全等三角形?2、全等三角形有什么性质?__________________________________________________________________________3.已知△ABC ≌△DEF,找出其中相等的边与角。

二、研讨探究得新知如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?1、探究1:给一个条件:给两个条件:归纳1:在两个三角形中,如果只有一个或两个元素对应相等,这两个三角形_____.给三个条件:2、探究2:先任意画出一个△ABC ,再画出一个△A ′B ′C ′ ,使A ′B ′= AB ,B ′C ′ =BC, A ′ C ′ =AC.把画好的△A ′B ′C ′剪下,放到△ABC 上,他们全等吗?作法:(1)画B ′C ′=BC ;(2)分别以B',C'为圆心,线段AB,AC 长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '。

发现: 。

归纳2:在两个三角形中,如果 ,那么 .(可简写成“边边边”或 “SSS”)几何语言:三、典例精析 例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .四、针对训练如图, C 是BF 的中点,AB =DC,AC=DF 。

求证:△ABC ≌ △DCF 。

F五、用尺规作一个角等于已知角 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA , OB 于点C 、D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB 。

最新人教版八年级上册第12章《全等三角形》全章教案(共8份)

最新人教版八年级上册第12章《全等三角形》全章教案(共8份)

一、课前导学:(学生自学课本31-32页内容,并完成下列问题)(一)全等有关定义: 1、能够______________的两个图形叫做全等形, 能够______________的两个三角形叫做全等三角形,两个全等图形的______和_____ 完全相同.2、一个图形经过平移、______、_________后所得的图形与原图形全等.3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .“全等”用“ ”表示,读作 .4.若△ABC 与△DEF 全等,记作:_________________,(对应顶点的字母写在对应位置上)对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,______和____,_____和_____.(二)全等三角形的性质:1.思考:全等三角形的对应边、对应角有什么关系?为什么?2.归纳:全等三角形的_________;全等三角形的___________.3.几何语言描述:∵△ABC ≌ △DEF (已知)∴ AB=DE,_____ ,______ (全等三角形的对应边相等) ∠ A=∠ D, _______ ,________ (________________ ) (三)找全等三角形的对应元素1. 若△ABC ≌△DBC , 2 若△ABC ≌△CDA ,对应边是_____________ , 对应边是_____________ ,对应角是_____________ ; 对应角是_____________ ;教 学 过 程 设 计B C E F A B CDBAB C E F【思考】:找全等三角形的对应元素时有什么规律呢?二、合作、交流、展示:(一) 交流展示1:找全等三角形对应元素1.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点, 2.如图,△ABN ≌△ACM ,∠B和∠C 是对应角,AB 与AC 是对应边.写出这两个三角形中的对应边和对应角. 写出其他对应边及对应角.【归纳】:寻找全等三角形的对应元素的一般规律.(二).交流展示2: 全等三角形性质及其应用1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、巩固与应用1. 课本第33页第3题;2. 课本第34页第6题;3. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; (2)若∠A =50°,∠E=75°,则∠ACB= 度.四、小结:1.知识: 2.思想方法: 五、作业:《作业本》第8页. 六、课后反思:N M CB ANMGH FEDCBEAF EDCB A DC B O一、课前导学:(学生自学课本35-37页内容,并完成下列问题)1.三角形全等条件的探究:两个三角形满足三边分别相等,三个角分别相等,则这两个三角形全等. 思考:判定两个三角形全等是否一定要六个条件?条件能否尽可能少呢?(动手画一画并回答下列问题) (1).只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2).给出两个条件画三角形,有____种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等 (3)、给出三个条件画三角形,有____种情形.按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等②三组对应边相等(按课本35页探究2画图实验)2.归纳三角形全等判定方法(1)归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”. 用数学语言表述: 在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ ( )教 学 过 程 设 计C 'B 'A 'C B AAB O3.运用“边边边”证明两个三角形全等:已知:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .证明:∵D 是BC∴ =∴在△ 和△ 中 AB= BD= AD=∴△ABD △ACD( )【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论. 二、合作、交流、展示:1.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整. 解:∵BE=CF (_____________) ∴BE+EC=CF+EC 即BC=EF在ΔABC 和ΔDEF 中 AB=________ (________________)__________=DF (_______________) BC=__________∴ΔABC ≌ΔDEF (_____________)变式1:你能证明∠ A=∠ D 吗? 变式2;请你能提出几个要证明的结论?2.如图,已知AB=DE ,BC=EF ,AF=DC ,求证: EF ∥BC .3.已知:∠AOB. 求作:∠A ′O ′B ′ ,使∠A ′O ′B ′=∠AOB. 作法:1)以点___为圆心,任意长为半径画弧,分别交OA ,____于点C ,D ; 2)画一条射线O ′A ′,以点___为圆心,___长为半径画弧,交__于点C ′; 3)以点C ′为圆心,____长为半径画弧,与第2步中所画的弧交于点D ′; 4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB. 三、巩固与应用:课本第37页第1、2题;四、小结:1.全等判定方法: 2.证明全等格式: 3.思想方法: 五、作业:《作业本》第9页. 六、课后反思:A B C D EF A B D EFC 'B 'A 'C B A一、课前导学:(学生自学课本37-39页内容,并完成下列问题) 1. 探究新知 探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试(请在右方空白处作图) 已知:△ABC求作:'''A B C ∆,使''A B AB =,''A C AC =,'A A ∠=∠ 作法:①画∠DA ’E=∠A ;②在射线AD ’上截取A ’B ’=AB,在射线A ’E 上截取A ’C ’=AC ; ③连接B ’C ’.(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ ( )2.探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出: 3 .运用“边角边”证明两个三角形全等:教 学 过 程 设 计证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧==∠=CB CA 1 ∴ △ABC ≌ ( )∴ AB= . 【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来(按边-角—边)C 、写出全等结论.二、合作、交流、展示:1.如图1,已知AD ∥BC ,AD =CB ,求证:△ABC ≌△CDA 。

人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计

人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
(二)讲授新知,500字
在讲授新知的环节,我会按照以下步骤进行:
1.定义讲解:向学生介绍全等三角形的定义,强调在大小和形状上完全相同的两个三角形叫作全等三角形。
2. SAS判定方法:讲解边角边(SAS)判定全等三角形的方法,即两个三角形中有两边和夹角分别相等,则这两个三角形全等。
3.示例演示:通过教具或动态软件,演示SAS判定全等三角形的实际操作过程,让学生更直观地理解判定方法。
1.对SAS判定条件的深入理解,特别是在不同图形和实际问题中的应用。
2.学生在证明过程中,如何运用SAS条件进行严密的逻辑推理。
3.学生在识别全等三角形时,容易忽略隐含的条件,导致判断错误。
(三)教学设想
1.创设情境,引入新课
-通过生活中的实际例子,如拼接图形、建筑设计等,引出全等三角形的概念,激发学生的学习兴趣。
4.性质归纳:引导学生通过观察和思考,总结全等三角形的性质,如全等三角形的对应边、对应角相等。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.分组讨论:将学生分成若干小组,让每个小组共同探讨SAS判定方法的原理和应用。
2.互问互答:小组成员之间相互提问,解答对方关于SAS判定方法的疑问,共同提高。
人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
一、教学目标
(一)知识与技能
1.理解三角形等的定义,掌握边角边(SAS)判定三角形全等的方法。
2.能够运用SAS判定方法,解决实际问题时正确识别和运用全等三角形的性质。
3.能够运用尺规作图,通过SAS条件作出全等三角形,并能够证明所作的三角形与给定三角形全等。
2.提高题:设计一些综合性的题目,让学生在解决实际问题时,运用SAS判定方法。

人教版八年级数学上册第十二章全等三角形全章教案

人教版八年级数学上册第十二章全等三角形全章教案

12.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2 理解全等三角形的性质3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。

能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

“全等”用≅表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角思考:如上图,12。

1-1DEF ABC ∆≅∆,对应边有什么关系?对应角呢? 全等三角形性质: 全等三角形的对应边相等; 全等三角形的对应角相等。

思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角DADBD(2)将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由?B(3)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。

BC小结:作业:P33—1,2,312.2 三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.ADB C让学生独立思考后口头表达理由,由教师板演推理过程.例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线AD.AD就是∠BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.ADB C五、巩固练习教科书第37页的思考及练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业1.必做题:教科书第43页习题12.2中的第1、2题.2.选做题:教科书第44页第9题.12.2 三角形全等的判定(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)一、创设情境,引入课题多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC 上,观察这两个三角形是否全等.ABCDE二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律: 两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、 应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据. (若学生不能顺利得到证明思路,教师也可作如下分析: 要想证AB =DE , 只需证△ABC ≌△DEC△ABC 与△DEC 全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决. 补充例题:1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE 求证: △ABD ≌△ACE 证明:∵∠BAC=∠DAE (已知)ABCDEFM∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAE 在△ABD 与△ACE AB=AC (已知) ∠BAD= ∠CAE (已证) AD=AE (已知) ∴△ABD ≌△ACE (SAS) 思考: 求证:1.BD=CE 2. ∠B= ∠C 3. ∠ADB= ∠AEC变式1:已知:如图,AB ⊥AC,AD ⊥AE,AB=AC,AD=AE. 求证:⑴ △DAC ≌△EAB 1. BE=DC 2. ∠B= ∠ C 3. ∠ D= ∠ E 4. BE ⊥CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书39页图12.2-7.方法(二)通过画图,让学生更直观地获得结论.五、巩固练习教科书第39页,练习(1)(2).六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.七、布置作业1.必做题:教科书第43页,习题12.2第3、4题.2.选做题:教科书第44页第10题.3.备选题:(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.12.2 三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点理解,掌握三角形全等的条件:“ASA”“AAS”.教学难点探究出“ASA”“AAS”以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。

2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)

2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)

第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。

四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。

学生:三角尺、直尺、圆规。

六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。

2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。

学生:三角尺、直尺、全等图形、三角形纸板。

六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。

人教版八年级上数学教学设计《第12章全等三角形》

人教版八年级上数学教学设计《第12章全等三角形》

人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。

通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。

教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。

二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。

但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。

同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。

三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。

2.教学难点:全等三角形的判定方法以及在实际问题中的运用。

五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。

2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。

3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。

4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。

六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。

2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。

3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。

人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计

人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计
难点:在合作交流过程中,引导学生发挥各自优势,提高团队协作效果。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中全等三角形的实例,如拼图游戏、建筑图案等,激发学生的学习兴趣,引导学生关注全等三角形的特点和判定方法。
2.自主探究,合作交流
将学生分成小组,让他们观察、讨论全等三角形的性质,自主发现“角边角”判定法则。在此过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
3.案例分析,突破难点
设计具有挑战性的问题,如:如何在一个复杂图形中找出全等三角形?如何运用“角边角”判定法则解决实际问题?通过案例分析和讨论,帮助学生突破学习难点。
4.课堂练习,巩固知识
设计不同难度的练习题,让学生在课堂上进行练习,巩固所学知识。同时,教师及时反馈,针对学生的错误进行指导,提高学生的解题能力。
7.要求学生家长参与作业的检查和评价,了解学生的学习情况,关注学生在几何学习中的进步和困惑,共同促进学生的全面发展。
针对以上学情,教师应采取适当的教学策略,如设计生动有趣的导入环节,激发学生的学习兴趣;注重启发式教学,引导学生主动探究和发现几何规律;加强课堂练习,巩固学生对全等判定方法的掌握;鼓励学生积极参与合作交流,提高他们的表达能力和团队协作能力。通过有针对性的教学,帮助学生克服学习难点,提升几何学科素养。
三、教学重难点和教学设想
3.教师结合具体实例,讲解“角边角”判定法则的应用,让学生理解并掌握这个判定方法。
4.强调在运用“角边角”判定法则时,需要注意的要点,如角度的对应关系、边的对应关系等。
(三)学生小组讨论,500字
1.教师将学生分成小组,让他们观察和分析一些含有全等三角形的图形,讨论如何运用“角边角”判定法则。
2.学生在小组内分享自己的观点和发现,通过合作交流,共同解决问题。

人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计

人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计
4.部分学生可能对几何证明过程存在恐惧心理,教师在教学过程中应注重鼓励和指导,帮助学生克服困难,建立信心。
三、教学重难点和教学设想
(一)教学重难点
1.重点:全等三角形的定义及其“角边角”(ASA)判定方法,运用该方法解决实际问题。
2.难点:理解全等三角形的动态变化,掌握判定过程中的关键步骤,以及在实际问题中的应用。
4.应用拓展:设计具有实际背景的问题,让学生运用全等三角形的判定方法解决问题,提高学生的应用能力。
5.总结提高:对本节课的知识点进行总结,强调全等三角形判定方法的重要性。
6.课后作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。
7.教学评价:通过课堂提问、课后作业和小组讨论等方式,了解学生的学习情况,及时给予指导和鼓励。
(四)课堂练习
1.教学活动:布置以下练习题,让学生独立完成,巩固所学知识。
a.判断给定图形中,哪些三角形是全等的,并说明理由。
b.运用全等三角形的判定方法,求解给定三角形的未知边长或角度。
c.设计实际应用问题,让学生运用全等三角形的判定方法解决。
2.解答与指导:学生完成后,教师选取典型题目进行解答和讲解,强调解题技巧和方法。
4.解析判定方法的关键:强调在判定过程中,如何正确识别和比较角和边,提高学生的实际操作能力。
(三)学生小组讨论
1.教学活动:将学生分成小组,讨论以下问题:
a.全等三角形有哪些判定方法?
b. “角边角”(ASA)判定方法在实际问题中的应用。
c.如何运用全等三角形的性质和判定方法解决几何问题?
2.教师引导:在各小组讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨全等三角形的相关性质和应用。
4.培养学生的自信心和自主学习能力,使学生能够在解决问题的过程中获得成就感。

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。

本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。

本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。

教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。

为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。

这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。

本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。

通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。

《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。

通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。

教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。

人教版八年级上册数学-第12章《全等三角形》教案

人教版八年级上册数学-第12章《全等三角形》教案
3.互动式教学:在课堂上,增加学生之间的互动讨论,鼓励他们发表自己的观点和想法。这样既能培养学生的合作交流能力,也能帮助他们从不同角度理解全等三角形的性质和应用。
4.情境式教学:设置有趣的情境,让学生在情境中感受全等三角形的重要性。例如,通过设计一些有趣的几何拼图游戏,让学生在游戏中运用全等三角形的性质解决问题。
三、教学难点与重点
1.教学重点
-重点一:全等三角形的定义及其性质
-学生需要理解全等三角形的定义,即两个三角形能够完全重合。
-强调全等三角形的性质,包括对应边相等、对应角相等。
-举例:通过实际操作,如剪纸、折叠等,让学生直观感受全等三角形的特点。
-重点二:全等三角形的判定方法
-学生需要掌握SSS、SAS、ASA三种判定方法。
- SAS(Side-Angle-Side):两边及其夹角对应相等的两个三角形全等。
- ASA(Angle-Side-Angle):两角及其夹边对应相等的两个三角形全等。
3.知识点三:全等三角形的性质应用
-证明线段相等、角相等。
-证明三角形全等。ຫໍສະໝຸດ 4.知识点四:全等三角形的实际应用
-解决平面几何中的问题,如求线段长度、角度等。
-教师应引导学生将实际问题转化为几何问题,并运用全等三角形的性质进行解决。
-难点四:证明过程的逻辑推理
-学生在几何证明过程中可能缺乏逻辑推理能力,导致证明过程不严谨。
-教师应指导学生遵循逻辑推理规则,逐步完成证明过程,并通过反复练习提高逻辑推理能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《全等三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全一样的情况?”(例如:拼接家具时需要判断两个三角形零件是否全等。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等三角形的奥秘。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2 理解全等三角形的性质3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。

能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

“全等”用 表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角思考:如上图,12。

1-1DEF ABC ∆≅∆,对应边有什么关系?对应角呢? 全等三角形性质: 全等三角形的对应边相等; 全等三角形的对应角相等。

思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角DADBD(2)将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由?B E(3)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。

BC小结:作业:P33—1,2,312.2 三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点三角形全等条件的探索过程. 一、 复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.ADB C让学生独立思考后口头表达理由,由教师板演推理过程.例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线AD.AD就是∠BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.ADB C五、巩固练习教科书第37页的思考及练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业1.必做题:教科书第43页习题12.2中的第1、2题.2.选做题:教科书第44页第9题.12.2 三角形全等的判定(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)一、创设情境,引入课题多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC 上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个ABCDE可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据. (若学生不能顺利得到证明思路,教师也可作如下分析: 要想证AB =DE , 只需证△ABC ≌△DEC△ABC 与△DEC 全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决. 补充例题:1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE 求证: △ABD ≌△ACE 证明:∵∠BAC=∠DAE (已知)∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD∴∠BAD=∠CAE 在△ABD 与△ACE AB=AC (已知) ∠BAD= ∠CAE (已证) AD=AE (已知) ∴△ABD ≌△ACE (SAS) 思考:ABCDEFM求证:1.BD=CE 2. ∠B= ∠C 3. ∠ADB= ∠AEC变式1:已知:如图,AB ⊥AC,AD ⊥AE,AB=AC,AD=AE. 求证:⑴ △DAC ≌△EAB 1. BE=DC 2. ∠B= ∠ C 3. ∠ D= ∠ E 4. BE ⊥CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书39页图12.2-7.方法(二)通过画图,让学生更直观地获得结论. 五、巩固练习教科书第39页,练习(1)(2). 六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构. 七、布置作业1.必做题:教科书第43页,习题12.2第3、4题.2.选做题:教科书第44页第10题.3.备选题:(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.12.2 三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点理解,掌握三角形全等的条件:“ASA”“AAS”.教学难点探究出“ASA”“AAS”以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。

探究新知:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?1.师:我们先来探究第一种情况.(课件出示“探究5……”)(1)探究5先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC 上,它们全等吗?师:怎样画出△A'B'C'?先自己独立思考,动手画一画。

在画的过程中若遇到不能解决的问题.可小组合作交流解决.生:独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决……)……(2)全班讨论交流师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步) 你是这样画的吗?师:把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等.CDA'BE生:(剪△A'B'C',与△ABC 作比较……) 师:全等吗? 生:全等.师:这个探究结果反映了什么规律?试着说说你的发现. 生1:我发现…… 生2:……生3:两角和它们的夹边对应相等的两个三角形全等. 师:这条件可以简写成“角边角”或“ASA ”此, 别应注意,“边”必须是“两角的夹边”.练习:已知:如图,AB=A’C,∠A=∠A’,∠B=∠C 求证:△ABE ≌ △A’CD例1. 已知:点D 在AB 上,点E 在AC 上,BE CD相交于点O ,AB=AC ,∠B=∠C 。

相关文档
最新文档