关于光网络传输技术介绍

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于光网络传输技术介绍

最近有网友想了解下光网络传输技术的知识,所以店铺就整理了相关资料分享给大家,具体内容如下.希望大家参考参考

光网络传输技术介绍

光传输是在发送方和接收方之间以光信号形态进行传输的技术。

技术简介

同步光纤网(Synchronous Optical Network,SONET)和同步数字系列(Synchronous Digital Hierarchy,SDH):一种光纤传输体制(前者是美国标准,用于北美地区,后者是国际标准),它以同步传送模块(STM—1,155Mbps)为基本概念,其模块由信息净负荷、段开销、管理单元指针构成,其突出特点是利用虚容器方式兼容各种PDH体系。

准同步数字系列(Plesiochronous Digital Hierarchy ,PDH):SONET/SDH出现前的一种数字传输体制,非光纤传输主流设备。主要是为语音通信设计,没有世界性统一的标准数字信号速率和帧结构,国际互连互通困难。

波分复用技术(Wavelength Division Multiplex,WDM):本质上是在光纤上实行的频分复用(Frequency Division Multiplex ,FDM),即光域上的FDM技术。是提高光纤通信容量的有效方法。为了充分利用单模光纤低损耗区巨大的带宽资源,根据每一个信道光波频率(或波长)的不同而将光纤的低损耗窗口划分成若干个信道的技术。用不同的波长传送各自的信息,因此即使在同一根光纤上也不会相互干扰。密集波分复用技术(Dense Wavelength Division Multiplex,DWDM):与传统WDM系统不同,DWDM系统的信道间隔更窄,更能充分利用带宽。

光分插复用(Optical Add/Drop Multiplex, OADM):是一种用滤光器或分用器从波分复用传输链路插入或分出光信号的设备。OADM在WDM系统中有选择地上/下所需速率、格式和协议类型的光波长信号。是在节点上只分接/插入所需的波长信号,其它波长信号则光学透明地通过这个节点。动态(灵活、可重构或可编程)的OADM

是城域光网络得以实现的根本。局际光学环网使用动态的OADM,系统就可以在任何两个节点间提供全部波长信道的连接。

光交叉互连(Optical Cross-connect,OXC):用于光纤网络节点的设备,通过对光信号进行交叉连接,能够有效灵活地管理光纤传输网络,是实现可靠的网络保护/恢复以及自动配线和监控的重要手段。主要由WDM技术和光空分技术(光开关)综合而成。

全光网络(All Optical Network,AON):是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在的网络系统。也就是说,信息从源节点到目的节点的传输过程中始终在光域内,波长成为全光网络的最基本积木单元。由于全光网络中的信号传输全部在光域内进行,因此,全光网络具有对信号的透明性,它通过波长选择器件实现路由选择。全光网络以其良好的透明性、波长路由特性、兼容和可扩展性,成为下一代高速(超高速)宽带网络的首选。

全光网络的应用是什么啊

全光网络技术的进展

摘要:全光网络的相关技术主要包括全光交换技术、光交叉连接技术、以光放大器为基础的全光中继技术、光复用/去复用技术和光分插技术。本文对这些技术的原理、研究进展和发展前景进行了描述和分析。

关键词:全光网络光交换光中继光复用/去复用 OXC

1 全光网络概况

全光网络(全光通信网络)是指光信息流在网络中的传输及交换时始终以光的形式存在,而不需要经过光/电、电/光变换。也就是说,信息从源节点到目的节点的传输过程中始终在光域内。由于全光网络中的信号传输全部在光域内进行。因此,全光网络具有对信号的透明性。它通过波长选择器件实现路由选择。全光网络还应当具有扩展性,可重构性和可操作性。

全光网络有星形网、总线网和树形网3种基本类型。

2 全光网络相关技术

全光网络的相关技术主要包括全光交换、光交叉连接、全光中继和光复用/去复用等。

2.1 全光交换

传统的光交换在交换过程中存在光变电、电变光,而且它们的交换容量都要受到电子器件工作速度的限制,使得整个光通信系统的带宽受到限制。直接光交换可省去光/电、电/光的交换过程,充分利用光通信的宽带特性。因此,光交换被认为是未来宽带通信网最具潜力的新一代交换技术。对光交换的探索始于70年代,80年代中期发展比较迅速。总的来说,光交换技术还处于开发的初级阶段,2000年之前不大可能有任何形式的广泛光交换应用。21世纪初光交换技术将达到实用化水平,商用光交换机将进入市场。

光交换技术有空分(SD)、时分(TD)和波分/频分(WD/FD)等类型。其原理、结构特点和研究进展状况如下。

2.1.1 空分光交换

空分光交换是由开关矩阵实现的,开关矩阵节点可由机械、电或光进行控制,按要求建立物理通道,使输入端任一信道与输出端任一信道相连,完成信息的交换。各种机械,电或光控制的相关器件均可构成空分光交换。构成光矩阵的开关以铌酸锂定向耦合器最为引人注目。

2.1.2 时分光交换

时分光交换系统能与光传输系统很好配合构成全光网,所以时分光交换技术研究开发进展很快,其交换速率几乎每年提高一倍,目前已研制出几种时分光交换系统。1985年日本NEC成功地实现了256Mb/s(4路64Mb/s)彩色图像编码信号的光时分交换系统。它采用1×4铌酸锂定向耦合器矩阵开关作选通器,双稳态激光二极管作存储器(开关速度1Gb/s),组成单级交换模块。90年代初又推出了512Mb/s试验系统。

实现光时分交换系统的关键是开发高速光逻辑器件,世界各国研究机构正加紧对此进行研究。

2.1.3 波分/频分光交换

波分交换即信号通过不同的波长,选择不同的网络通路来实现,由波长开关进行交换。波分光交换网络由波长复用器/去复用器、波长选择空间开关和波长互换器(波长开关)组成。

目前已研制成波分复用数在10左右的波分光交换实验系统。最近开发出一种太比级光波分交换系统,它采用的波分复用数为128,最大终端数达2048,复用级相当于1.2Tb/s的交换吞吐量。

2.2 光交叉连接(OXC)

OXC是用于光纤网络节点的设备,通过对光信号进行交叉连接,能够灵活有效地管理光纤传输网络,是实现可靠的网络保护/恢复以及自动配线和监控的重要手段。OXC主要由光交叉连接矩阵、输入接口、输出接口、管理控制单元等模块组成。为增加OXC的可靠性,每个模块都具有主用和备用的冗余结构,OXC自动进行主备倒换。输入接口、输出接口直接与光纤链路相连,分别对输入输出信号进行适配、放大。管理控制单元通过编程对光交叉连接矩阵、输入接口、输出接口模块进行监测和控制。光交叉连接矩阵是OXC的核心,它要求无阻塞、低延迟、宽带和高可靠,并且要具有单向、双向和广播形式的功能。

OXC也有空分、时分和波分3种类型。目前比较成熟的技术是波分复用和空分技术,时分技术还不成熟。如果将波分复用技术和空分技术相结合,可大大提高交叉连接矩阵的容量和灵活性。

日本NEC公司研制的8×8无极性LiNbO3光交叉矩阵由64个无极性定向耦合开关单元组成,所有开关单元都以简单树形结构(STS)的形式集成在LiNbO3芯片上。英国BT实验室研制的OXC采用WDM 技术与空分技术相结合,已用于波分复用系统。在伦敦地区本地网络上进行了现场实验,传输速率为622Mb/s。另外,西门子、NTT和爱立信等国外大公司所属实验室对OXC的结构、应用技术也进行了类似研究和实验。

2.3 全光中继

传统的光纤传输系统是采用光—电—光再生中继器,这种方式的中继设备十分复杂,影响系统的稳定性和可靠性。多年来,人们一直在探索去掉上述光—电—光转换过程,直接在光路上对信号进行放大

相关文档
最新文档