第七章 时间序列分析(计量经济学,潘省初)

合集下载

《时间序列分析》期末复习——【计量经济学】

《时间序列分析》期末复习——【计量经济学】
随机游走(random walk)过程。
1.2 时间序列模型的分类(AR、MA、ARMA、ARIMA 过程)
(1)自回归过程,AR(p): xt = 1 xt-1 + 2 xt -2 + … + p xt-p + ut (2)移动平均过程,MA(q): xt = ut + 1 ut -1 + 2 ut -2 + … + q ut - q
自相关函数定义
以滞后期 k 为变量的自相关系数列
k =
Cov(xt , xtk ) = k , Var(xt ) Var(xtk ) 0
k = 0, 1, …, K
称为自相关函数。
● 自回归(AR)过程的自相关函数呈拖尾特征。移动平均(MA)过程的自相关 函数呈截尾特征。

相关图
rk
=
Ck C0
= (0.8)k Cos(0.5 k+2) + 0.5 (0.7) k + 0.7 (- 0.5)k 的衰减特征。
.4
RHO
.2
.0
-.2
-.4
-.6Biblioteka -.824
6
8
10
12
14
16
18
20
22
24
(file:5correfuction,rho) EViews 操作:建立一个 k=25 的 EViews 文件,点击 Quick 键,选 Generate series 功能,输入以下命令。
指数或正弦衰减。
k =1, 2 时有两个峰值然后截尾。
k =1, 2 有两个峰值然后截尾。
指数或正弦衰减。
k =1 有峰值然后按指数衰减。

统计学第七章时间序列分析

统计学第七章时间序列分析

欧盟
1、4 1、5 2、6 1、9 3、2
日本
0、3 1、4 2、7 1、9 2、2
发展中国家
5 6、7 7、7 7、5 7、9
中国
9、1
10
10、1
10、 4
11、1
中国香港 1、8 3、2 8、6 7、5 6、8
中国台湾省 4、2 3、4 6、1 4 4、6
韩国
7 3、1 4、7 4、2
5
新加坡
❖年底人数
❖(万 人)
8350
9949 11828 14071 16851 18375
❖间隔年数 3 2 3 2 2
间断时点数列(间隔不等)
企业平均人数:
8350 9949 3 9949 11828 2 11828 14071 3
2
2
2
y
14071 16851 2 16851 18375
总值(亿 总人口 增长率 货币工资
元)
(万人) (‰)
(元)
73142、7 123626 10、06 6470
76967、2 124761 9、14 7479
80579、4 125786 8、18 8346
88254、0 126743 7、58 9371
95727、9 127627 6、95 10870
时期 可加性、关联性、连续登记
相对 派生性—由绝对数列派生而得 平均 不可加性
时间序列常用得分析方法
(一)指标分析法
通过时间序列得分析指标来揭示现象得发展 变化状况和发展变化程度。(水平指标,速度 指标) (二)构成因素分析法 通过对影响时间序列得构成因素进行分解分 析,揭示现象随时间变化而演变得规律
发展水平

时间序列分析复习要点重点

时间序列分析复习要点重点

一.导 论1. 计量经济学和时间序列分析的区别与联系2. 时间序列分析的概念:时间序列分析(T i m e s e r i e s a n a l y s i s ) 是一种根据动态数据揭示系统动态结构和规律性的统计方法,是统计学的一个分支。

3. 时间序列分析的研究对象:时间序列数据 4. 时间序列分析的基本思想:样本推断根据系统的有限长度的运行记录(样本数据),建立能够比较精确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来发展进行预报(时间序列预测)。

二.时间序列分析基础 1、随机过程(1)含义:在数学上,随机过程被定义为一组随机变量。

(2)特征:① 从顺序角度来看:随机过程是随机变量的集合;随机变量是随时间产生的,在任意时刻t ,总有随机变量X t 与之相对应;事物发展没有必然变化规律。

② 从数学角度看:不可用时间t 的函数确定的描述。

③ 从试验角度来看:不可重复。

(3)重要的随机过程 ①白噪声过程②随机游走过程:x t = x t -1 + u t 如果u t 为白噪声过程,则称x t 为随机游走过程。

(4)随机过程的平稳性随机过程的统计特征不随时间的推移而发生变化。

严平稳:随机过程中随机变量的任意子集的联合分布函数与时间无关。

宽平稳:∞<=+2),(k k t t x x Cov σ∞<=2)(σt x Var∞<=μ)(t x E直观的看,平稳的数据可以看作是一条围绕其均值上下波动的曲线。

(5)随机过程与时间序列:随机过程的一次实现称为时间序列随机过程的实现: 由随机变量组成的一个有序序列称为随机过程,记为{},t Y t T ∈,简记为Y t 。

其中,每一个元素Y t 都是随机变量。

将每一个元素的样本点按序排列,称为随机过程的一个实现,即时间序列数据,亦即样本。

2、差分方程的展开式子差分方程:变量当期值定义为它的前期和一个当期的随机扰动因素的函数。

时间序列分析课件讲义

时间序列分析课件讲义
7
3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程

(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性

《统计学》第七章 时间序列分析

《统计学》第七章 时间序列分析
相对指标和平均指标反映社会经济现象达到的 相对水平和平均水平,把一系列相对指标和平 均指标按时间先后顺序排列起来就得到相对指 标和平均指标时间序列。
8-15
三、编制时间序列的原则
— 指标的可比性:
1.时间长短(或间隔)一致。
时期指标时间序列,各指标值所属时期长短应一致。 对于时点指标时间序列,各指标的时点间隔应一致。
国有经济单位职 工工资总额所占 78.45 77.55 77.78 45.06 74.81 76.69
比重(%)
职工平均货币工 资(元)
2711
3371
4538
5500
6210
6470
8-7
时间序列的作用:
1)计算水平指标和速度指标,分析社会经济
现象发展过程与结果,并进行动态分析;
2)利用数学模型揭示社会经济现象发展变化
最初水平
最末水平
y0 y1 yi yn1 yn
中间水平
8-18
(二)平均发展水平 (序时平均数 )
为了综合说明现象在一段时间内的发展水平。
序时平均数是对不同时期的指标数值求平均数,将
指标在各时间上表现的差异加以抽象,以一个数值来 代表现象在这一段时间上的一般发展水平。
8-19
注意: 序时平均数,要根据不同数列:
2
2
534
396.75万人
8-36
2.相对数数列(平均数数列)序时平均数
y a b
分子项a:a1 a2 an
a
y
分母项b:b1 b2 bn
b
指标项 y:y1 y2 yn
y a b
8-37
(1):a,b均为时期数列时 例:某化工厂某年一季度利润计划完成情况如下:

第七章时间序列分解法和趋势外推法

第七章时间序列分解法和趋势外推法
的选取
(1)直观法—主观法 (2)模拟法---客观法
2019/11/30
27
7.2 样本序列具有非水平趋势的外推预测
最优 的求取
(1)穷举法 步长(0,1) (2)优选法---0. 618法
第一步:取第一个 的值记为 1 ,
1 (1 0) 0.618 0.618
2019/11/30
2019/11/30
40
趋势外推法的两个假定:
(1)假设事物发展过程没有跳跃式变化;
(2)假定事物的发展因素也决定事物未来的发展, 其条件是不变或变化不大。
2019/11/30
41
二 、趋势模型的种类
多项式曲线外推模型:
一次(线性)预测模型:
yˆt b0 b1t
二次(二次抛物线)预测模型: yˆt b0 b1t b2t 2
2019/11/30
实际销售量 3个月的滑动平均预测值 4个月的滑动平均预测值
20
21
23
24
21.3
25
22.7
27
24.0
26
25.3
25
26.0
26
26.0
28
25.7
27
26.3
29
27.0
22.0 23.3 24.8 25.5 25.8 26.0 26.3 26.5
19
7.2 样本序列具有非水平趋势的外推预测
2019/11/30
34
(2) 季节变动因素(S) 是经济现象受季节变动影响所形成的一种长 度和幅度固定的周期波动。
(3) 周期变动因素(C) 周期变动因素也称循环变动因素,它是受各 种经济因素影响形成的上下起伏不定的波动。

(完整word版)计量经济学中级教程(潘省初 清华大学出版社)课后习题答案

(完整word版)计量经济学中级教程(潘省初 清华大学出版社)课后习题答案

计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YYn==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正) (1)对 (2)对 (3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。

(4)错R 2 =ESS/TSS 。

(5)错。

我们可以说的是,手头的数据不允许我们拒绝原假设。

(6)错。

因为∑=22)ˆ(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。

2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。

潘省初计量经济学——第七章

潘省初计量经济学——第七章
为解决这类问题,研究人员提出了不少对传统 估计方法的改进建议,其中最重要的两项是对变量 的非平稳性 (non-stationarity) 的系统性检验和协整 (cointegration)。
潘省初计量经济学——第七章
协整
协整分析被认为是上世纪八十年代中期以来计量 经济学领域最具革命性的进展。
简单地说,协整分析涉及的是一组变量,它们各自 都是不平稳的(含义是随时间的推移而上行或下行), 但它们一起漂移。这种变量的共同漂移使得这些变量 之间存在长期的线性关系,因而使人们能够研究经济 变量间的长期均衡关系。如果这些长时间内的线性关 系不成立,则对应的变量被称为是“非协整的” 。
潘省初计量经济学——第七章
一. 单位根 考察(7.8)式的一阶自回归过程,即
Xt=φXt-1+εt
(7.11)
其中εt为白噪声,此过程可写成
Xt-φXt-1=εt 或(1-φL)Xt = εt (7.12)
其中L为滞后运算符,其作用是取时间序列的滞后, 如Xt 的一期滞后可表示为L(Xt),即
L(Xt)= Xt-1
ΔXt=εt
(7.6)
这个一阶差分新变量ΔXt是平稳的,因为它就等 于白燥声εt,而后者是平稳时间序列。
潘省初计量经济学——第七章
3、带漂移项的随机漫步 (Random walk with drift)
Xt=μ+Xt-1+εt
(7.7)
其中μ是一非0常数,εt为白燥声。
μ之所以被称为“漂移项”,是因为(7.7)式的 一阶差分为
例7.1 检验某国私人消费时间序列的平稳性。
潘省初计量经济学——第七章
潘省初计量经济学——第七章
用表7.2中的私人消费(Ct)时间序列数据,估计 与(7.16)和(7.17)相对应的方程,分别得到如下

潘省初计量经济学中级教程习题参考答案.docx

潘省初计量经济学中级教程习题参考答案.docx

计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正) (1)对 (2)对 (3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。

(4)错R 2 =ESS/TSS 。

(5)错。

我们可以说的是,手头的数据不允许我们拒绝原假设。

(6)错。

因为∑=22)ˆ(t x Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。

2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显着。

时间序列分析基础知识

时间序列分析基础知识

时间序列分析基础知识时间序列分析是一种用于研究时间序列数据的统计方法。

随着人们对时间相关数据的需求不断增长,时间序列分析在预测、模型建立和决策支持等领域发挥了重要作用。

本文将介绍时间序列分析的基础知识,包括时间序列数据的特点、常见的时间序列模型以及常用的时间序列分析方法。

时间序列数据的特点时间序列数据是按照时间顺序排列的观测值的集合。

与横截面数据不同,时间序列数据具有以下特点:趋势性:时间序列数据常常具有长期趋势,即随着时间推移,观测值呈现出明显的上升或下降趋势。

季节性:某些时间序列数据可能具有季节性波动,例如销售额在每年同一季度可能会有重复出现的周期性增长或下降。

周期性:某些时间序列数据可能具有周期性波动,即在较长时间范围内出现重复的上升或下降阶段。

自相关性:时间序列数据中的观测值常常与前一时期或多个时期的观测值相关联。

异方差性:时间序列数据的方差可能会随着时间变化而变化,即不满足常数方差的假设。

常见的时间序列模型为了对时间序列数据进行建模和预测,我们可以使用多种模型。

以下是几种常见的时间序列模型:平稳性模型:平稳性是指观测值的均值和方差在时间上保持不变。

平稳性模型包括ARMA模型(自回归滑动平均)和ARIMA模型(自回归积分滑动平均)等。

趋势模型:趋势模型用于捕捉长期上升或下降趋势。

常见的趋势模型包括线性趋势模型、指数趋势模型和多项式趋势模型等。

季节性模型:季节性模型用于捕捉季节性波动。

常见的季节性模型包括季节ARIMA模型、周期曲线拟合和移动平均法等。

自回归模型:自回归模型基于过去时期观测值与当前观测值之间的关系来进行预测。

常见的自回归模型包括AR(p)模型和ARMA(p,q)模型等。

时间序列分析方法为了对时间序列数据进行分析和预测,我们可以使用多种方法。

以下是几种常用的时间序列分析方法:线性回归方法:线性回归方法被广泛应用于时间序列预测中。

通过拟合一个线性方程来描述观测值与时间之间的关系。

潘省初计量经济学中级教程习题参考答案

潘省初计量经济学中级教程习题参考答案

计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1n ii Y Y n ==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.1074130********=+++。

第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。

(4)错R 2 =ESS/TSS 。

(5)错。

我们可以说的是,手头的数据不允许我们拒绝原假设。

(6)错。

因为∑=22)ˆ(t x Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。

2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。

计量经济学(第四版)习题参考答案

计量经济学(第四版)习题参考答案

计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础2.1 略,参考教材。

2.2 NSS x ==45=1.25用=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。

2.3 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/2510/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。

第7章 时间序列分析 《应用统计学》PPT课件

第7章 时间序列分析  《应用统计学》PPT课件

增长量由于基期水平选择不同,可分为累积增长量和
逐期增长量。逐期增长量是报告期水平与前一期水平之差,
用公式表示为
ai ai1
累积增长量是报告期水平与某一固定期水平之差,
用公式表示为 ai a0
逐期增长量:a1 a0, a2 a1,, an an1
累计增长量:a1 a0, a2 a0,, an a0
第一节 时间序列的种类和编制
时间序列的作用 在社会经济统计中,编制和分析时间序列具有重要
的作用: ➢ 它为分析研究社会经济现象的发展速度、发展趋势 及变化规律,提供基本统计数据。 ➢ 通过计算分析指标,研究社会经济现象的变化方向、 速度及结果。 ➢ 将不同的时间序列同时进行分析研究,可以揭示现 象之间的联系程度及动态演变关系。
n
an a0
n
R
表 7.2.8 平均发展速度计算表
时间
பைடு நூலகம்
t0
t1
t2

实际水平
a0
a1
a2

环比发展速度
-
a1/a0
a2/ a1

(X1)
(X2)
定基发展速度
-
a1/ a0
a2/ a0

理论水平
-
a0 X
2
a0 X
tn an an/an-1 (Xn) an/ a0 (R)
n
a0 X
二、时间序列的速度分析指标
➢ 方程法(总和法)
求解以下 n 次方程可以得出平均发展速度。
n
ai
X + X 2 +……+ X n = i1 a0
若关心末期发展水平时,宜采用几何平均法计算平均 发展速度,例如产量、产值、人口数等流量指标;

计量经济学--时间序列分析PPT课件

计量经济学--时间序列分析PPT课件

在 工 作 文 件 主 窗 口 点 击 Quick / Estimate Equation 在 Equation Specification对话框中填入 y ar(1) ma(1)(或者填入 y y(-1) ma(1))便 得到模型ARMA(1,1)的估计结果,如表9.3.6(或表9.3.7)所示。
.
③Include in test equation:默认选择是检验式中只包括截距 项。其他两种选择是检验式中包括趋势项和截距项,检验式中不 包括趋势项和截距项。④Lag length: 自动选择包括6种选择标 准,也可以在最大滞后期(Maximum lag)选择区自己设定。
图9.2.5
.
4.Phillips-Perron检验
GDP(亿元) 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74462.6 78345.2 82067.5 89468.1 97314.8 105172.3 117251.9
.
1978-2003年中国GDP时间序列图9.2.3表现了一个持续上升的 过程,即在不同的时间段上,其均值是不同的,因此可初步判断是 非平稳的。而且从它们的样本自相关系数的变化看,也是缓慢下降 的 , 再 次 表 明 它 们 的 非 平 稳 性 。 这 样 , 我 们 得 出 地 结 论 是 19782003年间中国GDP时间序列是非平稳序列。
.
(2)通过计算能够描述序列特征的一些统计量(如自相关系数和偏自 相关系数),来确定ARMA模型的阶数p和q,并在初始估计中选择 尽可能少的参数;
第9章 时间序列分析
9.1 时间序列的基本概念
9.1.1 时间序列
.
9.1.2 时间序列的数字特征 1.均值函数

计量经济学--时间序列数据分析

计量经济学--时间序列数据分析

时间序列数据的计量分析方法1.时间序列平稳性问题及处理方案1.1序列平稳性的定义从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。

平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。

1.2不平稳序列的后果可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。

1.3平稳性检验方法:ADF 检验1.3.1ADF 检验的假设:辅助回归方程:11t t it i t i Y Y t Y ραργβμ--==+++∆+∑(是否有截距和时间趋势项在做检验时要做选择)原假设:H 0:p=0,存在单位根备择假设:H 1:P<0,不存在单位根结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P 值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。

1.3.2实例对1978年2008年的中国GDP 数据进行ADF 检验,结果如表一。

表一 ADF 检验结果Augmented Dickey-Fuller test statistic t-Statistic Prob.* 3.063621 1 Test critical values: 1% level -3.699871 5% level -2.976263 10% level -2.62742从结果可以看出,ADF 的t 统计量值大于10%显著性水平上的临界值,P 值为1,接受原假设,说明所检测的GDP 数据是不平稳序列。

1.4不平稳序列的处理方法1.4.1方法如果所要分析的数据是不平稳序列,可以对序列进行差分使其变成平稳序列,但是这样做的后果是使新得出的数据丧失了许多原序列的特征,我们能从数据中得到的信息会变少,通常差分的次数不能超过两次。

经验表明,存量数据是二阶单整,做二次差分可以使其平稳,流量数据是一阶单整,做一次差分可以使其平稳,增量数据通常就是平稳序列。

2023-潘省初计量经济学——第七章

2023-潘省初计量经济学——第七章
白噪声通常用εt表示,是一个纯粹的 随机过程,满足:
〔1〕 E(εt) = 0 , 对所有t成立;
〔2〕 V ar(εt) = σ2,对所有t成立;
〔3〕 Cov (εt, εt+k) = 0,对所有t和 k≠0成立。
2、随机漫步〔Random walk〕
随机漫步是一个简单随机过程,由下式 确定:
2. 弱平稳性 (weak stationarity)
一个时间序列是“弱平稳的〞,如果:
〔1〕均值 E(Xt) =μ,t=1,2,…
〔7.1〕
〔2 〕方差 Var(Xt) = E(Xt -μ)2 =σ2,t =1,2,… 〔7.2〕
〔3〕协方差 Cov(Xt, Xt+k〕= E [(Xt -μ)(Xt+k -μ)]= rk, t=1,2,…,k≠0
Xt=φXt-1+εt
〔7.11〕
其中εt为白噪声,此过程可写成
Xt-φXt-1=εt 或〔1-φL〕Xt = εt 〔7.12〕
由上节所知,自回归过程Xt平稳的条件是其特征 方程的所有根的绝对值大于1。由于这里特征方程为 1-ΦL=0,该方程 仅有一个根L=1/φ ,因而平稳性 要求-1<φ<1。
0.61
-3.12 -2.86 -2.57 -0.44 -0.07 0.23
0.60
-3.95 -3.80 -3.73 -3.69 -3.68 -3.66
-3.60 -3.50 -3.45 -3.43 -3.42 -3.41
-3.24 -3.18 -3.15 -3.13 -3.13 -3.12
-1.14 -1.19 -1.22 -1.23 -1.24 -1.25
ΔXt = Xt-Xt-1 =μ+εt

第7章时间序列分析PPT课件

第7章时间序列分析PPT课件

平稳时间序列与非平稳时间序列图
Xt
Xt
2021/5/31
t
(a)
(b)
第9页/共91页
t
7-9
7.1.4 时间序列的差分
假设 {Xt : t Z}为一时间序列,一阶差分为:
Xt Xt Xt1
其中表示一阶差分算子(difference operator), 也即当前的观测值减去前面一定间隔的某个观测值。
义时间变量,打开数据文件,执行 Data
Define Dates 命令,打开Define Dates命令框,左 边显示的是各种日期格式,在此数据中,时间格式 是以年为单位,因此点中Years,右边即显示出需
2021/5/31
7-13
第13页/共91页
要指定的时间初始值,在First Cases is中输入Years 的初始值为1978,单击OK按钮,就可以形成两个 新的时间变量,YEAR_,DATE_,并出现在数据 文件的第二、三列。其中YEAR_,DATE_的数值 看上去是一样的,但YEAR_是数值变量,DATE_ 是字符变量,字符型变量主要功能在与方便进行图 型显示。
2021/5/31
7-23
第23页/共91页
27-02241/5/31
其中最后一列为字符型变量,该变量综合了年 和月的时间表示。利用时序图类似的操作方法
AnalyzeTime series Sequence chart 命令
就可以给出7.0中的时序图。 下面我们利用SPSS软件对该数据进行指数
平滑分析。打开数据文件,执行Analyze Time seriesCreate Model命令,出现一个对
Xt 的观测值 xt ,t T 时, 我们就得到了该序列 的一次实现 {xt : t T} 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(7.11)式
Xt=θXt-1+εt
两端各减去Xt-1,我们得到
Xt-Xt-1= ΦXt-1-Xt-1+εt
即 ΔXt= δXt-1+εt (7.13)
其中Δ是差分运算符,δ=Φ-1。 假设 Φ为正(绝大多数经济时间序列确实如此), 前面的假设 H0:∣φ ∣≥1 Ha:∣φ ∣<1
可写成如下等价形式: H0:δ≥0 Ha:δ<0 在δ=0的情况下,即若原假设为真,则相应的过程 是非平稳的。 换句话说,非平稳性或单位根问题,可表示为Φ=1 或δ=0。从而我们可以将检验时间序列Xt的非平稳性 的问题简化成在方程(7.11)的回归中,检验参数 Φ=1 是否成立或者在方程(7.13)的回归中,检验参 数δ=0是否成立。
4、自回归过程
随机漫步过程(7.5)( Xt = Xt-1+εt)是最简单的 非平稳过程。它是 Xt=θXt-1+εt (7.8)
的特例,( 7.8 )称为一阶自回归过程 (AR(1)) ,该 过程在-1<θ<1时是平稳的,其他情况下,则为非 平稳过程。
更一般地,(7.8)式又是
Xt=θ1Xt-1+θ2Xt-2+……+θqXt-q+εt (7.9)
2.16 2.08 2.03 2.01 2.00 2.00
有常数项 无时间项 (统计量τ μ )
25 50 100 250 500 ∞
有常数项 有时间项 (统计量τ τ )
-3.75 -3.58 -3.51 -3.46 -3.44 -3.43
-3.33 -3.22 -3.17 -3.14 -3.13 -3.12
误差修正模型
一般说来,协整分析是用于非平稳变量组成的关 系式中长期均衡参数估计的技术。它是用于动态模 型的设定、估计和检验的一种新技术。
此外,协整分析亦可用于短期或非均衡参数的估 计,这是因为短期参数的估计可以通过协整方法使 用长期参数估计值,采用的模型是误差修正模型 (error correction model)。
CP PDI
二. 几种有用的时间序列模型
1、白噪声( White noise)
白噪声通常用εt表示,是一个纯粹的随机过程,满 足: (1) E(εt) = 0 , 对所有t成立; (2) V ar(εt) = ζ2,对所有t成立; (3) Cov (εt, εt+k) = 0,对所有t和k≠0成立。 白噪声可用符号表示为: εt~IID(0, ζ2)
这类检验可用t检验进行,检验统计量为:
ˆ 1 t S
Φ

t
ˆ
S

(7.14)
ˆ和 S 和 S 分别为参数估计值 其中, Φ 即

ˆ 的标准误差,
ˆ) S Se(
Φ
ˆ) S Se(

这里的问题是,(7.14)式计算的t值不服从t分布, 而是服从一个非标准的甚至是非对称的分布。因而 不能使用t分布表,需要用另外的分布表。
600000 500000 400000 300000 200000 100000 1960 1965 1970 1975 1980 1985 1990 1995
» 7.1 Ä Í ³ ú ¸ Ë ¼ Ë È û Ï « Ñ ¹ Í · ö Ë È ¾ É § Ö Å ä Ê Õ È ë ¬ £ 1960¡ ª 1995Ä ê ¶ È Ê ý ½ Ý ¥ Î µ º ¹ £ © Ù Í ò à ¿ ª Ô £ ¨1970Ä ê ² º ä ª» Û £ ©
Xt=θXt-1+εt
其中εt为白噪声,此过程可写成
(7.11)
Xt-θXt-1=εt 或(1-θL)Xt = εt (7.12)
其中L为滞后运算符,其作用是取时间序列的滞后, 如Xt 的一期滞后可表示为L(Xt),即
L(Xt)= Xt-1
由上节所知,自回归过程Xt平稳的条件是其特征 方程的所有根的绝对值大于1。由于这里特征方程为 1-ΦL=0,该方程 仅有一个根L=1/θ ,因而平稳性 要求-1<θ<1。
的特例,(7.9)称为q阶自回归过程 (AR(q))。 可以证明,如果特征方程 1-θ1L-θ2L2-θ3L3-……-θqLq = 0 (7.10) 的所有根的绝对值均大于1,则此过程(7.9)是平稳 的,否则为非平稳过程。
三. 单整的时间序列(Integrated series)
从(7.6)可知,随机漫步序列的一阶差分序列 ΔXt = Xt-Xt-1是平稳序列。在这种情况下,我们说原 非平稳序列Xt是“一阶单整的”,表示为I(1)。 与此类似,若非平稳序列必须取二阶差分 (Δ2Xt=ΔXt-ΔXt-1) 才变为平稳序列,则原序列是“二 阶单整的”,表示为I(2)。 一般地,若一个非平稳序 列必须取d阶差分才变为平稳序列,则原序列是“d阶 单整的”(Integrated of order d),表示为I(d)。 由定义不难看出,I(0)表示的是平稳序列,意味着该 序列无需差分即是平稳的。另一方面,如果一个序列 不管差分多少次,也不能变为平稳序列,则称为“非 单整的”。
3. 平稳性和非平稳性
通常情况下,我们所说的平稳性指的就是弱平稳性。 一般来说,如果一个时间序列的均值和方差在任何时间 保持恒定,并且两个时期 t 和 t+k 之间的协方差仅依赖于 两时期之间的距离(间隔或滞后) k ,而与计算这些协 方差的实际时期t无关,则该时间序列是平稳的。
只要这三个条件不全满足,则该时间序列是非平稳的。 事实上,大多数经济时间序列是非平稳的。例如,在图 7.1中,某国的私人消费(CP)和个人可支配收入(PDI) 这两个时间序列都有一种向上的趋势,几乎可以断定它 们不满足平稳性条件(7.1),因而是非平稳的。
-1.95 -1.95 -1.95 -1.95 -1.95 -1.95
-1.60 -1.61 -1.61 -1.62 -0.89 0.89 0.89
1.33 1.31 1.29 1.29 1.28 1.28
1.71 1.66 1.64 1.63 1.62 1.62
第七章 时间序列分析
(Time Series Analysis)
第一节 时间序列分析的基本概念
经济分析通常假定所研究的经济理论中涉及的 变量之间存在着长期均衡关系。按照这一假定,在 估计这些长期关系时,计量经济分析假定所涉及的 变量的均值和方差是常数,不随时间而变。 然而,经验研究表明,在大多数情况下,时间 序列变量并不满足这一假设,从而产生所谓的“伪 回归”问题(‘spurious’ regression problem)。 为解决这类问题,研究人员提出了不少对传统 估计方法的改进建议,其中最重要的两项是对变量 的非平稳性 (non-stationarity) 的系统性检验和协整 (cointegration)。
为求Xt的方差,对(7.5)式进行一系列置换: Xt = Xt-1+εt
= Xt-2+εt-1+εt = Xt-3+εt-2+εt-1+εt
=……
= X0+ε1+ε2+……+εt = X0+∑εt 其中 X0 是 Xt 的初始值,可假定为任何常数或取初 值为0,则
Var ( X t ) Var ( X 0 t ) Var ( t )
第二节 平稳性的检验
平稳性检验的方法可分为两类:传统方法和现代方 法。前者使用自相关函数(Autocorrelation function), 后者使用单位根(Unit roots)。单位根方法是目前最常 用的方法,因此本节中,我们仅介绍单位根方法。
一. 单位根
考察(7.8)式的一阶自回归过程,即
3、带漂移项的随机漫步 (Random walk with drift)
Xt=μ+Xt-1+εt (7.7) 其中μ是一非0常数,εt为白燥声。 μ 之所以被称为“漂移项”,是因为( 7.7 )式的 一阶差分为 ΔXt = Xt-Xt-1 =μ+εt 这表明时间序列Xt向上或向下漂移,取决于μ的符 号是正还是负。显然,带漂移项的随机漫步时间序 列也是非平稳时间序列。
表 7.1
样本容量
无常数项 无时间项 (统计量τ )
Dickey-Fuller τ 统计量临界值表
取更小值的概率 0.05 0.10 0.90
0.01
0.025
0.95
0.975
0.99
25 50 100 250 500 ∞
-2.66 -2.62 -2.60 -2.58 -2.58 -2.58
-2.26 -2.25 -2.24 -2.23 -2.23 -2.23
二. Dickey-Fuller检验(DF检验)
迪奇( Dickey ) 和福勒( Fuller )以蒙特卡罗模拟 为基础,编制了(7.14)中tδ统计量的临界值表,表中 所列已非传统的 t 统计值,他们称之为 η 统计值。这些 临界值如表 7.1 所示。后来该表由麦金农( Mackinnon ) 通过蒙特卡罗模拟法加以扩充。
-3.00 -2.93 -2.89 -2.88 -2.87 -2.86
-2.62 -2.60 -2.58 -2.57 -2.57 -2.57
-0.37 -0.40 -0.42 -0.42 -0.43 -0.44
0.00 -0.03 -0.05 -0.06 -0.07 -0.07
协整
协整分析被认为是上世纪八十年代中期以来计量 经济学领域最具革命性的进展。 简单地说,协整分析涉及的是一组变量,它们各自 都是不平稳的(含义是随时间的推移而上行或下行), 但它们一起漂移。这种变量的共同漂移使得这些变量 之间存在长期的线性关系,因而使人们能够研究经济 变量间的长期均衡关系。如果这些长时间内的线性关 系不成立,则对应的变量被称为是“非协整的” 。
相关文档
最新文档