初中数学各种公式(包括应用题)
数学应用题公式大全
数学应用题公式大全一、和差倍数问题1、和差问题(求两数之和与差)大数=和+差÷2小数=和-大数=差+大数2、和倍问题(已知两个数的和,又知其中的一个数是另一个数的几倍,求另一个数)和÷(倍数+1)=小数小数×倍数=大数或者和-小数=大数)3、差倍问题(已知两个数的差,又知其中的一个数是另一个数的几倍,求另一个数)小数=差÷(倍数-1)小数+差=大数或者小数×倍数=大数二、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间三、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间四、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 五、鸡兔同笼问题鸡数=(兔头数×4-总头数)÷2兔数=(总头数-鸡头数)÷2六、植树问题与方阵问题1、植树问题的模型: (1)分清棵树与间隔的关系 (2)画图分析 (3)标出已知数据与未知数据 (4)列方程求解。
5若在封闭图形上栽树则棵树等于间隔数。
6若在环行图形上栽树则棵树与间隔数相等。
7若在方形图形上栽树则四个角上各栽一棵并且棵树等于行数列数之和。
8若在三角形图形上栽树则棵树等于行数列数之积。
9若在长方形图形上栽树则棵树等于行数的平方列数的积。
10若在等腰梯形图形上栽树则棵树等于(上底+下底)×高÷2。
11若在五角星形图形上栽树则棵树等于顶点数×2-1。
12若在正六边形图形上栽树则棵树等于边数。
13若在正n边形图形上栽树则棵树等于顶点数×(n-2)。
14若在求各种形状的周长与面积时也可栽培树。
方法是在第一象限内顺次连接图形各点两点之间划断两点之间栽一棵树。
完整版)初中数学公式大全(绝对经典)
完整版)初中数学公式大全(绝对经典)1.过两点有且只有一条直线。
2.两点之间的线段是最短的。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过一点有且只有一条直线与已知直线垂直。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第三条直线平行,这两条直线也互相平行。
9.同位角相等,则两直线平行。
10.内错角相等,则两直线平行。
11.同旁内角互补,则两直线平行。
12.两直线平行,同位角相等。
13.两直线平行,内错角相等。
14.两直线平行,同旁内角互补。
15.定理:三角形两边的和大于第三边。
16.推论:三角形两边的差小于第三边。
17.三角形内角和定理:三角形三个内角的和等于180°。
18.推论1:直角三角形的两个锐角互余。
19.推论2:三角形的一个外角等于和它不相邻的两个内角的和。
20.推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21.全等三角形的对应边和对应角相等。
22.边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
23.角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。
24.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
25.边边边公理(SSS):有三边对应相等的两个三角形全等。
26.斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
27.定理1:在角的平分线上的点到这个角的两边的距离相等。
28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上。
29.角的平分线是到角的两边距离相等的所有点的集合。
30.等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33.推论3:等边三角形的各角都相等,并且每一个角都等于60°。
初中数学各种公式(包括应用题)
中考数学各种常用公式及性质1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×an=a m+n;②a m÷an=am-n;③(am)n=amn;④(ab)n=anbn;⑤(ab)n=nnab;⑥a-n=1na,特别:()-n=()n;⑦a0=1(a≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2 ;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
初中数学各种公式(完整版)
数学各种公式及性质1. 乘法与因式分解①(a +b )(a -b )=a 2-b 2;②(a ±b )2=a 2±2ab +b 2;③(a +b )(a 2-ab +b 2)=a 3+b 3; ④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab 。
2. 幂的运算性质①a m×a n=a m +n;②a m÷a n=a m -n;③(a m )n=a mn;④(ab )n=a n b n;⑤(a b )n =nn a b;⑥a -n =1n a,特别:()-n =()n ;⑦a 0=1(a ≠0)。
3. 二次根式①()2=a (a ≥0);②=丨a 丨;③=×;④=(a >0,b ≥0)。
4. 三角不等式|a|-|b|≤|a ±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a ±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a ,b 分别为向量a 和向量b )|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b ≤a ≤b ; |a-b|≥|a|-|b|; -|a|≤a ≤|a|; 5. 某些数列前n 项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n 2 ;2+4+6+8+10+12+14+…+(2n)=n(n+1); 12+22+32+42+52+62+72+82+…+n 2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n 3=n 2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3; 6. 一元二次方程对于方程:ax 2+bx +c =0:①求根公式是x =2b a -±b 2-4ac 叫做根的判别式。
初中数学的全部公式
初中数学的全部公式
初中数学的全部公式包括:
1. 二次根式:$ \sqrt{a} $
2. 四则运算(加、减、乘、除):$ +,-,\times,\div $
3. 指数运算:$ a^{n} $
4. 对数运算:$ \log_{a}b $
5. 三角函数:正弦、余弦、正切、余切、正割、余割:
$ \sin,\cos,\tan,\cot,\sec,\csc $
6.平方差公式:$a^{2}-b^{2}=(a+b)(a-b)$
7.因式分解公式:$ax^{2}+bx+c=a(x-x_{1})(x-x_{2})$
8.勾股定理:$a^2+b^2=c^2$
9.解一元一次方程:$ax+b=c$
10.解一元二次方程:$ax^{2}+bx+c=0$
11.平移、旋转、镜像的变换公式
12.算术平均数的计算公式:$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$
13.几何平均数的计算公式:$(a_{1}\times
a_{2}\times\cdots\times a_{n})^{\frac{1}{n}}$
14.三角形面积公式:$S=\frac{1}{2}bh$
15.矩形面积公式:$S=ab$
16.圆面积公式:$S=\pi r^2$
17.圆的周长公式:$C=2\pi r$
18.正方形周长公式:$C=4a$
19.正方体的表面积计算公式:$S=6a^2$
20.直角三角形斜边长计算公式:$c=\sqrt{a^2+b^2}$
以上是初中数学的一些基础公式,还有许多定理和公式需要根据不同的知识点和题目进行学习和应用。
初中数学常用公式和定理大全
初中数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5. 5、乘法公式(反过来就是因式分解的公式):①(a +b )(a -b )=a 2-b 2.②(a ±b )2=a 2±2ab +b 2.③(a +b )(a 2-ab +b 2)=a 3+b 3.④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab .6、幂的运算性质:①a m ×a n =a m +n .②a m ÷a n =a m -n .③(a m )n =a mn .④(ab )n =a n b n .⑤()n =n .⑥a -n =1na,特别:()-n =()n .⑦a 0=1(a ≠0).如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)o =1,(-)0=1.7、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=(a >0,b ≥0).如:①(3)2=45.②=6.③a <0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x ,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2). ③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距).当k >0时,y 随x 的增大而增大(直线从左向右上升);当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点.10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差: 数据1x 、2x ……,nx 的方差为2s ,则2s =()()()222121.....n x x x x x x n 轾-+-++-犏臌标准差:方差的算术平方根. 数据1x 、2x ……,nx 的标准差s,则s =一组数据的方差越大,这组数据的波动越大,越不稳定。
初中数学各种公式(完整版)
初中数学各种公式(完整版) 初中数学公式大全1.乘法与因式分解① $(a+b)(a-b)=a^2-b^2$② $(a\pm b)^2=a^2\pm 2ab+b^2$③ $(a+b)(a^2-ab+b^2)=a^3+b^3$④ $(a-b)(a^2+ab+b^2)=a^3-b^3$a^2+b^2=(a+b)^2-2ab$a-b)^2=(a+b)^2-4ab$2.幂的运算性质① $a^1=a$⑥ $a^{-n}=\frac{1}{a^n}$② $a^{\frac{1}{n}}=\sqrt[n]{a}$③ $(a^m)^n=a^{mn}$④ $a^m\times a^n=a^{m+n}$⑤ $\frac{a^m}{a^n}=a^{m-n}$⑦ $a^0=1(a\neq 0)$特别地:$a^{\frac{1}{2}}=\sqrt{a}$3.二次根式① $\sqrt{a^2}=a(a\geq 0)$② $|\pm a|=|a|$③ $\sqrt{ab}=\sqrt{a}\sqrt{b}$④ $\sqrt{a+b}=\sqrt{a}\sqrt{b}(\text{其中}a>0,b\geq 0)$4.三角不等式a|-|b|\leq |a\pm b|\leq |a|+|b|(\text{定理})$;加强条件:$||a|-|b||\leq |a\pm b|\leq |a|+|b|$也成立,这个不等式也可称为向量的三角不等式(其中$a$,$b$分别为向量$a$和向量$b$);a+b|\leq |a|+|b|$;$|a-b|\leq |a|+|b|$;$|a|\leq b\iff -b\leq a\leq b$;a-b|\geq |a|-|b|$;$-|a|\leq a\leq |a|$;5.某些数列前$n$项之和1+2+3+4+5+6+7+8+9+\cdots+n=\frac{n(n+1)}{2}$;1+3+5+7+9+11+13+15+\cdots+(2n-1)=n^2$;2+4+6+8+10+12+14+\cdots+(2n)=n(n+1)$;1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+\cdots+n^2=\frac{n(n +1)(2n+1)}{6}$;1^3+2^3+3^3+4^3+5^3+6^3+\cdots+n^3=\frac{n^2(n+1)^2} {4}$;1\times 2+2\times 3+3\times 4+4\times 5+5\times 6+6\times 7+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$;6.一元二次方程对于方程:$ax^2+bx+c=0$:①求根公式是$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,其中$\Delta=b^2-4ac$叫做根的判别式。
完整版)初中数学公式大全(整理打印版)
完整版)初中数学公式大全(整理打印版) 与代数1.数与式1) 实数实数具有以下性质:①实数a的相反数是-a,实数a的倒数是1/a(a≠0);②实数a的绝对值:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。
③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:当a≥0,b≥0时,√(ab)=√a×√b;当a≥0,b>0时,√(a/b)=√a/√b;②二次根式的性质:当a≥0时,√(a²)=a;当a<0时,√(a²)=-a。
2) 整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即am×an=am+n (m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即am/an=am-n (a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab)^n=a^n×b^n(n 为正整数);④零指数:a^0=1(a≠0);⑤负整数指数:a^-n=1/(a^n)(a≠0,n为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即(a+b)(a-b)=a²-b²;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即(a±b)²=a²±2ab+b²;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a/a×m=b/b×m,其中m是不等于零的代数式;②分式的乘法法则:a/c×b/d=a×b/c×d(a、b、c、d≠0);③分式的除法法则:a/c÷b/d=a/c×d/b(c、d≠0);④分式的乘方法则:a/c)^n=a^n/c^n(n为正整数);⑤同分母分式加减法则:a/b±c/b=(a±c)/b;⑥异分母分式加减法则:a/b±c/d=(ad±bc)/bd(b、d≠0)。
初中数学中考应用题常用公式汇总(直接打印每生一份熟记)
中考数学应用题常用公式汇总1.行程问题基本概念行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题速度和×相遇时间=相遇路程追击问题追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2 c v2.利润问题现价=原价*折扣率折扣价=现价/原价*100%件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价3.计算利息的基本公式储蓄存款利息计算的基本公式为:利息=本金×存期×利率税率=应纳数额/总收入*100%本息和=本金+利息税后利息=本金*存期*利率*(1- 税率)税后利息=利息*税率利率-利息/存期/本金/*100%利率的换算:年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)4.浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量5.增长率问题若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n =b或a(1-x)=bn6.工程问题工作效率=总工作量/工作时间工作时间=总工作量/工作效率7.赛事票价问题单循环赛:n(n-1)/2淘汰赛:n个球队,比赛场数为n-1场次。
初中数学各种公式(完整版)
数学各种公式及性质1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质n①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a)n=a n;bb⑥a-n=1n,特别:()-n=( )n;⑦a0=1(a≠0)。
a3.二次根式①( )2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|〔定理〕;加强条件:||a|-|b||≤|a±b|≤也|a|+|b|成立,这个不等式也可称为向量的三角不等式〔其中a,b分别为向量a和向量b〕|a+b| ≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-≤a≤;b|a-b|≥|a|-|b|-|a|≤a≤|a|;;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/2;1+3+5+7+9+11+13+15+⋯+(2n-1)=n2;2 2 2 2 2 2 2 2 22+4+6+8+10+12+14+⋯+(2n)=n(n+1);1+2+3+4+5+6+7+8 +⋯+n=n(n+1)(2n+1)/6;3 3 3 3 3 3 3 2 21+2+3+4+5+6+⋯n=n (n+1)/4;1*2+2*3+3*4+4*5+5*6+6* 7+⋯+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x=b b24ac,其中△=b2-4ac叫做根的判别式。
2a当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
初中数学公式大全(从初一到初三)
一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。
初中数学各种公式完整版
数学各种公式及性质1.乘法与因式分解①a+ba-b=a2-b2;②a±b2=a2±2ab+b2;③a+ba2-ab+b2=a3+b3;④a-ba2+ab+b2=a3-b3;a2+b2=a+b2-2ab;a-b2=a+b2-4ab; 2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③a mn=a mn;④ab n=a n b n;⑤abn=nnab;⑥a-n=1na,特别:-n=n;⑦a0=1a≠0;3.二次根式①2=aa≥0;②=丨a丨;③=×;④=a>0,b≥0;4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|定理;加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式其中a,b分别为向量a和向量b|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=nn+1/2;1+3+5+7+9+11+13+15+…+2n-1=n2;2+4+6+8+10+12+14+…+2n=nn+1;12+22+32+42+52+62+72+82+…+n2=nn+12n+1/6;13+23+33+43+53+63+…n3=n2n+12/4;12+23+34+45+56+67+…+nn+1=nn+1n+2/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-其中△=b2-4ac叫做根的判别式;当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根;②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为ax-x1x-x2;③以a 和b 为根的一元二次方程是x 2-a +bx +ab =0; 7. 一次函数一次函数y =kx +bk ≠0的图象是一条直线b 是直线与y 轴的交点的纵坐标,称为截距; ①当k >0时,y 随x 的增大而增大直线从左向右上升; ②当k <0时,y 随x 的增大而减小直线从左向右下降;③特别地:当b =0时,y =kxk ≠0又叫做正比例函数y 与x 成正比例,图象必过原点; 8. 反比例函数反比例函数y =k ≠0的图象叫做双曲线;①当k >0时,双曲线在一、三象限在每一象限内,从左向右降; ②当k <0时,双曲线在二、四象限在每一象限内,从左向右上升; 9. 二次函数1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数;2.抛物线的三要素:开口方向、对称轴、顶点;①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同;②平行于y 轴或重合的直线记作h x =.特别地,y 轴记作直线0=x ; 函数解析式开口方向 对称轴 顶点坐标当0>a 时开口向上 当0<a 时 开口向下0=x y 轴0,0 0=x y 轴0, kh ,0 h ,kab ac a b 4422--, 4.求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=; ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为h ,k ,对称轴是直线h x =;③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点;若已知抛物线上两点12(,)(,)、x y x y 及y 值相同,则对称轴方程可以表示为:122x x x += 5.抛物线c bx ax y ++=2中,c b a ,,的作用 ①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样;②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线;a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b即a 、b 同号时,对称轴在y 轴左侧;③0<ab即a 、b 异号时,对称轴在y 轴右侧; ③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置;当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点0,c : ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab;6.用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式;③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=; 7.直线与抛物线的交点①y 轴与抛物线c bx ax y ++=2得交点为0, c ; ②抛物线与x 轴的交点;二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:a 有两个交点⇔0>∆⇔抛物线与x 轴相交;b 有一个交点顶点在x 轴上⇔0=∆⇔抛物线与x 轴相切;c 没有交点⇔0<∆⇔抛物线与x 轴相离; ③平行于x 轴的直线与抛物线的交点同②一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根;④一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:a 方程组有两组不同的解时⇔l 与G 有两个交点;b 方程组只有一组解时⇔l 与G 只有一个交点;c 方程组无解时⇔l 与G 没有交点;⑤抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-10. 统计初步1概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数有时不止一个,叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数或两个数的平均数叫做这组数据的中位数. 2公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn④标准差:方差的算术平方根; 数据1x 、2x ……, n x 的标准差s ,则s =22212.....nx xx xx x一组数据的方差越大,这组数据的波动越大,越不稳定;11. 频率与概率1频率频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率; 2概率①如果用P 表示一个事件A 发生的概率,则0≤PA≤1; P 必然事件=1;P 不可能事件=0;②在具体情境中了解概率的意义,运用列举法包括列表、画树状图计算简单事件发生的概率; ③大量的重复实验时频率可视为事件发生概率的估计值; 12. 锐角三角形①设∠A 是△ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A的正切:tan A =.并且sin 2A +cos 2A =1;0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小; ②余角公式:sin90o -A =cos A ,cos90o -A =sin A ;③特殊角的三角函数值:sin30o =cos60o =,sin45o =cos45o =,sin60o =cos30o =,tan30o =,tan45o =1,tan60o =;④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tanα=;13. 正余弦定理1正弦定理 a/sinA=b/sinB=c/sinC=2R ;注:其中 R 表示三角形的外接圆半径;正弦定理的变形公式:1 a=2RsinA, b=2RsinB, c=2RsinC ;2 sinA : sinB : sinC = a : b : c 2余弦定理 b 2=a 2+c 2-2accosB ;a 2=b 2+c 2-2bccosA ;c 2=a 2+b 2-2abcosC ;注:∠C 所对的边为c,∠B 所对的边为b,∠A 所对的边为a14. 三角函数公式 (1) 两角和公式sinA+B=sinAcosB+cosAsinB sinA-B=sinAcosB-sinBcosA cosA+B=cosAcosB-sinAsinB cosA-B=cosAcosB+sinAsinB tanA+B=tanA+tanB/1-tanAtanB tanA-B=tanA-tanB/1+tanAtanB ctgA+B=ctgActgB-1/ctgB+ctgA ctgA-B=ctgActgB+1/ctgB-ctgAlα(2) 倍角公式tan2A=2tanA/1-tan2A ctg2A=ctg2A-1/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3) 半角公式sinA/2=√1-cosA/2 sinA/2=-√1-cosA/2 cosA/2=√1+cosA/2 cosA/2=-√1+cosA/2tanA/2=√1-cosA/1+cosA tanA/2=-√1-cosA/1+cosA ctgA/2=√1+cosA/1-cosA ctgA/2=-√1+cosA/1-cosA (4) 和差化积sinA+sinB=2sinA+B/2cosA-B/2 cosA+cosB=2cosA+B/2sinA-B/2 tanA+tanB=sinA+B/cosAcosB tanA-tanB=sinA-B/cosAcosB ctgA+ctgBsinA+B/sinAsinB -ctgA+ctgBsinA+B/sinAsinB (5) 积化和差2sinAcosB=sinA+B+sinA-B 2cosAsinB=sinA+B-sinA-B 2cosAcosB=cosA+B-sinA-B -2sinAsinB=cosA+B-cosA-B 15. 平面直角坐标系中的有关知识1对称性:若直角坐标系内一点P a,b ,则P 关于x 轴对称的点为P 1a,-b ,P 关于y 轴对称的点为P 2-a,b ,关于原点对称的点为P 3-a,-b ;2坐标平移:若直角坐标系内一点P a,b 向左平移h 个单位,坐标变为P a -h,b ,向右平移h 个单位,坐标变为P a +h,b ;向上平移h 个单位,坐标变为P a,b +h ,向下平移h 个单位,坐标变为P a,b -h .如:点A2,-1向上平移2个单位,再向右平移5个单位,则坐标变为A7,1; 16. 多边形内角和公式多边形内角和公式:n 边形的内角和等于n -2180o n ≥3,n 是正整数,外角和等于360o 17. 平行线段成比例定理1平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例;如图:a ∥b ∥c ,直线l 1与l 2分别与直线a 、b 、c 相交与点A 、B 、C 和D 、E 、F , 则有,,AB DE AB DE BC EFBC EF AC DF AC DF===; 2推论:平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例;如图:△ABC 中,DE ∥BC ,DE 与AB 、AC 相交与点D 、E ,则有:,,AD AE AD AE DE DB ECDB EC AB AC BC AB AC====18. 直角三角形中的射影定理直角三角形中的射影定理:如图:Rt △ABC 中,∠ACB =90o ,CD ⊥AB 于D则有:12CD AD BD =⋅22AC AD AB =⋅32BC BD AB =⋅ 19. 圆的有关性质1垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径; 2两条平行弦所夹的弧相等;3圆心角的度数等于它所对的弧的度数;4一条弧所对的圆周角等于它所对的圆心角的一半; 5圆周角等于它所对的弧的度数的一半; 6同弧或等弧所对的圆周角相等;7在同圆或等圆中,相等的圆周角所对的弧相等;890o 的圆周角所对的弦是直径,反之,直径所对的圆周角是90o,直径是最长的弦;、 9圆内接四边形的对角互补; 20. 三角形的内心与外心1三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点; 2三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点. 常见结论:①Rt △ABC 的三条边分别为:a 、b 、cc 为斜边,则它的内切圆的半径2a b cr +-=; ②△ABC 的周长为l ,面积为S,其内切圆的半径为r,则12S lr= 21. 弦切角定理及其推论1弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角;如图:∠P AC 为弦切角;2弦切角定理:弦切角度数等于它所夹的弧的度数的一半;如果AC 是⊙O 的弦,P A 是⊙O 的切线,A 为切点,则1122PAC AC AOC ∠==∠推论:弦切角等于所夹弧所对的圆周角作用证明角相等如果AC 是⊙O 的弦,P A 是⊙O 的切线,A 为切点,则PAC ABC ∠=∠ 22. 相交弦定理、割线定理和切割线定理1相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等;如图①,即:P A·PB = PC·PD2割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段长的积相等;如图②,即:P A·PB = PC·PD3切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;如图③,即:PC 2 = P A·PB① ② ③23. 面积公式①S 正△=×边长2.②S 平行四边形=底×高.③S 菱形=底×高=×对角线的积,④1()2S =+⨯=⨯梯形上底下底高中位线高⑤S 圆=πR 2. ⑥l 圆周长=2πR . ⑦弧长L =.⑧213602n r S lr π==扇形⑨S 圆柱侧=底面周长×高=2πrh , S 全面积=S 侧+S 底=2πrh +2πr 2 ⑩S 圆锥侧=×底面周长×母线=πrb , S 全面积=S 侧+S 底=πrb +πr 2OBCA。
初中数学各种公式(完整版).
数学各种公式及性质1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(ab)n=nnab;⑥a-n=1na,特别:()-n=()n;⑦a0=1(a≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x=242b b aca,其中△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
初一应用题公式大全
初一应用题公式大全
在初中数学学习中,应用题是学生们经常遇到的挑战。
通过应用题,学生们可以将所学的数学知识应用到实际生活中,从而更好地理解和掌握知识。
在解决应用题的过程中,公式是非常重要的工具。
下面我们来总结一些初一应用题中常用的公式大全。
1. 周长和面积。
矩形的周长,周长=2(长+宽)。
矩形的面积,面积=长×宽。
正方形的周长,周长=4×边长。
正方形的面积,面积=边长×边长。
圆的周长,周长=2×π×半径。
圆的面积,面积=π×半径×半径。
2. 比例。
两个量的比,a:b.
三个量的比,a:b:c.
比例的性质,等比例、反比例。
3. 百分数。
百分数与小数、分数的转换。
百分数的加减乘除。
4. 速度。
速度=路程/时间。
平均速度=总路程/总时间。
5. 利息。
简单利息,利息=本金×利率×时间。
复利,利息=本金×(1+利率)^时间本金。
6. 角度。
一周的角度,360°。
直角的角度,90°。
三角形内角和,180°。
以上是初一数学应用题中常用的一些公式,当然还有更多的公式和知识点需要同学们去掌握和运用。
通过不断的练习和实践,相信大家都能够掌握这些公式,并在解决各种数学问题时游刃有余。
希望大家在学习数学的过程中能够善于总结和应用这些公式,取得更好的成绩。
初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是(a≠0);a1②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:(a≥0,b≥0);b a ab ⋅=(a≥0,b >0);ba ba =②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m 、n 为正整数);n m n m a a a +=⋅②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m 、n 为正整数,m>n );n m n m a a a -=÷③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n 为正nnnb a ab =)(整数);④零指数:(a≠0);10=a⑤负整数指数:(a≠0,n 为正整数);n naa1=-⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;22))((b a b a b a -=-+⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;2222)(b ab a b a +±=±分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m 是不等于零的代数式;m b m a b a ⨯⨯=m b m a b a ÷÷=②分式的乘法法则:;bdacd c b a =⋅③分式的除法法则:;)0(≠=⋅=÷c bcadc d b a d c b a ④分式的乘方法则:(n 为正整数);n nn ba b a =)(⑤同分母分式加减法则:;c ba cbc a ±=±⑥异分母分式加减法则:;bccdab b d c a ±=±2.方程与不等式①一元二次方程(a≠0)的求根公式:02=++c bx ax )04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:叫做一元二次方程ac b 42-=∆(a≠0)的根的判别式:02=++c bx ax 方程有两个不相等的实数根;⇔>∆0方程有两个相等的实数根;⇔=∆0方程没有实数根;⇔<∆0③一元二次方程根与系数的关系:设、是方程1x 2x 02=++c bx ax(a≠0)的两个根,那么+=,=;1x 2x a b -1x 2x ac 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k )的一条直线。
初中数学应用题公式大全
初中数学应用题公式大全初中数学应用题公式大全1.路程=速度×时间,时间=路程÷速度,速度=路程÷时间对于追击问题,追击者所走的路程等于前者所走的路程加上两者之间的距离。
对于环形跑道问题,甲乙两人在环形跑道上同时同地同向出发,快的必须多跑一圈才能追上慢的;在同时同地反向出发时,两人相遇的总路程为环形跑道一圈长度。
2.工作总量=工作效率×工作时间,合作时效率相加,即每天的工作量相加。
3.溶质质量(酒精)=溶液质量(酒精加水)×浓度,溶液质量=溶质质量÷浓度,浓度=溶质质量÷溶液质量。
4.对于航行问题,顺水速度=静水速度+水速,逆水速度=静水速度-水速,静水速度=(顺水速度+逆水速度)/2,水流速度=(顺水速度-逆水速度)/2.5.利润=售价-进价,利润率=(商品利润÷商品成本)×100%。
6.打几折:即十分之几或百分之几十,例如打八折即80%。
7.利率=(利息÷本金)×100%,利息=本金×利率×期数时间,本息和=本金+利息,税后利息=本金×利率×时间×(1-20%)。
8.应缴电费=1度电的费用×灯的功率(千瓦)×照明时间,总费用=灯价+电费。
9.N次(N年)连续上升a%=底数×(1+ a%)n,N次(N年)连续下降a%=底数×(1- a%)n。
10.对于出租车问题,乘车费用=起步价+超出钱数×(总路程-起步路程)。
11.用水(用气、用电)费用=标准价+超出钱数×(总水量-标准水量)。
12.在等体积变形中,“形变,体不变”,变形前后体积相等。
13.对于一个三位数,个位是c,十位上b,百位上a,这个三位数的表示为100a+10b+c。
如果数字之间对调位置,要找出新数与原数之间关系,分式方程应用题的常见类型有工程问题、行程问题和销售问题。
(完整版)初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
初中应用题公式大全及题解
初中数学各种公式整理篇路程、速度、浓度、盈亏问题相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3其它公式:平均数问题公式(一个数+另一个数)÷2 反向行程问题公式路程÷(大速+小速同向行程问题公式路程÷(大速-小速)行船问题公式同上列车过桥问题公式(车长+桥长)÷车速工程问题公式1÷速度和盈亏问题公式(盈+亏)÷两次的相差数利率问题公式总利润÷成本×100%1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数平面几何公式:1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间商品的利润=售价-进价利润率=售价-进价/进价售价=进价(1+利润率)进价=商价-商品的利润。
初中数学公式大全(绝对经典)
初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学公式大全
初中数学公式大全中学数学涵盖了非常广泛的内容,涉及到多个不同的学科,包括代数、几何、概率与统计等。
以下是一些常用的数学公式,供中学生参考。
一、代数公式:1. 一元二次方程的求根公式:对于方程ax² + bx + c = 0,其求根公式为:x = (-b ± √(b² - 4ac))/(2a)2. 二次函数的顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为:x=-b/(2a)y = -Δ / (4a),其中Δ为b² - 4ac,表示判别式。
3.平方差公式:(a+b)(a-b)=a²-b²4. 二次完全平方公式:a² + 2ab + b² = (a + b)²5. 一次函数的斜率公式:对于一次函数y = kx + b,其斜率为k。
6. 一次函数的截距公式:对于一次函数y = kx + b,其截距为b。
二、几何公式:1.三角形的面积公式:对于已知边长a、b和夹角C的三角形,其面积S为S = 1/2 * a * b * sin(C)2.直角三角形的勾股定理:对于直角三角形,其直角边的长度分别为a和b,斜边的长度为c,则有a²+b²=c²3.圆的面积公式:对于半径为r的圆,其面积为A=π*r²4.圆的周长公式:对于半径为r的圆,其周长为C=2π*r5.平行四边形的面积公式:对于平行四边形,其底边长为a,高为h,其面积为S=a*h6.矩形的面积公式:对于矩形,其长为a,宽为b,其面积为S=a*b7.三角函数的定义公式:sin A = 对边 / 斜边cos A = 临边 / 斜边tan A = 对边 / 临边三、概率与统计公式:1.随机事件发生的概率:对于任意一个随机事件AP(A)=(A的有利结果数)/(A的总结果数)2.互斥事件的概率公式:对于两个互斥事件A和B,它们同时发生的概率为0,因此有P(A∪B)=P(A)+P(B)3.A与B独立事件的概率公式:对于两个独立事件A和B,它们同时发生的概率为两个事件发生的概率的乘积,因此有P(A∩B)=P(A)*P(B)4.期望公式:对于一组随机试验的结果X1、X2、..、Xn,其期望值E (X)定义为E(X)=X1*P(X1)+X2*P(X2)+...+Xn*P(Xn),其中P(Xi)为结果Xi发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 三角不等式 |a|-|b| ≤ |a ± b| ≤ |(a|定+|b理| ); 加强条件: ||a|-|b|| ≤|a ±b| ≤也|a成|+立|b,| 这个不等式也可称为向量的三角不等式(其中 为向量 a 和向量 b)
|a+b| ≤ |a|+;|b||a-b| ≤ |a|b+|;| |a| ≤ b<-=b>≤ a≤;b
l
(1)正弦定理 a/sinA=b/sinB=c/sinC=2R;注:其中 R 表示三角形的外接圆半径。
正弦定理的变形公式: (1) a=2RsinA, b=2RsinB, c=2RsinC ; (2) sinA : sinB : sinC = a : b : c (2)余弦定理 b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC;
最中间的一个数 (或两个数的平均数 )叫做这组数据的 中位数.
(2)公式: 设有 n 个数 x1,x2,… ,xn,那么:
①平均数为: x x1 x2 ...... xn ; n
②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法
得到的差称为极差,即:极差 =最大值 -最小值;
2. 幂的运算性质
①am×an=am+n;②am÷an= am-n;③(am)n=amn;④(ab)n=anbn;⑤(
a b
)n=
an bn
;
⑥a-n=
1 an
,特别:
(
)-n=(
)n;⑦a0= 1(a≠0。)
3. 二次根式
①( )2=a(a≥0;) ② =丨 a丨; ③ = × ;④ = (a> 0, b≥0。)
①当k>0时, y随x的增大而增大 (直线从左向右上升 );
②当k<0时, y随x的增大而减小 (直线从左向右下降 );
③特别地:当 b=0时, y= kx(k≠0又) 叫做正比例函数 (y与x成正比例 ),图象必过原点。 8. 反比例函数 反比例函数 y= (k≠ 0的) 图象叫做双曲线。
①当k>0时,双曲线在一、三象限 (在每一象限内,从左向右降 );
② 平行于 y 轴(或重合)的直线记作 x h .特别地, y 轴记作直线 x 0 。 (3).几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
顶点坐标
2
y ax y ax 2 k y ax h2 y ax h2 k
y ax 2 bx c
当 a 0时 开口向上 当 a 0时 开口向下
x 0( y 轴) x 0( y 轴)
a
( 6) .用待定系数法求二次函数的解析式
①一般式: y ax 2 bx c .已知图像上三点或三对 x 、 y 的值,通常选择一般式 . ②顶点式: y a x h 2 k .已知图像的顶点或对称轴,通常选择顶点式。
③交点式:已知图像与 x 轴的交点坐标 x1、 x2 ,通常选用交点式: y a x x1 x x2 。 (7).直线与抛物线的交点
③特殊角的三角函数值: sin30o= cos60o= , sin45o=cos45o= ,sin60o=cos30o= ,
tan30o= ,tan45o=1, tan60o= 。
铅垂高度 ④斜坡的坡度: i = 水平宽度 = .设坡角为 α,则 i =tan =α 。 13. 正(余)弦定理
h α
中考数学 各种 常用公式及性质
1. 乘法与因式分解 ①(a+b)(a-b)=a2- b2;②(a±b)2=a2±2ab+b2;③ (a+b)(a2-ab+ b2)= a3+b3; ④(a-b)(a2+ab+b2)= a3-b3; a2+b2=(a+ b)2- 2ab;(a-b)2=(a+ b)2-4ab。
12. 锐角三角形
①设∠ A是 △ABC 的任一锐角,则 ∠A的正弦: sinA=
,∠A的余弦: cosA=
,
∠A的正切: tanA=
.并且 sin2A+cos2A=1。
ቤተ መጻሕፍቲ ባይዱ
0<sinA< 1, 0< cosA<1,tanA>0.∠A越大, ∠A的正弦和正切值越大,余弦值反而越小。 ②余角公式 :sin(90o- A)=cosA,cos(90o- A)= sinA。
13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6* 7+… +n(n+1)=n(n+1)(n+2)/3 ; 6. 一元二次方程 对于方程: ax2+bx+ c= 0:
①求根公式 是x= b
b2 4ac ,其中 △=b2- 4ac叫做根的判别式。 2a
②当k<0时,双曲线在二、四象限 (在每一象限内,从左向右上升 )。
9. 二次函数 (1).定义: 一般地,如果 y ax 2 bx c(a,b,c 是常数, a 0) ,那么 y 叫做 x 的二次函数。 (2).抛物线的三要素: 开口方向、对称轴、顶点。
① a 的符号决定抛物线的开口方向:当 a 0 时,开口向上;当 a 0 时,开口向下; a 相等,抛物线的开口大小、形状相同。
A x1,0 , B x2,0 ,则 AB x1 x2 10. 统计初步
(1)概念:①所要考察的对象的全体叫做 总体 ,其中每一个考察对象叫做 个体. 从总体中抽取
的一部份个体叫做总体的一个 样本 ,样本中个体的数目叫做 样本容量. ② 在一组数据中,出现
次数最多的数 (有时不止一个 ),叫做这组数据的 众数 . ③将一组数据按大小顺序排列,把处在
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) (2) 倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3) 半角公式 sin(A/2)= √-(c(1osA)/2) sin(A/2)=- √ ((1-cosA)/2) cos(A/2)= √ ((1+cosA)/2) cos(A/2-)√= ((1+cosA)/2) tan(A/2)= √-(c(1osA)/((1+cosA)) tan(A/2)=- √ ((1-cosA)/((1+cosA)) ctg(A/2)= √ ((1+cosA)/(-(c1osA)) ctg(A/2)=- √ ((1+cosA)/((1-cosA)) (4) 和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB (5) 积化和差 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 15. 平面直角坐标系中的有关知识 (1)对称性: 若直角坐标系内一点 P(a,b),则 P 关于 x 轴对称的点为 P1( a,- b),P 关
注: ∠ C所对的边为 c, ∠ B 所对的边为 b, ∠ A 所对的边为 a 14. 三角函数公式
(1) 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
x1 x2 2
① a 决定开口方向及开口大小,这与 y ax2 中的 a 完全一样。
② b 和 a 共同决定抛物线对称轴的位置 .由于抛物线 y ax 2 bx c 的对称轴是直线。
x
b ,故: ① b 0时,对称轴为 y 轴; ② b 0 (即 a 、 b 同号)时,对称轴在 y 轴
2a
a
b 左侧; ③ 0 (即 a 、 b 异号)时,对称轴在 y 轴右侧。
y a x h 2 k 的形式,得到顶点为
( h , k ),对称轴是直线 x h 。
③运用抛物线的对称性: 由于抛物线是以对称轴为轴的轴对称图形, 对称轴与抛物线的交点
是顶点。
若已知抛物线上两点 (x1, y)、( x2, y)(及 y 值相同),则对称轴方程可以表示为: x ( 5) .抛物线 y ax 2 bx c 中, a, b, c 的作用
11. 频率与概率
(1)频率
频率 = 频数 ,各小组的频数之和等于总数,各小组的频率之和等于 1,频率分布直方图中各
总数
个小长方形的面积为各组频率。
( 2)概率 ①如果用 P 表示一个事件 A 发生的概率,则 0≤P(A )≤1; P(必然事件) =1; P(不可能事件) =0; ②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的 概率。 ③大量的重复实验时频率可视为事件发生概率的估计值;