红外避障模块配套资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝贝名称:红外避障传感器模块
规格参数:
1.工作电压:DC4.5V-9V;
2.检测距离:1-80CM可调;
3.IO接口:3线制接口(GND/VCC/OUT);
4.输出信号:TTL电平(有障碍物低电平,无障碍物
板上有2个LED指示灯,一个是电源指示灯,一个是输出指示灯,检测到前方有东西是,输出指示灯亮,否则就灭,不带颜色。

电路图:
布线图:
D1发射红外线,D2接收红外信号。

LM567第⑤、⑥脚为译码中心频率设定端,一般通过调整其外接可变
电阻W改变捕捉的中心频率。

图中红外载波信号来自LM567的第5角,也即载波信号与捕捉中心频率一致
,能够极大的提高抗干扰特性。

音频译码器LM567作用器要领
1、LM567输出部分与普通数字IC等有所不同,其内部是一个集电极开路的NPN型三极管,使用时,⑧脚与正
IC译码后输出低电平。

2、实验表明:LM567接通电源瞬间,⑧脚会输出一低电平脉冲。

因此,用于作遥控器译码控制时,应在输出端后加装RC积分延时电路,以免每次断电后,重新复电时产生误动作。

3、LM567第⑤、⑥脚为译码中心频率设定端,一般通过调整其外接可变电阻W改变频率,经笔者实验发现,当W阻值变为0Ω或无限大时,⑧脚电平状态即使无信号输入时也会变为低电平,因此,在调整W时,不能使其短路或开路。

4、LM567的工作电压对译码器的中心频率有所影响,故最好采用稳压供电。

5、LM567②脚外接电容决定着锁相环捕捉带宽,容量越小,捕捉带宽越宽,但使用时,不可为增大捕捉带宽而一味减小电容容量,否则,不但会降低抗干扰能力,严重时还会出现误触发现象,降低整机的可靠性
1.概述
集成锁相环路解码器LM567是美国国家半导体公司生产的56系列集成锁相环路中的一种,其同类产品还有美国Signetics公司的SE567/INE567等。

LM567是一个高稳定性的低频集成锁相环路解码器,由于其良好的噪声抑制能
码以及AM、FM信号的解调电路中。

2.LM567内部结构及工作原理
LM567为8脚直插式封装,其内部结构、引脚定义及外围元件连接方法如图1所示。

LM567内部包含了两个鉴相器PD1及PD2、放大器AMP、电压控制振荡器VCO等单元电路。

鉴相器PD1、PD2均采用双平衡模拟乘法器电路,在输入小信号情况下(约几十mV),其输出为正弦鉴相特性,而在输入大信号情况下(几百mV以上),其输出转变为线性(三角)鉴相特性。

锁相环路输出信号由电压控制振荡器VCO产生,电压控制振荡器的自由振荡频率(即无外加控制电压时的振荡频率)与外接定时元件RTCT的关系式为:
f0≈1/1.1RTCT
选用适当的定时元件,可使LM567的振荡频率在0.01Hz~500kHz范围内连续变化。

电路工作时,输入信号在鉴相器PD1中与VCO的输出信号鉴相,相差信号经滤波回路滤波后,成为与相差成一定比例的电压信号,用于控制VOC输出频率f0跟踪输入信号的相位变化。

若输入信号频率落在锁相环路的捕获带内,则环路锁定,在振荡器输出频率与输入频率相同时,二者之间只有一定相位差而无频率差。

FM信号解调时,脚2输出的经过滤波后的相差信号可作为FM解调信号的输出,而当环路用于单音解调时,电路则利用PD2输出的相差信号。

PD2的工作方式与PD1略有不同,它是利用压控振荡器输出的信号f0经90°移相后再与输入信号进行鉴相,是一正交鉴相器。

在环路锁定情况下,PD2的两个输入信号在相位上相差约为90°,因而PD2的输出电压达到其输出范围内的最大值,再经运算放大器AMP反相,在其输出端输出一个低电平。

AMP的输出端为OC输出方式,低电平输出时可吸收最大100mA的输出电流。

该端口的低电平输出信号除可由上拉电阻转换为电压信号以与TTL或CMOS接口电路相匹配外,还可直接驱动LED及小型继电器等较大负载。

LM567的电气参数如表1所列。

值得一提的是,接在2脚的环路滤波电容C2与内部电阻一道构成锁相环路的RC积分滤波器,该滤波器时间常数的大小在很大程度上决定了锁相环路的环路带宽BW的大小。

当BW较大时,捕获范围大而稳定性差。

减小BW则正好相反,其稳定性较好而捕获范围变小。

LM567的环路带宽BW可由下式计算:
BW=1070(Vi/f0C2)1/2
式中,Vi为输入信号的幅值(rms)
C2为滤波电容的容量(单位为μF)
实际上,由上式计算得出的并不是环路带宽BW的实际值,
BW与环路中心频率f0的百分比,其值再乘上100%才是锁相环路的实际捕获带宽。

实际应用中调整C2的大小可使BW在0%~4%范围内变化。

BW宽度与f0C2乘积之间的关系如图2。

LM567在正常工作时的最小输入信
LM5677号为20mV。

当用于单音解码时,其工作特性为:当LM56信号输入端加入幅度为20mV以上的交流信号且频率落入f0±BW范围内时,输出端输出一个低电平的检测信号,这就是所谓的“频率继电器”特性。

利用这一特性,LM567可广泛应用于各种低频单一频率信号的解码。

3.LM567的应用
根据实际工作需要,我们利用LM567的“频率继电器”工作方式,设计了一个脉冲光电检测电路,用于生产线上工作的计数及工位检测。

具体电路如图3所示。

检测中的红外光源由红外发光管D提供,其驱动信号来自一个由CMOS门构成的振荡器,重复频率约为10kHz。

采用脉冲信号驱动红外发光管,除了利用锁相环路解码以提高检测灵敏度并消除背景光的干扰外,还能使发光管在平均输入功率不变的情况下比直流驱动方式增加1倍的瞬时发射功率。

在接收端,为提高检测灵敏度,在光敏接收监视至锁相环路解码器之间插入一级交流放大器,以对光敏接收管接收到的微弱信号进行放大。

当锁相环路解码器输入信号的幅度
20mV(rms)且频率落入锁相环路的捕获带时,环路立即对输入信号锁定。

锁定后,PD2的两输入信号成为相位差为90°的同频正交信号。

经过鉴相,在输出端输出低电平,即为检测输出信号,捕获带的带宽BW与光电检测器的工作性能有很大关系。

一般来说,捕获带越窄,环路抗干扰性就越强。

但过窄的捕获带会使发射端驱动信号重复频率f0在外界温度、电源电压及元器件老化等因素影响下发生漂移,从而导致捕获困难,严重时电路可能无法正常工作,因而需要折衷考虑。

一般在1%~3%为宜,在我们的电路中BW宽度约为2%。

实际使用中,可通过调节电位器W以使LM567的中心频率f0与发射端的驱动信号同频。

LM567的中心频率可用频率计在其5脚进行测量。

与直接驱动式光电检测相比,由于在光敏管之后增加了交流放大,因而接收灵敏度大为提高。

同时也防止了环境光对光电检测器的影响,使检测器可在较强环境光下正常工作。

采用上述方案构成的光电检测器的灵敏度和可靠性均能达到令人满意的结果。

实际应用中,该电路能在距检测光电头50mm以外准确的分辨出直径为0.5mm的电子元件引线。

67。

原理:图4为红外接收解调控制电路。

图中,IC1是LM5
LM567 LM567是一片锁相环电路,采用8脚双列直插塑
封。

其⑤、⑥脚外接的电阻和电容决定了内部压控振荡器的中心频率f2,f2≈1/1.1RC。

其①、②脚通常分别
波网络。

②脚所接电容决定锁相环路的捕捉带宽:
电容值越大,环路带宽越窄。

①脚所接电容的容量应至少是②脚电容的2倍。

③脚是输入端,要求输入信号
≥25mV。

⑧脚是逻辑输出端,其内部是一个集电极开路的三极管,允许最大灌电流为100mA。

LM567的工
作电压为4.75~9V,工作频率从直流到500kHz,静态工作电流约8mA。

LM567的内部电路及详细工作过程
非常复杂,这里仅将其基本功能概述如下:当LM567的③脚输入幅度≥25mV、频率在其带宽内的信号时,
⑧脚由高电平变成低电平,②脚输出经频率/电压变换的调制信号;如果在器件的②脚输入音频信号,则在⑤
脚输出受②脚输入调制信号调制的调频方波信号。

在图4的电路中我们仅利用了LM567接收到相同频率的
载波信号后⑧脚电压由高变低这一特性,来形成对控制对象的控制。

弄清了LM567的基本工作原理和功能后,再来分析图4电路便非常简单了。

IC1是红外接收头,它接收
发射器发出的红外信号,其中心频率与发射器载波频率f0相同,经IC1解调后,在输出端OUT输出频率为
f1的方波信号,也就是与图1中A点波形相同的信号。

我们将LM567的中心频率调到与发射器中“与非”门1、
振荡频率相同,即使f2=f1。

则当发射器发射信号时,L M567便开始工作,⑧脚由高电平变为低电平,利
用这个变化的电平便可去控制各种对象。

利用图4的电路,我们可以做成遥控开关,遥控家里的各种家用电。

相关文档
最新文档