数字电压表头集成块ICL7107应用电路图[1]
ICL7107数字电压表几种常用应用技术电路
士20QH1V彌的数字「证我头ICL7107数字电压表的几种常用的应用电路上传者:jackwang浏览次数:1188数字电压茨(数宁面板农)是当前电子、电工.仪器.仪茨和测员簇域人瑕使用的一种基本测址匸具有关数字电压表的书篦和应用已经非帘誓及了。
这里展示的一份由ICL7106 A/D转换电路组成的数字电压茨(数字面板茨)电路.就足一款最通用和嚴基本的电路。
与ICL7106相似的是ICL7107・呛者使用LCD液品显示.后者则足驰动LED数码管作为品示.除此之外•苛者的应用基本足相通的.电路图中.仅仅使用一只DC9V电池•数字电压表就可以正常使用了。
按照图示的元器件数值•该茨头議程范用是±200・0mV°当需要测fit ±200mV的电压时.信号从V・IN端输入•当需要测fit ±200mA的电流时.信号从A-IN端输入・不需耍加接任何转换开关.就町以得到两种测扯内容。
也有许多场合.希望数7电压衣(数宁面板茨)的址程人一些.那么.只需耍更改2只元器件的数值.就”以实现就程为±2.000V 了。
更改的元器件具体位置和数值见卜图的28和29两只引脚:基本量程为土 2.000V 的图示字面板茨)Z 后.按照卜面的图示•给它配圧一组分涛电阻.就吋以实现务fit 程数?电流箒分档从±200uA 到±20A °但 足塑注总:在使用20A 人电流档的时候.不能再冇开关来切换眾程•应该号门配且一只测吸插孔•以防烧毁切换开关。
1000mVVref+473 470K6521098224数字•表头在有了一只数字电压表(数与多扯程电流表对应的是经常需要使用多最程电压表.按照卜图配览-组分压电阻.就町以那到址程从±200・0mV 至±1000V 的多母程电压茨。
200uA—多倾电流表900RT 20mAVref十~W —IhT CAT B D F■ 100mV36 35 32 31 30 29 28 2700R200mA2A0.09K20A0.0 Ik测址电阻与测就电流或者电压一样觅耍.俗称''三刖表”.利用数字电压表做成的多扯程电阻表•采用的AT 比例法"测fit.因此. 它比起描针万用表的电阻测fit 来具有非常准确的粘度.而且耗电很小•卜图示中所配理的一组电阻就叫"基准电阻"・就是通过 切换各个接点得到不同的基准电阻值.再由Vref 电压与被测电阻上得到的Vin 电压进行"比例谀数"•当Vref = Vin 时. 显示就是Vin/Vref*lOOO=lOOO •按照需要点壳屏毎上的小数点.就对以言接读岀被测电阴的阻值来了。
数字电压表
数字电压表设计一、课题的任务和要求采用双积分式A/D 转换器ICL7107设计一个数字电压表,量程为-1.999~+1.999,弄清电路连接情况后进行焊接调试。
该任务的参考电路如图所示由于最高位只要求显示“1”,所以19号引脚只要接最高位数码管的b 、c 并联端,20号脚作为极性输出端,连接最高位数码管的g 引脚即可。
最高位后小数点端口应该接220欧电阻后接地。
二、实验方案分析1、ICL7107芯片集成度高,转换精度 高,抗干扰能力强,输出③积分电容 CINT 可直接驱动发光数码管,只需要 很少的外部元件,就可以构成数积分电容取值用下式估算:字仪表模块。
以下是ICL7107的引脚图12345678910111213141516171819202122232425262728293031323334353637383940+5V-5V C1C2R1C1=0.22uFC2=0.047uFR1=470K IN+C3IN-C41V R2R3R4 C5TEST R5C3=103C4=104C5=100P R2=1M RWF=10K R3=15K R4=1K R5=100KTL431??:C1,C2,C4?????????1号脚为电源端口,接+5V正电源,26号脚为负电源接口,接-5V,21号引脚接地,2号到8号引脚接最低位数码管,9号到14号、23号引脚接第二位数码管,15号到18号、22号到24号引脚接第三位数码管;31号端口外界R2电阻后用于接入待测电源的基准电平,可以输入±199.9mV 的电压;37号引脚接TEST端口,用于检测电路是否正确,以及数码管是否有损坏;36号引脚接滑动变阻器,用于调试电路,精确读数; 27,28,29 引脚的元件数值,它们是0.22uF,470K,0.047uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容,并且把 36 脚基准调整到 1.000V 就可以使用在±1.999V 量程了;32脚是模拟地;35脚是基准地;30脚是信号地;比例读数:把 31 脚与 36 脚短路,就是把基准电压作为信号输入到芯片的信号端,观察此时数码管的读数;电路中用TL431及配合电阻电容实现信号放大。
数字电压表电路7106和7107
数字电压表电路ICL7107ICL7107.7106pdf资料下载ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在 -3V 至 -5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入 ±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
-- 本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
ICL7107功能与特点
(1) 31/2位双积分型A/D转换器ICL7107功能与特点① ICL7107是31/2位双积分型A/D转换器,属于CMoS大规模集成电路,它的最大显示值为士1999,最小分辨率为100uV,转换精度为0.05士1 个字。
②能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,并将第21脚的GND接第30脚的IN 。
③在芯片内部从V+与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压VREF 。
④能通过内部的模拟开关实现自动调零和自动极性显示功能。
⑤输入阻抗高,对输入信号无衰减作用。
⑥整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。
⑦噪音低,温漂小,具有良好的可靠性,寿命长。
⑧芯片本身功耗小于15mw(不包括LED)。
⑨不设有一专门的小数点驱动信号。
使用时可将LED共阳极数数码管公共阳极接V+.⑩可以方便的进行功能检查。
图1 ICL7107的引脚图及典型电路。
(2) ICL7107引脚功能及主要电气参数V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。
Bck:千位笔画驱动信号。
接千位LEO显示器的相应的笔画电极。
PM:液晶显示器背面公共电极的驱动端,简称背电极。
Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。
第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使用时一般与输入信号的负端以及基准电压的负极相连。
TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。
VREF+VREF- :基准电压正负端。
CREF:外接基准电容端。
INT:27是一个积分电容器,必须选择温度系数小不致使积分器的输入电压产生漂移现象的元件IN+和IN- :模拟量输入端,分别接输入信号的正端和负端。
用ICL7107制作电压表头的电路分析
ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
3位半数字表头芯片ICL7107的特点及原理介绍
3位半数字表头芯片ICL7107的特点及原理介绍(1) 31/2位双积分型A/D转换器ICL7107功能与特点① ICL7107是31/2位双积分型A/D转换器,属于CMoS大规模集成电路,它的最大显示值为士1999,最小分辨率为100uV,转换精度为0.05士1 个字。
② 能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,并将第21脚的GND接第30脚的IN 。
③ 在芯片内部从V+与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压V REF。
④ 能通过内部的模拟开关实现自动调零和自动极性显示功能。
⑤ 输入阻抗高,对输入信号无衰减作用。
⑥ 整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。
⑦ 噪音低,温漂小,具有良好的可靠性,寿命长。
⑧ 芯片本身功耗小于15mw(不包括LED)。
⑨ 不设有一专门的小数点驱动信号。
使用时可将LED共阳极数数码管公共阳极接V+.⑩ 可以方便的进行功能检查。
图1 ICL7107的引脚图及典型电路。
(2) ICL7107引脚功能及主要电气参数V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。
Bck:千位笔画驱动信号。
接千位LEO显示器的相应的笔画电极。
PM:液晶显示器背面公共电极的驱动端,简称背电极。
Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。
第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使 用时一般与输入信号的负端以及基准电压的负极相连。
TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。
VREF + VREF- :基准电压正负端。
ICL7107在数显稳压电源中的应用(多款LM317应用电路方案)
ICL7107在数显稳压电源中的应用(多款LM317应用电路方案)描述一、数显稳压电源原理元件参数:B:220V/25V、150WD0:50V、6A全桥C1:4700μF/50VC2:0.1μFR1:1KLED1:普通发光管D1、D2:1N4001D3:1N4007R2:240ΩR3:4.7KV1:2N3055R4:200Ω、5WD4:1N4001原理图见图1。
220V交流电经变压器变压、整流、滤波后变为30V直流电压,再经LM317三端可调稳压器使电压处于1.25~30V 间某一值,经D3、V1后,电压变为0.05~28.8V间某值;其中R1为LED1限流电阻。
D1、D2用来保护LM317。
V1为2N3055,是功率用低频大功率三极管,最大电流为15A,最大功率115W,最大输入电压60V,工作温度为20℃~70℃。
数字显示电路采用外围元件极少的CMOS集成电路ICL7107为核心元件。
二、ICL7107介绍ICL7107内部结构及工作原理ICL7107工作支持元件最少为5个电容器、4个电阻器、1个电位器以及显示器,加上±5V电源,ICL7107就变成一个完整的3位半数字电压表。
ICL7107内部包括模拟电路和数字电路两大部分,二者是互相联系的。
ICL7107用双积分的方法实现A/D转换。
一方面由控制逻辑产生控制信号,按规定时序将多路模拟开关接通或断开,保证A/D转换正常进行;另一方面模拟电路中的比较器输出信号又控制着数字电路的工作状态和显示结果,如图2所示。
为了使ICL7107电路正常工作,还必须正确选择外部条件。
1.积分电阻RINT。
为保证ICL7107在输入电压范围内线性工作,外接的积分电阻要选择得足够大,可由式RINT=VFS/IINT决定VFS为满度电压(即200mV),IINT为积分电流(一般为4μA),故这里选RINT为50KΩ左右。
2.积分电容CINT。
CINT的取值主要决定于A/D转换器的额定转换速率和积分器额定积分电流,以积分输出不饱和为原则。
数字电压表ICL7106-7107的应用
数字电压表ICL7106/7107的应用
数字电压表(数字面板表)是当前电子、电工、仪器、仪表和测量领域大量使用的一种基本测量工具有关数字电压表的书籍和应用已经非常普及了。
这里展示的一份由ICL7106 A/D 转换电路组成的数字电压表(数字面板表)电路,就是一款最通用和最基本的电路。
与ICL7106 相似的是ICL7107 ,前者使用LCD 液晶显示,后者则是驱动LED 数码管作为显示,除此之外,两者的应用基本是相通的。
电路图中,仅仅使用一只DC9V 电池,数字电压表就可以正常使用了。
按照图示的元器件数值,该表头量程范围是±200.0mV。
当需要
测量±200mV 的电压时,信号从V-IN 端输入,当需要测量±200mA 的电流时,信号从A-IN 端输入,不需要加接任何转换开关,就可以得到两种测量内容。
采用LM35和ICL7107构成的数字温度计电路
采用LM35和ICL7107构成的数字温度计电路
采用LM35和ICL7107构成的数字温度计电路
集成温度传感器LM35灵敏度为l0mv/℃,即温度为10℃时,输出电压为100mv. 常温下测温精度为+/-0.5℃以内,消耗电流最大也只有70uA,自身发热对测旦精度影院也只在0.1C以内。
采用十4v 以上单电源供电时,测量温度范围为2--+/-150℃;而采用双电源供电时,测量温度范围为-55--+150℃(金属壳封装)和-40--+110℃(T09 2封装),无需进行调整。
此电路调整很简单。
首先把LM35故人冰水中,调整PRt,使显示器显示0.0℃。
再把LM35放人100℃的开水中,调整PR2,使显示器显示100℃。
重复调整多次即可。
但要注意从冰水中取出的LM35要等待一段时间再放人开水中,以免损坏传感器LM35。
采用LM35和ICL7107构成的数字温度计电路如附图所示。
基于ICL7107的数字电压表及多量程电流电阻表制作
11
1.测量电压时,请勿输入超过直流 20V 的极限电压。 2.测量前要检查表笔是否可靠接触,是否正确连接、是否绝缘良好等。 3.电压表的电源供电端子,不能反接,否则会烧毁电压表,电压表供电电压不能低于或高于 +5V。 4.电位器的调试端不能随意调动,否则会影响测试准确度。 (三)、操作面说明
本文主要是研究基于 ICL7107 芯片、数字显计数器的应用。
1.4 设计目的
1.综合运用数字电路和模拟电路,巩固所学知识。 2.了解双积分 A/D 转换器的工作原理。
5
3.掌握 ICL7107 构成数字直流电压表的方法。 4.了解数字显示电路的扩展应用。 5.了解产品设计的基本思路和方法。 6.掌握常用电子元件的选择方法和元件参数的。 7.加强计算机运用、查阅资料和独立完成电路设计的能力。
1.3 LED 显示屏
采用 2 个共阳级二位数码管进行显示,芯片 ICL7107 可以直接驱动共阳型数码管,不需要驱动电路。最高 位只起到显示‘1’和‘-’的作用,第二位可以显示小数点。
一、 仪器,仪表准备
调试 工作单
10
1. 双路直流稳压电源 (一台)。 2. 4 位半数字万用表 (一台)。
二、 调试内容及步骤
图 2.5-2 ICL7107 芯片引脚图
ICL7107 芯片的引脚图如图 2.5-2 所示,它与外围器件的连接图如 4 所示。图 4 中它和数码管相 连的脚以及电源脚是固定的,所以不加详述。芯片的第 32 脚为模拟公共端,称为 COM 端;第 34 脚 Vr+和 35 脚 Vr-为参考电压正负输入端;第 31 脚 IN+和 30 脚 IN-为测量电压正负输入端; Cint 和 Rint 分别为积分电容和积分电阻,Caz 为自动调零电容,它们与芯片的 27、28 和 29 相连,电阻 R1 和 C1 与芯片内部电路组合提供时钟脉冲振荡源,从 40 脚可以用示波器测量出该振荡波形,该脚对应 实验仪上示波器接口 CLK,时钟频率的快慢决定了芯片的转换时间(因为测量周期总保持 4000 个 Tcp 不变)以及测量的精度。
基于ICL7107器件的量程自切换数字电压表的设计
封面中文摘要随着科学技术的发展,数字电压表的种类越来越多,功能越来越丰富,当然应用的领域也越来越广泛,给人们的工作和生活带来许多方便。
本文主要介绍的是基于ICL7107数字电压表的设计的设计, ICL7107是目前广泛应用于数字测量系统的一种31/2位A/D转换器,能够直接驱动共阳极数字显示器,够成数字电压表,此电路简洁完整,稍加改造就可以够成其他电路,如数字电子秤、数字温度计的等专门传感器的测量工具。
它采用的是双积分原理完成A/D转换,全部转换电路用CMOS大规模集成电路设计。
应用了ICL7107芯片数码管显示器等,芯片第一脚是供电,正确电压时DC5V,连接好电源把所需要测量的物品连接在表的两个端口,从而可以在显示器上看到所需要的结果。
目录第一章绪论........................................ 错误!未定义书签。
1.1 数字电压表的概术 (3)1.2 数字电压表的结构 (3)1.3 数字电压表应用领域 (4)1.4设计目的 (4)第二章课程设计方案、要求、任务实验原理 ........... 错误!未定义书签。
2.1方案选择..................................... 错误!未定义书签。
2.2 系统方框图................................. 错误!未定义书签。
2.3设计要求..................................... 错误!未定义书签。
2.4设计任务..................................... 错误!未定义书签。
2.5实验原理..................................... 错误!未定义书签。
第三章课程设计框图及工作原理 ...................... 错误!未定义书签。
3.1工作原理..................................... 错误!未定义书签。
最新7107的设计应用
电路扩展 满量程2V电压表
积分电阻改为470KΩ 调零电容改为0.047μF
4.比例读数:把 31 脚与 36 脚短路,就是把基准电压作为信号输入到芯片的 信号端,这时候,数码管显示通常在 99.7 - 100.3 之间,越接近 100.0 越好。 这个测试是看看芯片的比例读数转换情况,与基准电压具体是多少 mV 无关, 也无法在外部进行调整这个读数。如果差的太多,就需要更换芯片了。
(二)ICL7107应用——数字电压表
满量程200mV数字电压表
ICL7107与数码管接法
第一个数码管(小数和个位): a1~g1分别接7107的A1~G1(小数位) a2~g2分别接7107的A2~G2(个位) DP2接7107的GND(小数点)
第二个数码管(十位、百位和负号) a1~g1分别接7107的A3~G3(十位) a2、c2接7107的AB4(百位1) g2接7107的POL(负号)
7107的设计应用
(一)ICL7107的介绍
ICL7107是高性能、低功耗的三位半A/D转换电路,包含七段译码 器、显示驱动器、参考源和时钟系统。可以直接驱动LED数码管,是一 块应用非常广泛的集成电路。
ICL7107将高精度、通用性和真正的低成本很好地结合在一起,它 有低于10μV的自动校零功能,零漂小于1μV/oC,低于10pA的输入电流 ,极性转换误差小于一个字。
双位共阳数码管引脚图
负电压产生电路 1.模拟方法 2.利用ICL7660电路得到
利用ICL使用瓷片电容,尽量采用聚丙烯电容。
2.电源地、模拟地、信号地和基准地,通常情况下都接地。
3. 利用一个电位器和指针万用表的电阻 X1 档,我们可以分别调整 50mV,100mV,190 mV 三种电压来,把它们依次输入到 ICL7107 的第 31 脚, 数码管应该对应分别显示 50.0,100.0,190.0 的数值,允许有 2 -3 个字的误差。 如果差别太大,可以微调一下 36 脚的电压。
ICL7107数字电压表几种常用应用技术电路
ICL7107数字电压表的几种常用的应用电路上传者:jackwang浏览次数:1188数字电压表(数字面板表)是当前电子、电工、仪器、仪表和测量领域大量使用的一种基本测量工具有关数字电压表的书籍和应用已经非常普及了。
这里展示的一份由ICL7106 A/D 转换电路组成的数字电压表(数字面板表)电路,就是一款最通用和最基本的电路。
与ICL7106 相似的是ICL7107 ,前者使用LCD 液晶显示,后者则是驱动LED 数码管作为显示,除此之外,两者的应用基本是相通的。
电路图中,仅仅使用一只DC9V 电池,数字电压表就可以正常使用了。
按照图示的元器件数值,该表头量程范围是±200.0mV。
当需要测量±200mV 的电压时,信号从V-IN 端输入,当需要测量±200mA 的电流时,信号从A-IN 端输入,不需要加接任何转换开关,就可以得到两种测量内容。
也有许多场合,希望数字电压表(数字面板表)的量程大一些,那么,只需要更改2 只元器件的数值,就可以实现量程为±2.000V 了。
更改的元器件具体位置和数值见下图的28 和29 两只引脚:在有了一只数字电压表(数字面板表)之后,按照下面的图示,给它配置一组分流电阻,就可以实现多量程数字电流表,分档从±200uA 到±20A 。
但是要注意:在使用20A 大电流档的时候,不能再有开关来切换量程,应该专门配置一只测量插孔,以防烧毁切换开关。
与多量程电流表对应的是经常需要使用多量程电压表,按照下图配置一组分压电阻,就可以得到量程从±200.0mV 至±1000V 的多量程电压表。
测量电阻与测量电流或者电压一样重要,俗称“三用表”,利用数字电压表做成的多量程电阻表,采用的是“比例法”测量,因此,它比起指针万用表的电阻测量来具有非常准确的精度,而且耗电很小,下图示中所配置的一组电阻就叫“基准电阻”,就是通过切换各个接点得到不同的基准电阻值,再由Vref 电压与被测电阻上得到的Vin 电压进行“比例读数”,当Vref =Vin 时,显示就是Vin/Vref*1000=1000 ,按照需要点亮屏幕上的小数点,就可以直接读出被测电阻的阻值来了。
数字电压表电路ICL7107
数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。
(1 脚与 40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。
第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。
比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20 K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
这样,在三极管的“C”极有放大的交流信号,把这个信号通过 2 只 4u7 电容和 2 支 1N4148 二极管,构成倍压整流电路,可以得到负电压供给 ICL7107 的 26 脚使用。
这个电压,最好是在-3.2V 到-4.2V 之间。
6.如果上面的所有连接和电压数值都是正常的,也没有“短路”或者“开路”故障,那么,电路就应该可以正常工作了。
利用一个电位器和指针万用表的电阻 X1 档,我们可以分别调整出 50mV,100mV,190 mV 三种电压来,把它们依次输入到 ICL7107 的第 31 脚,数码管应该对应分别显示 50.0,100.0,190.0 的数值,允许有 2 -3 个字的误差。
如果差别太大,可以微调一下 36 脚的电压。
7.比例读数:把 31 脚与 36 脚短路,就是把基准电压作为信号输入到芯片的信号端,这时候,数码管显示的数值最好是 100.0 ,通常在 99.7 - 100.3 之间,越接近 100.0 越好。
这个测试是看看芯片的比例读数转换情况,与基准电压具体是多少 mV 无关,也无法在外部进行调整这个读数。
如果差的太多,就需要更换芯片了。
8.ICL7107 也经常使用在±1.999V 量程,这时候,芯片 27,28,29 引脚的元件数值,更换为 0.22uF,470K,0.047uF 阻容网络,并且把 36 脚基准调整到 1.000V 就可以使用在±1. 999V 量程了。
9.这种数字电压表头,被广泛应用在许多测量场合,它是进行模拟-数字转换的最基本,最简单而又最低价位的一个方法,是作为数字化测量的一种最基本的技能。
ICL7107是一块应用非常广泛的集成电路。
它包含3 1/2位数字A/D转换器,可直接驱动L ED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。
这里我们介绍一种她的典型应用电路--数字电压表的制作。
其电路如附图。
制作时,数字显示用的数码管为共阳型,2K可调电阻最好选用多圈电阻,分压电阻选用误差较小的金属膜电阻,其它器件选用正品即可。
该电路稍加改造,还可演变出很多电路,如数显电流表、数显温度计等。