光磁共振实验原理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的吸收和自发跃迁如图所示。
图1光抽运原理示意图
抽运现象开始一小段时间里,样品中大量铷原子吸收794.8nm的+共振光能量后,按照△mF=+1的规则跃迁到8个激发中的某一个态上去,致使穿出样品的光强度急剧减弱。但处在激发态的原子经过一定时间后会自发辐射发出光子而再回到基态,因而抽运发生时经过短暂的时间后从样品出射的光强会逐渐增加。抽运达到饱和时,样品停止吸收光能量(因为几乎全部样品原子都到达了mF=+2的基态,这个状态的原子不能吸收光源发出的光子而跃迁到激发态),这时由样品出射的光强度达到最大,记录从样品出射的光强随时间变化的情况就形成了光抽运信号。特别注意,当外加磁场消失后,能级分裂消失,偏极化也随之消失。如果所加外磁场使样品铷原子感受到的磁场方向不变且不为0,那么出射光强只在刚开始出现急剧减弱,短时间后将逐渐增强到光源的光强而不再减弱。因此只有使样品原子气体处在周期外磁场中时,抽运信号才会周期出现,只有周期出现也才能被观察到。
光磁共振实验原理
一.实验目的
1.掌握光抽运—磁共振的原理和实验方法。
2.研究原子超精细结构塞曼子能级间的磁共振。
3.测定铷同位素87Rb和85Rb的gF因子。
4.测定地磁场。
二.实验原理
光抽运或称光泵技术巧妙地将光抽运,磁共振和光探测技术综合起来,用以研究汽态原子的精细和超精细结构。克服了用普通的方法对气态样品观测时,共振信号非常微弱的困难。用这个方法可以使磁共振分辨率提高到 。实验是以天然37号元素铷(87Rb和85Rb)为样品,核外电子状态为1s22s22p63s23p63d104s24p65s1,研究碱金属铷原子的基态52S1/2磁共振。
其中F为原子的总角动量量子数,S为外层电子自旋角动量量子数,L为外层电子轨道角动量量子数,J为核外外层电子轨道角动量L与电子自旋角动量S耦合L+S的量子数,原子感受到的外磁场B可以分解为水平磁场B∥和垂直磁场B┴,水平磁场B∥包括地磁场BE、水平磁场Bh、水平扫描磁场Bs、垂直磁场Bv,即
B┴=Bv+BE┴,B源自文库=Bh+Bs+BE∥,
原子能级的超精细结构是原子的核磁矩和电子磁矩的耦合作用而形成的。当原子处于弱磁场B中时,原子的总磁矩和外磁场发生作用,造成能级分裂形成等间距的塞曼子能级,其能量为(B=9.274×10-24Joule/特斯拉,真空磁导率0=4×10-7Second*Volt/(Ampere*Meter)):
(1)
(2)
加外磁场使原子能级分裂,光照使原子从基态跃迁激发态,特别是从52S1/2态向52P1/2态跃迁,跃迁过程吸收光子因而检测到的光信号微弱,当偏极化饱和时跃迁吸收停止,检测到的光信号又增强到光源的光强。
1.铷(Rb)原子能级的超精细结构和塞曼分裂
铷的两种同位数87Rb和85Rb的核自旋量子数I分别是3/2和5/2。
如果选择垂直场电流方向和电流大小,使外加垂直磁场正好抵消地磁场垂直分量,即-Bv+BE┴=0,则铷原子感受到的外磁场只有水平分量B∥=Bh+Bs+BE∥,由于磁场存在形成的相邻塞曼能级能量差为(最小可取△mF=1):
E=△mFgFBB=△mFgFB(Bh+Bs+BE∥)(3)
原子状态可用2S+1XJ表示,而且,当L={0,1,2,3…}时,X={S,P,D,F…}.铷原子的基态为52S1/2,即L=0,S=1/2,J=1/2。
2.光抽运效应
若以波长为794.8nm的+(左旋圆偏振)光照射87Rb时,52S1/2态的原子会产生共振吸收而跃迁到52P1/2,因为跃迁服从△F=0,±1和△mF=0,±1的选择定则,又因为照射样品的光是+共振(左旋圆偏振)光,所以△mF只能为+1,因而52S1/2态中除mF=2之外的7个子能级的原子都以相同的几率向上跃迁到52P1/2态的8个子能级中。而因mF=2的原子未参与跃迁,所以mF=2的基态上的原子数目未减少。当52P1/2态的原子发生自发或受激辐射而返回52S1/2时,仍服从△F=0,±1和△mF=0,±1的定则,52S1/2的mF=2子能级的原子数又会增加。经过这样一轮循环,mF=2基态上的原子数量便增加了。这样持续进行下去达到一个平衡,mF=2基态上的原子数量便会显著的增加。这种现象称作样品的“偏极化”,就是光泵(抽运)效应。
抽运信号最强时,样品原子感受到的只有周期变化的水平方向上的(无直流成份的)方波扫描磁场,即总垂直磁场为0,外加水平磁场与地磁水平分量将水平扫场调整为正负对称的无直流方波。如果外加(水平和垂直)磁场的方向和大小没有调到这种程度,抽运信号不会出现,即使出现也很微弱。根据这一原理,观测抽运现象时,必须使外加水平磁场的方向与地磁水平分量方向相反,而且记下抽运信号最强时的水平磁场和垂直磁场电流,可以用
(4)
计算垂直分量,并初步估算地磁水平分量,其中,N是亥姆霍兹线圈的圈数,I是流入线圈单根导线中的电流,以安培为单位,r是两线圈间的距离,也是线圈半径,B的单位是特斯拉。1特斯拉=1万高斯=1百万微特斯拉=10亿纳特斯拉=10亿伽玛。
3.弛豫过程
样品铷原子气体处于偏极化状态时,由于原子间相互非弹性碰撞或原子与容器壁的非弹性碰撞将失去量值为gFB(Bh+Bs+BE∥)的能量,结果样品铷原子气体将重新趋向于热平衡状态(即8个基态上都有一定的原子数,而不仅仅是mF=+2的基态上才有大量原子),这个过程叫“弛豫过程”。为减少弛豫过程的影响,应增大光源的光强度,并选择合适的样品原子气体温度,以及在样器泡内充以隋性气体以减少铷原子之间的碰撞。
87Rb的F=2和1,mF=2,1,0,-1,-2。85Rb的F=3和2,mF=3,2,1,0,-1,-2,-3。
最低激发态为52P1/2和52P3/2双重态。考虑52P1/2,即L=1,S=1/2,J=1/2。87Rb的52P1/2到52S1/2的跃迁产生794.8nm的D1线(能量差为0.2486eV),52P3/2到52S1/2的跃迁产生780nm的D2线(能量差为0.2533 eV)。52P3/2比52P1/2的能量高了0.0047eV.
图1光抽运原理示意图
抽运现象开始一小段时间里,样品中大量铷原子吸收794.8nm的+共振光能量后,按照△mF=+1的规则跃迁到8个激发中的某一个态上去,致使穿出样品的光强度急剧减弱。但处在激发态的原子经过一定时间后会自发辐射发出光子而再回到基态,因而抽运发生时经过短暂的时间后从样品出射的光强会逐渐增加。抽运达到饱和时,样品停止吸收光能量(因为几乎全部样品原子都到达了mF=+2的基态,这个状态的原子不能吸收光源发出的光子而跃迁到激发态),这时由样品出射的光强度达到最大,记录从样品出射的光强随时间变化的情况就形成了光抽运信号。特别注意,当外加磁场消失后,能级分裂消失,偏极化也随之消失。如果所加外磁场使样品铷原子感受到的磁场方向不变且不为0,那么出射光强只在刚开始出现急剧减弱,短时间后将逐渐增强到光源的光强而不再减弱。因此只有使样品原子气体处在周期外磁场中时,抽运信号才会周期出现,只有周期出现也才能被观察到。
光磁共振实验原理
一.实验目的
1.掌握光抽运—磁共振的原理和实验方法。
2.研究原子超精细结构塞曼子能级间的磁共振。
3.测定铷同位素87Rb和85Rb的gF因子。
4.测定地磁场。
二.实验原理
光抽运或称光泵技术巧妙地将光抽运,磁共振和光探测技术综合起来,用以研究汽态原子的精细和超精细结构。克服了用普通的方法对气态样品观测时,共振信号非常微弱的困难。用这个方法可以使磁共振分辨率提高到 。实验是以天然37号元素铷(87Rb和85Rb)为样品,核外电子状态为1s22s22p63s23p63d104s24p65s1,研究碱金属铷原子的基态52S1/2磁共振。
其中F为原子的总角动量量子数,S为外层电子自旋角动量量子数,L为外层电子轨道角动量量子数,J为核外外层电子轨道角动量L与电子自旋角动量S耦合L+S的量子数,原子感受到的外磁场B可以分解为水平磁场B∥和垂直磁场B┴,水平磁场B∥包括地磁场BE、水平磁场Bh、水平扫描磁场Bs、垂直磁场Bv,即
B┴=Bv+BE┴,B源自文库=Bh+Bs+BE∥,
原子能级的超精细结构是原子的核磁矩和电子磁矩的耦合作用而形成的。当原子处于弱磁场B中时,原子的总磁矩和外磁场发生作用,造成能级分裂形成等间距的塞曼子能级,其能量为(B=9.274×10-24Joule/特斯拉,真空磁导率0=4×10-7Second*Volt/(Ampere*Meter)):
(1)
(2)
加外磁场使原子能级分裂,光照使原子从基态跃迁激发态,特别是从52S1/2态向52P1/2态跃迁,跃迁过程吸收光子因而检测到的光信号微弱,当偏极化饱和时跃迁吸收停止,检测到的光信号又增强到光源的光强。
1.铷(Rb)原子能级的超精细结构和塞曼分裂
铷的两种同位数87Rb和85Rb的核自旋量子数I分别是3/2和5/2。
如果选择垂直场电流方向和电流大小,使外加垂直磁场正好抵消地磁场垂直分量,即-Bv+BE┴=0,则铷原子感受到的外磁场只有水平分量B∥=Bh+Bs+BE∥,由于磁场存在形成的相邻塞曼能级能量差为(最小可取△mF=1):
E=△mFgFBB=△mFgFB(Bh+Bs+BE∥)(3)
原子状态可用2S+1XJ表示,而且,当L={0,1,2,3…}时,X={S,P,D,F…}.铷原子的基态为52S1/2,即L=0,S=1/2,J=1/2。
2.光抽运效应
若以波长为794.8nm的+(左旋圆偏振)光照射87Rb时,52S1/2态的原子会产生共振吸收而跃迁到52P1/2,因为跃迁服从△F=0,±1和△mF=0,±1的选择定则,又因为照射样品的光是+共振(左旋圆偏振)光,所以△mF只能为+1,因而52S1/2态中除mF=2之外的7个子能级的原子都以相同的几率向上跃迁到52P1/2态的8个子能级中。而因mF=2的原子未参与跃迁,所以mF=2的基态上的原子数目未减少。当52P1/2态的原子发生自发或受激辐射而返回52S1/2时,仍服从△F=0,±1和△mF=0,±1的定则,52S1/2的mF=2子能级的原子数又会增加。经过这样一轮循环,mF=2基态上的原子数量便增加了。这样持续进行下去达到一个平衡,mF=2基态上的原子数量便会显著的增加。这种现象称作样品的“偏极化”,就是光泵(抽运)效应。
抽运信号最强时,样品原子感受到的只有周期变化的水平方向上的(无直流成份的)方波扫描磁场,即总垂直磁场为0,外加水平磁场与地磁水平分量将水平扫场调整为正负对称的无直流方波。如果外加(水平和垂直)磁场的方向和大小没有调到这种程度,抽运信号不会出现,即使出现也很微弱。根据这一原理,观测抽运现象时,必须使外加水平磁场的方向与地磁水平分量方向相反,而且记下抽运信号最强时的水平磁场和垂直磁场电流,可以用
(4)
计算垂直分量,并初步估算地磁水平分量,其中,N是亥姆霍兹线圈的圈数,I是流入线圈单根导线中的电流,以安培为单位,r是两线圈间的距离,也是线圈半径,B的单位是特斯拉。1特斯拉=1万高斯=1百万微特斯拉=10亿纳特斯拉=10亿伽玛。
3.弛豫过程
样品铷原子气体处于偏极化状态时,由于原子间相互非弹性碰撞或原子与容器壁的非弹性碰撞将失去量值为gFB(Bh+Bs+BE∥)的能量,结果样品铷原子气体将重新趋向于热平衡状态(即8个基态上都有一定的原子数,而不仅仅是mF=+2的基态上才有大量原子),这个过程叫“弛豫过程”。为减少弛豫过程的影响,应增大光源的光强度,并选择合适的样品原子气体温度,以及在样器泡内充以隋性气体以减少铷原子之间的碰撞。
87Rb的F=2和1,mF=2,1,0,-1,-2。85Rb的F=3和2,mF=3,2,1,0,-1,-2,-3。
最低激发态为52P1/2和52P3/2双重态。考虑52P1/2,即L=1,S=1/2,J=1/2。87Rb的52P1/2到52S1/2的跃迁产生794.8nm的D1线(能量差为0.2486eV),52P3/2到52S1/2的跃迁产生780nm的D2线(能量差为0.2533 eV)。52P3/2比52P1/2的能量高了0.0047eV.