线性代数上机作业题答案

线性代数上机作业题答案
线性代数上机作业题答案

线性代数机算与应用作业题

学号: 姓名: 成绩: 一、机算题

1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T

AB ,T

T

B A 和()

100

AB

(3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1

A -和1

B - (5)计算矩阵A 和矩阵B 的秩。 解 输入:

A=round(rand(5)*10)

B=round(rand(5)*10) 结果为:

A =

2 4 1 6

3 2 2 3 7

4 4 9 4 2

5 3 10

6 1 1 9 4 3 3 3

B =

8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3

(1)输入:

A+B 结果为:

ans=

10 10 6 10 12

2 4 5 11 12

13 14 9 12 6

10 20 12 1 4

14 9 10 12 6

输入:

A-B

结果为:

ans =

-6 -2 -4 2 -6

2 0 1

3 -4

-5 4 -1 -8 4

-4 0 0 1 -2

4 -1 -4 -6 0

输入:

6*A

结果为:

ans =

12 24 6 36 18

12 12 18 42 24

24 54 24 12 30

18 60 36 6 6

54 24 18 18 18 (2)输入:

(A*B)'

结果为:

ans =

82 112 107 90 135

100 121 107 83 122

80 99 105 78 107

61 82 137 121 109

78 70 133 119 134

输入:

B'*A'

结果为:

ans =

82 112 107 90 135

100 121 107 83 122

80 99 105 78 107

61 82 137 121 109

78 70 133 119 134

输入:

(A*B)^100

结果为:

ans =

1.0e+270 *

1.6293 1.6526 1.4494 1.5620 1.6399

1.9374 1.9651 1.7234 1.8573 1.9499

2.4156 2.4501 2.1488 2.3158 2.4313

2.0137 2.0425 1.7913 1.9305 2.0268

2.4655 2.5008 2.1932 2.3636 2.4815 (3)输入:

D=det(A)

结果为:

D =

5121

输入:

D=det(B)

结果为:

D =

-9688

输入:

D=det(A*B)

结果为:

D =

-49612248

(4)输入:

inv(A)

结果为:

ans =

0.0217 -0.0662 -0.0445 -0.0135 0.1453

0.1845 -0.1582 0.0264 0.0475 -0.0334

-0.3199 0.2742 -0.0457 0.1178 -0.0088

0.1707 0.0283 -0.1343 0.0471 -0.0002

-0.1619 0.1070 0.2785 -0.1877 -0.0490 输入:

inv(B)

结果为:

ans =

0.1726 -0.1560 0.0357 -0.0667 -0.0471

-0.2642 0.2693 0.1786 0.2157 -0.2007

0.1982 -0.2957 -0.3214 -0.0993 0.4005

-0.1305 0.1478 0.1429 0.0050 -0.0553

0.0818 0.0577 -0.0357 -0.0316 -0.0223 (5)输入:

rank(A)

结果为:

ans =

5

输入:

rank(B)

结果为:

ans =

5 2.求解下列方程组

(1)求非齐次线性方程组

1234

1234

1234

1234

2245 14171278

77665

2921710

x x x x

x x x x

x x x x

x x x x

+++=

?

?-+-+=

?

?

+++=

?

?--+-=

?

的唯一解。

(2)求非齐次线性方程组

12345

12345

12345

12345

597284 422825239

8881

266977

x x x x x

x x x x x

x x x x x

x x x x x

++++=

?

?++++=

?

?

++++=

?

?++++=

?

的通解。

解(1)输入:

A=[2,1,2,4;-14,17,-12,7;7,7,6,6;-2,-9,21,-7];

b=[5;8;5;10];

x=A\b

结果为:

x =

-0.8341

-0.2525

0.7417

1.3593

(2)输入:

A=[5,9,7,2,8;4,22,8,25,23;1,8,1,8,8;2,6,6,9,7];

b=[4;9;1;7];

[R,s]=rref([A,b]);

[m,n]=size(A);

x0=zeros(n,1);

r=length(s);

x0(s,:)=R(1:r,end);

x0

x=null(A,'r')

结果为:

x0 =

-1.6635

0.1346

1.5865

x =

4.1827 0.8558

-1.3269 -1.0577

-1.5673 -0.3942

1.0000 0

0 1.0000

所以方程组的通解为

x=k1[4.1827,-1.3269,-1.5673,1.0000,0]’+k2[0.8558,-1.0577,-0.3942,0,1.0000]’+[ -1.6635,0.1346,1.5862,0,0]

3.已知向量组

13 4 0 8 3

α

??

??

??

??

=

??

??

??

??

2

1

1

2

2

α

??

??

??

??

=

??

??

??

??

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

=

1

6

3

2

3

α,

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

=

2

1

2

3

9

4

α,

5

8

2

21

10

α

??

??

??

??

=-

??

??

??

??

,求出它的最大

无关组,并用该最大无关组来线性表示其它向量。解输入:

a1=[3;4;0;8;3];

a2=[1;1;0;2;2];

a3=[2;3;0;6;1];

a4=[9;3;2;1;2];

a5=[0;8;-2;21;10];

A=[a1,a2,a3,a4,a5];

rref(A)

结果为:

ans =

1 0 1 0 2

0 1 -1 0 3

0 0 0 1 -1

0 0 0 0 0

0 0 0 0 0

即最大无关组为a1、a2、a4

a3=a1-a2

a5=2a1+3a2-a3

4.求下列矩阵的特征值和特征向量,并判断其正定性。

(1)

123

256

3625

A

??

??

=??

??

??

;(2)

2031

3106

1622

B

-??

??

=--

??

??

--

??

解(1)输入:

A=[1,2,3;2,5,6;3,6,25];

[V,D]=eig(A)

结果为:

V =

0.9357 0.3279 0.1303

-0.3518 0.8961 0.2706

-0.0280 -0.2990 0.9538

D =

0.1582 0 0

0 3.7297 0

0 0 27.1121

输入:

lamda_A=eig(A)

结果为:

lamda_A =

0.1582 3.7297

27.1121 即矩阵A 正定

(2)输入:

B=[-20,3,1;3,-10,-6;1,-6,-22];

[V ,D]=eig(B) 结果为: V =

-0.3810 0.9059 0.1850 0.4005 -0.0186 0.9161

0.8334 0.4231 -0.3557 D =

-25.3404 0 0

0 -19.5947 0 0 0 -7.0649 输入: lamda_B=eig(B)

结果为: lamda_B =

-25.3404 -19.5947 -7.0649 即矩阵B 负定

5. 用正交变换法将下列二次型化为标准形。

()222123123112213323,,23f x x x x x x k x x k x x k x x =+++++

其中“123k k k ”为自己学号的后三位。

解 输入:

A=[1,0,2;0,2,1.5;2,1.5,3]; [V,a]=eig(A) 结果为: V =

0.7488 0.5139 0.4186 0.3389 -0.8396 0.4246 -0.5696 0.1761 0.8028

a =

-0.5214 0 0 0 1.6854 0 0 0 4.8361

即标准型为f=-0.5214y1^2+1.6854y2^2+4.8361y3^2

二、应用题

1.在某网格图中,每一个节点的值与其相邻的上、下、左、右四个节点的值有如下关系:

T k T k T k T k T =+++下下左左右右上上,其中系数0.3k 上=;0.2k 下=;0.4k 左=;0.3k 右=。

如图所示,如:13040T k k T k k T =?++?+下32左右上。请计算该网格节点1,2,3,4的值(计算结果按四舍五入保留小数点后1位)。

2030404020C C

C C

C C

解 输入:

A=[1,-0.3,-0.2,0;-0.4,1,0,-0.2;-0.3,0,1,-0.3;0,-0.3,-0.4,1];

b=[25;15;18;8]; U=rref([A,b]) 结果为:

U =

1.0000 0 0 0 45.8452

0 1.0000 0 0 40.8267

0 0 1.0000 0 42.9863

0 0 0 1.0000 37.4426

即T1=45.8℃,T2=40.8℃,T3=43.0℃,T4=37.4℃

2.假设一个城市的总人口数固定不变,但人口的分布情况变化如下:每年都有12%的市区居民搬到郊区;而有10%的郊区居民搬到市区。若开始有800000人口居住在市区,200000人口居住在郊区。那么,20年后市区和郊区的人口数各是多少?

解输入:

A=[0.88,0.1;0.12,0.9];

X0=[800000;200000];

X20=A^20*X0

结果为:

X20 =

1.0e+005 *

4.5695

5.4305

即20年后市区和郊区人口数约为456950和543050.

3.一个混凝土生产企业可以生产出三种不同型号的混凝土,它们的具体配方比例如表1所示。

表1混凝土的配方

现在有一个用户要求混凝土中含水、水泥、砂、石子及灰的比例分别为:24,52,73,133,12。那么,能否用这三种型号混凝土配出满足用户要求的混凝土?如果需要这种混凝土520吨,问三种混凝土各需要多少?

解输入:

u1=[10;22;32;53;0];

u2=[10;26;31;64;5];

u3=[10;18;29;50;8];

v=[24;52;73;133;12];

U=[u1,u2,u3,v]; [U0,r]=rref(U) 结果为: U0 =

1.0000 0 0 0.6000 0 1.0000 0 0.8000 0 0 1.0000 1.0000 0 0 0 0 0 0 0 0

r =

1 2 3

即能用这三种型号混凝土配出满足用户要求的混凝土。

且520吨水泥需要1号130吨,2号173吨,3号217吨。

4.某城市有如下图所示的交通图,每一条道路都是单行道,图中数字表示某一个时段该路段的车流量。若针对每一个十字路口(节点),进入和离开的车辆数相等。请计算每两个相邻十字路口间路段上的交通流量()1,2,,4i x i = 。

解 输入:

A=[1,-1,0,0;0,1,-1,0;0,0,1,-1;-1,0,0,1]; b=[-100;72;37;-9]; U=rref([A,b]) 结果为: U =

1 0 0 -1 9 0 1 0 -1 109 0 0 1 -1 37 0 0 0 0 0

即x1=x4+9 x2=x4+109 x3=x4+37

(完整版)数值线性代数答案

习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到内存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。

[解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下面我们只需证明它是Gauss 变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。 [证明]设,其中都是单位下三角阵,都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单 位下三角阵与一个上三角阵相等,故此,它们都必是单位矩阵。即, 从而

即A的LU分解是唯一的。 17.证明定理1·3·1中的下三角阵L是唯一的。 [证明] 因A是正定对称矩阵,故其各阶主子式均非零,因此A非奇异。为证明L的唯一性,不妨设有和使 那么 注意到:和是下三角阵,和为上三角阵,故它们的逆矩阵也分别是下三角阵和上三角阵。因此,只能是对角阵,即 从而 于是得知 19.若是A的Cholesky分解,试证L的i阶顺序主子阵正好是A的i阶顺序主子阵的Cholesky因子。 [证明] 将A和L作如下分块 其中:为矩阵A和L的i阶顺序主子阵。。显然

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符 号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 5 1122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式10 2 3 25403--中元素-2的代数余子式是 —11 。 5.行列式25 11 22 14--x 中,x 的代数余子式是 — 5 。 6.计算00000d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组 ?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 04 21 911 7018904 2 1 351 1321 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81 1 11021 29 42311-=-=D 108 1 103229543112-==D 135 10 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是:

数值线性代数第二版徐树方高立张平文上机习题第一章实验报告(供参考)

上机习题 1.先用你所熟悉的的计算机语言将不选主元和列主元Gauss 消去法编写成通用的子程序;然后用你编写的程序求解84阶方程组;最后将你的计算结果与方程的精确解进行比较,并就此谈谈你对Gauss 消去法的看法。 Sol : (1)先用matlab 将不选主元和列主元Gauss 消去法编写成通用的子程序,得到P U L ,,: 不选主元Gauss 消去法:[])(,A GaussLA U L =得到U L ,满足LU A = 列主元Gauss 消去法:[])(,,A GaussCol P U L =得到P U L ,,满足LU PA = (2)用前代法解()Pb or b Ly =,得y 用回代法解y Ux =,得x 求解程序为()P U L b A Gauss x ,,,,=(P 可缺省,缺省时默认为单位矩阵) (3)计算脚本为ex1_1 代码 %算法(计算三角分解:Gauss 消去法) function [L,U]=GaussLA(A) n=length(A); for k=1:n-1 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end

U=triu(A); L=tril(A); L=L-diag(diag(L))+diag(ones(1,n)); end %算法计算列主元三角分解:列主元Gauss消去法) function [L,U,P]=GaussCol(A) n=length(A); for k=1:n-1 [s,t]=max(abs(A(k:n,k))); p=t+k-1; temp=A(k,1:n); A(k,1:n)=A(p,1:n); A(p,1:n)=temp; u(k)=p; if A(k,k)~=0 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); else break; end end L=tril(A);U=triu(A);L=L-diag(diag(L))+diag(ones(1,n));

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

《线性代数(一)》2011年下半年第一次

《线性代数(一)》2011年下半年第一次作业 一.填空题(4x6=24分) 1.计算3阶行列式 2 311273 8 2 -=- 。 2.已知排列1r46s97t3为奇排列,则r ,s ,t 的取值分别为 。 3.用行列式的性质计算:=++ +1 11 c b a b a c a c b 。 4.设A 为3阶方阵,而且 9A =-, 则 = A A T ; * A A = ; = * * ) (A ; 1 * 4A A --= . (注:* A 为A 的伴随矩阵.) 5.设11140012 5A B ???? == ? ????? ,, 则 = AB ; T B A = ;= 2 A ;n A = 。 6. 设 2 ()53p t t t =-+与矩阵3 162A -??= ?-?? ,则2 2()53p A A A I =-+= 。 二.选择题(4x9=36分) 1. 120 2 1 k k -≠-的充分必要条件是( )。 A 、1k ≠- B 、3k ≠ C 、31k k ≠≠-且 D 、31k k ≠≠-或 2、如果11 1213 21 222331 32 33 1a a a D a a a a a a ==,1D =1131 1232 1333 31323321 22 23 441631228652015a a a a a a a a a a a a +--+---,那么 1D =()。 A 、80 B 、-120 C 、120 D 、60 3.如果30 40 50x ky z y z kx y z +-=?? +=??--=? 有非零解,则() A 、01k k ==或 B 、01k k ==-或 C 、11k k ==-或 D 、31k k =-=-或

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

数值线性代数北大版问题详解全

数值线性代数习题解答 习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 2.设为两个上三角矩阵,而且线性方程组 是非奇异的,试给出一种运算量为的算法,求解该方程组。 [解]因,故为求解线性方程组 ,可先求得上三角矩阵T的逆矩阵,依照上题的思想我们很容易得到计算的算法。于是对该问题我们有如下解题的步骤:(1)计算上三角矩阵T的逆矩阵,算法如下: 算法1(求解上三角矩阵的逆矩阵,回代法。该算法的的运算量为)

(2)计算上三角矩阵。运算量大约为. (3)用回代法求解方程组:.运算量为; (4)用回代法求解方程组:运算量为。 算法总运算量大约为: 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。 [解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下 面我们只需证明它是Gauss变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有 功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。

[证明]设,其中都是单位下三角阵, 都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单位下三角阵与一个上三角阵相等, 故此,它们都必是单位矩阵。即,从而 即A的LU分解是唯一的。 6.设的定义如下 证明A有满足的三角分解。 [证明]令是单位下三角阵,是上三角阵。定义如下 容易验证: 7.设A对称且,并假定经过一步Gauss消去之后,A具有如下形式 证明仍是对称阵。 [证明] 根据Gauss变换的属性,显然做矩阵A的LU分解的第一步中的Gauss变换为

2013年春-西南大学《线性代数》作业及答案

2013年春 西南大学《线性代数》作业及答案(共5次,已整理) 第一次作业 【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。 【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1 【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11 【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1 【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5 【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1 【单选题】6. 6.排列3721456的逆序数是:C:8 【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29 【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15 【论述题】行列式部分主观题 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式25 1 122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式1 02325 4 3 --中元素-2的代数余子式是 —11 。

线性代数课后习题1答案(谭琼华版)

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1) ; 21-1 2 解:;5)1(1222 1-12=-?-?= (2) ;1 1 12 2 ++-x x x x 解: ; 1)1)(1(11 1232222--=-++-=++-x x x x x x x x x x (3) ;22b a b a 解: ;222 2ba ab b a b a -= (4) ;5 984131 11 解: ;59415318119318415115 984131 11=??-??-??-??+??+??= (5) ;0 00 00d c b a 解: ;00000000000000 00=??-??-??-??+??+??=d c b a d b c a d c b a (6) .132213321 解: .183211322133332221111 322133 21=??-??-??-??+??+??=

2.求下列排列的逆序数: (1)34215; 解:3在首位,前面没有比它大的数,逆序数为0;4的前面没有比它大的数,逆序数为0;2的前面有2个比它大的数,逆序数为2;1的前面有3个比它大的数,逆序数为3;5的前面没有比它大的数,逆序数为0.因此排列的逆序数为5. (2)4312; 解:4在首位,前面没有比它大的数,逆序数为0;3的前面有1个比它大的数,逆序数为1;1的前面有2个比它大的数,逆序数为2;2的前面有2个比它大的数,逆序数为2.因此排列的逆序数为5. (3)n(n-1)…21; 解:1的前面有n-1个比它大的数,逆序数为n-1;2的前面有n-2个比它大的数,逆序数为n-2;…;n-1的前面有1个比它大的数,逆序数为1;n 的前面没有比它大的数,逆序数为0.因此排列的逆序数为n(n-1)/2. (4)13…(2n-1)(2n) …42. 解:1的前面没有比它大的数,逆序数为0;3的前面没有比它大的数,逆序数为0;…;2n-1的前面没有比它大的数,逆序数为0;2的前面有2n-2个比它大的数,逆序数为2n-2;4的前面有2n-4个比它大的数,逆序数为2n-4;…;2n 的前面有2n-2n 个比它大的数,逆序数为2n-2n.因此排列的逆序数为n(n-1). 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□, 即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: (1) 71100 251020214214 ; 解: 7110025102 021 4214343 27c c c c --0 1 14 23102021 10214 ---= 34)1(14 3 10 2211014 +-?--- =- 14 3 10 2211014 --3 2 1 132c c c c ++- 14 17172 1099 -= 0. (2) ;0111101111011 110 解: 0111101111011 1104342c c c c --0 1 1 1 1 10110111000--=14)1(1 11 101 1 1+-?-- =-1 1 1 101 01 1-- 12c c +-1 2 1111 001-=- 1 2 11-=-3.

线性代数与概率统计全部答案(随堂 作业 模拟)

1.行列式? B.4 2.用行列式的定义计算行列式中展开式,的系数。 B.1,-4 3.设矩阵,求=? B.0 4.齐次线性方程组有非零解,则=?() C.1 5.设,,求=?() D. 6.设,求=?() D. 7.初等变换下求下列矩阵的秩,的秩为?() C.2 1.求齐次线性方程组的基础解系为() A. 2.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是() D.

3.设A,B为随机事件,,,,=?( ) A. 4.设随机变量X的分布列中含有一个未知常数C,已知X的分布列为 ,则C=?( ) B. 5. 44.,且,则=?() B.-3 一.问答题 1.叙述三阶行列式的定义。 1.三阶行列式的定义:对于三元线性方程组使用加减消元法.得到 2.非齐次线性方程组的解的结构是什么? 2.非齐次线性方程组的解的结构:有三种情况,无解.有唯一解.有无穷个解 3.什么叫随机试验?什么叫事件? 3.一般而言,试验是指为了察看某事的结果或某物的性能而从事的某种活动。一个试验具有可重复性、可观察性和不确定性这3个特别就称这样的试验是一个随机试验。每次试验的每一个结果称为基本事件。由

基本事件复合而成的事件称为随机事件(简称事件)。 4.试写出随机变量X的分布函数的定义。 4.设X是随机变量,对任意市属x,事件{X*p^k*q(n-k) 三.计算题 1.已知行列式,写出元素a43的代数余子式A43,并求A43的值.

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110 l x = B . () 00l x =0, ()111 l x = C . () 00l x =1, ()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A .232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案

二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C === ,那么() 3 3C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满 足 ,所以 ()0 f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公 式 . 填空题答案

线性代数习题集(带答案)

______________________________________________________________________________________________________________ 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 0010 0100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 0011 0000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2

6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311 122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7 3 4 11111 3263 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 101 1110 40 3 --= D ,则D 中第四行元的余子式的和为( ).

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

2015年秋西南大学《线性代数》第1次作业

一、填空题(每小题3分,共15分) 1. 若矩阵???? ? ??=20001011k k A 是正定矩阵,则k 满足( k>1 ). 2. A 为3阶方阵, 且2||-=A ,*A 是A 的伴随矩阵, 则=+-|4|*1A A ( -4 ). 3. A 为5×3矩阵, R (A ) = 3, ???? ? ??=300020201B , 则R (AB ) = ( 3 ). 4. 设三阶方阵A 的特征值为1,2,-1,则1 *21-?? ? ??A 的特征值为( -1,-2,1 ). 5. 设,1011???? ??=A 则???? ? ?=10200912009A . 二、单选题(每小题3分,共15分) 1. 已知A 为n 阶方阵,且满足A 2 = 2E , E 为单位阵,则=--1)(E A ( A ). (A)A E + (B)A E - (C)E A - (D) A 2. n 阶方阵A 与对角阵相似的充要条件是 ( C ). (A) A 是实对称阵 (B) A 有n 个互异特征值 (C) A 有n 个线性无关的特征向量 (D) A 的特征向量两两正交 3. 已知线性方程组的系数矩阵A 是54?矩阵,且A 的行向量组线性无关,则下列结论正确的是( C ). (A) A 的列向量组线性无关 (B) 线性方程组的增广矩阵的任意四个列向量线性无关 (C) 线性方程组的增广矩阵的行向量组线性无关

(D) 线性方程组的增广矩阵的列向量组线性无关 4. 矩阵A 与B 相似, 则下列说法不正确的是( B ). (A) R (A ) = R (B ) (B) A = B (C) B A = (D) A 与B 有相同的特征值 5. 如果0λ是n 阶矩阵A 的特征值, 那么必有( A ). (A) 0||0=-E A λ (B) 0||0≠-E A λ (C) 0=-E A 0λ (D) 0≠-E A 0λ 三、判断题(下列叙述正确的打“√”,错误的打“×”,每小题3分,共15分) 1. 设A 、B 为两个不可逆的同阶方阵,则|A | = |B | . ( √ ) 2. 若A 可逆,则A 的伴随矩阵A *也可逆. ( √ ) 3. 若Ax = b (b ≠ 0)有无穷多解,则Ax = 0也有无穷多解. ( √ ) 4. 如果n 维向量组321,,ααα,对于任意一组不全为零的数321,,k k k ,总有0≠++332211αααk k k 成立, 则向量组321,,ααα线性无关. ( √ ) 5. 设A 、B 为同阶方阵,则必有(A + B )(A -B )=A 2-B 2 ( × ) 四、(10分)设4阶方阵A 、B 、C 满足方程1T 1)2(--=-C A B C E ,试求矩阵A , 其中??????? ??---=1000210032102321B , ?????? ? ??=1000210002101021C . 设4阶方阵A 、B 、C 满足方 程 ,试求矩阵A ,其中

线性代数练习题及答案

线性代数期中练习 一、单项选择题。 1. 12 021 k k -≠-的充分必要条件是( )。 (A) 1k ≠- (B) 3k ≠ (C) 1k ≠- 且3k ≠ (D) 1k ≠-或3k ≠ 2.若AB =AC ,当( )时,有B =C 。 (A) A 为n 阶方阵 (B) A 为可逆矩阵 (C) A 为任意矩阵 (D) A 为对称矩阵 3.若三阶行列式M a a a a a a a a a =3332 31 232221 13 1211 ,则=---------33 32 312322 2113 1211222222222a a a a a a a a a ( ) 。 (A) -6M (B) 6M (C) 8M (D) -8M 4.齐次线性方程组123123123 000ax x x x ax x x x x ++=?? ++=??++=?有非零解,则a 应满足( )。 (A) 0a ≠; (B) 0a =; (C) 1a ≠; (D) 1a =. 5.设12,ββ是Ax b =的两个不同的解,12,αα是0=Ax 的基础解系,则Ax b = 的通解是( )。 (A) 11212121()()2c c αααββ+-+ + (B) 11212121 ()()2 c c αααββ+++- (C) 11212121()()2c c αββββ+++- (D) 11212121 ()()2 c c αββββ+-++ 二.填空题。 6.A = (1, 2, 3, 4),B = (1, -1, 3, 5),则A ·B T = 。 7.已知A 、B 为4阶方阵,且A =-2,B =3,则| 5AB | = 。 | ( AB )-1 |= 。 8. 在分块矩阵A=B O O C ?? ??? 中,已知1-B 、1 -C 存在,而O 是零矩阵,则 =-1A 。

江苏理工学院线性代数指导用书答案[完整版]

线性代数指导用书答案 辅导一 练习题: 1. 计算下列二阶行列式 (1)-19 (2)8 (3)-14 (4)-14 2. 计算下列三阶行列式 (1)12 (2)12 (3)-7 (4)1 (5)0 3. 计算下列行列式 (1)24 (2)24 (3)24 (4)24 4. 根据行列式的定义填空 (1)abcde (2)abcde (3)1 (4)()1 1!n n +-(按第一列展开) (5)() (1)2 1!n n n -- (6)() 1 12111n n n a a a a +-- 5. 解线性方程组 (1)31x y =??=-? (2)1223 1 3x x ?=????=?? (3)123x y z =??=??=? (4)123112x x x =??=-??=? 6. 21k =-或 第一次作业: 1. 用对角线法则计算下列行列式 (1)-43 (2)-3 (3)-1 (4)-1 (5)18 (6)5 (7)-8 (8)18 2. 解线性方程组 (1)21x y =-??=? (2)1275x x =-??=? (3)12365 1525x x x ?=?? ? =-?? ? =?? (4)123 112x x x =??=??=?

练习题: 1. 234x =或或 2. (1)6k (2)k (3)15k - (4)3k 3. 计算下列行列式 (1)6123000 (2)1000 (3)2 (4)-63 (5)-3 (6)0 (7)900 (8)1 (9)4x (10)()()3 31x x +- (11)() ()11!2 n n n n +- (12)()2!n n - (13)()1n x x n -+ (14)()()1 11n n --- 第二次作业: 1. 6k - 2. 计算下列行列式 (1)160 (2)1 (3)5 (4)-8 (5)-4 (6)5 3. 计算下列行列式 (1)221n i i =-∑ (2)12n b b b

2019华工作业《线性代数与概率统计》随堂练习

线性代数与概率统计 1.(单选题) 计算? A.; B.; C.; D.. 答题: A. B. C. D. (已提交) 2.(单选题) 行列式? A.3; B.4; C.5; D.6. 答题: A. B. C. D. (已提交) 3.(单选题) 计算行列式. A.12; B.18; C.24; D.26. 答题: A. B. C. D. (已提交)

4.(单选题) 计算行列式? A.2; B.3; C.0; D.. 答题: A. B. C. D. (已提交) 1.(单选题) 计算行列式?A.2; B.3; C.; D.. 答题: A. B. C. D. (已提交) 2.(单选题) 计算行列式? A.2; B.3; C.0; D.. 答题: A. B. C. D. (已提交)

1.(单选题) 利用行列式定义,计算n阶行列式:=? A.; B.; C.; D.. 答题: A. B. C. D. (已提交) 2.(单选题) 计算行列式展开式中,的系数。 A.1, 4; B.1,-4; C.-1,4; D.-1,-4. 1.(单选题) 计算行列式=? A.-8; B.-7; C.-6;

答题: A. B. C. D. 2.(单选题) 计算行列式=? A.130 ; B.140; C.150; D.160. 答题: A. B. C. D. (已提交) 3.(单选题) 四阶行列式的值等于多少?A.; B.; C.; D.. 答题: A. B. C. D. (已提交) 4.(单选题) 行列式=? A.; B.; C.; D..

答题: A. B. C. D. 5.(单选题) 已知,则?A.6m; B.-6m; C.12m; D.-12m. 答题: A. B. C. D. (已提交) 1.(单选题) 设=,则? A.15|A|; B.16|A|; C.17|A|; D.18|A|. 答题: A. B. C. D. (已提交) 2.(单选题) 设矩阵,求=? A.-1; B.0; C.1; D.2. 答题: A. B. C. D. (已提交)

相关文档
最新文档