数字下变频技术研究

数字下变频技术研究
数字下变频技术研究

数字下变频技术研究

【摘要】数字下变频技术是软件无线电中的关键技术之一。从信号中去除高频信息,降低抽样频率而不导致频谱混叠的过程称之为抽取。若信号不进行滤波就抽取,信号将出现混叠,那么其关键问题就是抽取前的滤波。现以软件无线电的基本知识为基础,分析了单级和多级抽样频率转换,并进行了比较。

【关键词】软件无线电下变频抽取

【中图分类号】tn925 【文献标识码】a 【文章编号】1006-9682(2011)10-0078-02

一、引言

软件无线电是将模块化、标准化的硬件以总线方式连接构成基本平台,通过软件加载实现各种无线通信的一种开放式体系结构。其核心思想是:将a/d,d/a(模数/数模)变换器尽量靠近天线,以信号的从分数字化为前提,依靠软件来确定和完成无线电台的功能,也既尽可能用软件来定义无线电功能。在这种框架下,采样尽量往射频高端搬移。它可以使无线通信系统具有很好的通用性、灵活性,使系统互联和升级变得十分方便。

由于受adc器件的限制,目前无法直接对射频信号进行采样,数字中频软件无线电正成为理想软件无线电的一种经济、适用的折中选择。为了解决高速adc和dsp处理能力的矛盾,一方面要靠数字信号处理器速度的提高,另一方面则靠ddc(数字下变频)技术

一种新型直接抽取算法的数字下变频设计

一种新型直接抽取算法的数字下变频设计 【摘要】为了简化卫星导航接收机框架,提出一种基于数字信号抽取的下变频方法。通过分离和累计法,人们发现了一种具有高频率数字载波信号的直接下变频方法。这种方法不仅具有结构简单、速度高和计算简单的特点,还能够很好的保持导航电文和多普勒信息,但这种方法有可能会使S/N信号和接收机的灵敏度降低:分析和仿真结果显示,它对接收机的定位灵敏度没有任何的影响。 【关键词】数字下变频;抽取算法;BPSK 1.引言 卫星导航接收机通常采用超外差的体系结构,在模拟的超外差接收机前端,许多的数字下变频是通过使用混频器和本地振荡器接收IF信号。低通滤波器消除了高频率分量,然后便可以得到不同频率的下变频信号,与低IF模式和零IF 模式相比,它具有高增益、高抑制和无本地振荡泄漏的特点,但是它的结构复杂和功率损耗较高[2]。 数字接收器具有高集成度、低功耗和低成本的特点,因此,它是无线电接收器的发展趋势[3]。数字下变频方法能够通过数字调音台、CIC滤波器或者重采样方法把一个高频率信号转变成低频率信号[4-5]。在本文中,抽取算法和提取信号是为了得到BPSK调制信号的下变频,与CORDIC方法相比,数字下变频方法只需要添加点操作就可以节省许多的时间和CPU空间。在处理导航数据或CDMA数据时,除了采样IF算法外,还需要重采样和复杂的数字算法。 2.抽取算法的原理 假设在模数转换之前,信号的频率为,抽样频率是。对于BPSK调制的信号,载波频率和振幅是不变的。经过A/D转换后,信号为是一个行向量,向量的位数等于A/D转换器的位数。无相位转换的载波抽样信号有如下关系: 如果相位在周期发生转换,并且是在和周期之间发生,由于相位变化是,最后的抽样值不如前个抽样值,。如果>,在抽取的过程中相变不会发生,那么便会在下个周期发生。因此,在抽取期发生的相变将提前或推迟以适应周期的开始或结束,从而导致部分代码相位误差。 3.灵敏度和准确度的影响 抽取和量化将会造成信号信息的丢失,此量化误差是依赖于量化比特数和阀值。通过选择合适的阀值可以使量化的损失减少,通常情况下,实验中的量化是0.55dB[7]。抽取值可以改变相变的位置。如果累计的最大数目是,它可以使相位的过渡时间提前或滞后正确点的,是抽样周期。相变错误也影响相关积分结果,这会使接收器的灵敏度降低。考虑了多普勒频移,相变误差均匀分布的区域是,

MM440-变频器外部端子控制

实验二变频器外部端子控制 一、实验目的 1. 掌握变频器的外部端子电路设计 2. 熟悉变频器的参数设置 3. 掌握PLC与变频器外部端子电路设计 4. 掌握PLC梯形图程序编程方法 二、实验设备及仪器 1. SIEMENS MM440变频器、基本操作面板(BOP)、三相异步交流电机 2. 开关、电位器、导线 3. S7-200 PLC 三、实验容 MM440的输入输出电路图如下

当使用端子进行调速时的缺省设置。 端子的功能。 可以将变频器当前的状态以开关量的形式用继电器输出,方便用户通过输出继电器的状态来监控变频器的部状态量。而且每个输出逻辑是可以进行取反操作,即通过操作P0748 的每一位更改。

MM440变频器有两路模拟量输入,相关参数以in000和in001区分,可以通过P0756分别设置每个通道属性,支持常见的2~10V和4~20mA这些模拟标定方式。对于电流输入,必须将相应通道的拨码开关拨至ON的位置,还要设置相关参数。 MM440变频器有两路模拟量输出,相关参数以in000和in001区分,出厂值为0~20mA 输出,可以标定为4~20mA输出(P0778=4),如果需要电压信号可以在相应端子并联一支500欧姆电阻,需要输出的物理量可以通过P0771设置。 实验1 外部输入端子操作控制 将参数P0701(数字输入1的功能)改为1,当开关1为On时,电动机启动;为Off时电动机停止。 将参数P0702(数字输入2的功能)改为12,当开关2为On时,电动机正转;为Off 时电动机反转。 将参数P0703(数字输入3的功能)改为9,当开关3为On时,可对变频器故障状态复位。 将按钮接到8和9,将参数P0704(数字输入4的功能)改为10(正向点动),当按钮按下时,电动机实现点动。 按图的端子连接模拟输入信号,通过电位器的滑动即可实现对电动机速度的控制。0-10V对应0-50Hz(默认频率上限)。 需修改参数表 实验3 多段速度选择变频调速 在这种操作方式下,一个数字输入选择一个固定频率。如果有几个固定频率输入同时被激活,选定的频率是它们的总和。

变频器的运行控制方式

变频器的运转指令方式 变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。 与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。 1操作器键盘控制 操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。 操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。 按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。同理,距离较远时则必须使用远程操作器键盘。 在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。 对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。该功能对端子控制、通讯控制都有效。 2端子控制 2.1基本概念 端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。 这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。

基于matlab的简单数字下变频器的设计

一、课程设计问题的提出: 试设计一数字下变频器,并用matlab 仿真; 二、二、解决问题的原理、技术方案解决问题的原理、技术方案解决问题的原理、技术方案以及以及matlab 验证验证: :数字下变频器的原理说明: 数字下变频器(D DC)是接收机A /D 变换后,首先要完成的处理工作,一般的DDC 由本地 振荡器(NCO)、混频器、低通滤波器和抽取器组成.主要作用:其一是把中频信号变为零中频信号;其二是降低采样率。从频谱上看,数字下变频将A/D 采样后信号从中频变换,到基带。这样的处理由两步完成:首先是将输入信号与正交载波相乘,然后进行数字滤波滤除不需要的频率分量。NCO ,混频器,数字滤波器速率要等于采样率,采样率低于600MHz ,很难实时的在FPGA 中进行处理。 数字下变频器的基本结构: NCO :产生正余弦序列,即I/Q 两路信号。 CIC 滤波器,适用于系统中的第一级抽取和进行大的抽取因子的抽取工作,并降低速率。FIR 滤波器,完成对整个信道的整形滤波。DDC 主要有三种实现途径:采用专用芯片、自制专用芯片、基于DSP 或FPGA 等通用芯片。

NCO采用的直接数字频率合成技术(DDS)是一种实用的频率合成技术,DDS由相位概念出发直接合成所需波形的一种新的频率合成技术。DDS合成技术采用了简便和有效的查表法。 运用matlab进行NCO的仿真: 程序: t=0:0.001*10^(-6):10^-6; I=110*cos(7*(10^7)*t-0.5*pi); subplot(2,1,1);plot(t,I);grid on; Q=110*sin(7*(10^7)*t+0.5*pi); subplot(2,1,2);plot(t,Q);grid on; 信号的频率为11.2MHz CIC滤波器: CIC滤波器,即级联积分梳状滤波器,具有结构简单,便于处理,运算速度快等特点。CIC 滤波器的积分器H1(Z)是不稳定系统,如果不采取措施,它们级联后会出现溢出现象。另外,

最新3.3.03.3-P440变频器数字量控制四段速汇总

3.3.03.3-P440变频器数字量控制四段速

上海市《维修电工高级工》职业技能鉴定 电气控制技术—试题单(3.3.03.3) 试题:西门子440交流变频调速装置四段固定频率控制系统接线、调试及测量 一、考核要求: 1、要求:根据给定的设备和仪器仪表,在规定的时间内完成设计、接线、调 试、测量等工作,达到考题规定的要求。 2、时间:60分钟。 二、评分原则: 按照完成的工作是否达到了全部或部分要求,由考评员按评分标准进行评分,在规定的时间内考核不得延时。 三、考核内容: 1、开环系统四段固定频率控制 仅供学习与交流,如有侵权请联系网站删除谢谢2

(1)、按图接线并通电,(注:如变频器交流电源为380V,接线时应接交流380V电源);将变频器设置成端口操作运行状态,四段固定频率控制。有 关电机参数及其他参数设置参照实验指导书。 (2)、设置四段速度运行,上升时间为秒,下降时间为秒。 第一段转速为转/分,频率为 Hz; 第二段转速为转/分,频率为 Hz; 第三段转速为转/分,频率为 Hz; 第四段转速为转/分,频率为 Hz; 按以上要求自行设置参数并调试运行,结果向考评员演示。 (3)、写出变频器设置参数清单 (4)、画出以上四段速运行的V-T曲线图,要求标明时间坐标和转速坐标值。 2、书面回答问题。 《维修电工》(三级/高级)职业技能鉴定 电气控制技术—答题卷 3.3.03.3 西门子440交流变频调速装置四段固定频率控制系统接线、调试及测量 准考证号考位 设置四段速度运行,上升时间为秒,下降时间为秒。 第一段转速为转/分,频率为 Hz 第二段转速为转/分,频率为 Hz 第三段转速为转/分,频率为 Hz 第四段转速为转/分,频率为 Hz 仅供学习与交流,如有侵权请联系网站删除谢谢3

PWM变频控制技术

PWM 变频控制技术 变频调速原理 变频器工作原理:变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。在诸多交流异步电动机调速技术中,如调压调速、变极调速、串级调速、滑差调速、变频调速等,其中由于变频调速具有的优点: (1)调速时平滑性好,效率高; (2)调速范围较大,精度高; (3)起动电流低,对系统及电网无冲击,节电效果明显; (4)易于实现过程自动化; 因此,变频调速技术是当前应用最广泛的一种调速技术。在中小功率的变频调速系统中使用最多的变压变频调速,简称U/F 控制,相应的变频调速控制器为电压源型变频调速器(VSI )。由电机学知识可知异步电动机的转速与电源频率有以下关系: )1(60s p f n -= (2-1) 式中:n —电机的转速(r/min ); p —磁极对数; s —转差率(%); f —电源频率(Hz )。 从式(2-1)可以看出,改变电源频率就可以改变电机转速。另外,根据的电势公式知道,外加电压近似地与频率和磁通的乘积成正比。即 φf C E U 1≈∝ (2-2) 式中C 1为常数。因此有: f U f E =∝φ (2-3) 若外加电压不变,则磁通随频率而改变,如频率下降,磁通会增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热,显然这是不允许的。为此,要在降频的同时还要降压,这就要求频率与电压协调控制。此外,在很多场合为了保持在调速时,电动机产生最大转矩不变,也需要维持磁通不变,这亦由频率和电压协调控制来实现。通过改变异步电动机的供电频率,从而可以任意调节电机转速,实现平滑的无级调速。 SPWM 模式下交直交变频器工作原理 SPWM 波形就是在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度一也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图所示。这样的电压脉冲系列可以使负载电流中的谐波成分大为减小,

基于希尔伯特变换法的数字下变频

基于希尔伯特变换法的数字下变频 唐雷雷 1000030028 引言 本文主要讲述了数字下变频DDC 的基本原理,分别用低通滤波法和希尔伯特变换法实现数字下变频DDC ,同时用MATLAB 做了仿真和对比。 ABSTRACT This paper describes the Digital Down Conversion (DDC )of the basic principles. The Digital Down Conversion (DDC )is implemented by a low-pass filtering and Hilbert transform method , also is simulated by MATLAB and compared. 关键词: DDC 希尔伯特变换 MATLAB 一、中频正交采样的基本原理 在信号处理领域,对接收到的信号进行正交相干检波,可以保留信号复包 络的所有信息,获得良好的正交特性,因而在雷达、声纳、通信等电子系统中得到广泛的应用[2]。 一个系统所接收到的中频信号可以表示为: 00 (2()) 2' ()() () j f t t j f t x t a t e x t e π?π +== (1) 式中, f 为中频频率,()a t 和()t ?分别表示信号的幅度和相位, ' ()()e x p ( ())()()x t a t j t I t j Q t ?==+,称为()x t 的复包络(基带信号),它包含了带 通信号的所有信息。其中 ()()()cos ()()()()sin () I Q I t x t a t t Q t x t a t t ??==== (2)

数字下变频仿真

数字下变频仿真原理: 信号采样的频谱 调频信号:02 ()cos *(2/2)s x K t n f nt π=+ 00022 02 *cos(2/)cos(2)cos(2) cos(4*/2*/2)cos(*/2) s s s s x f n f f nt f nt f nt K t K t K t ππππ=+=++ 0002022 *sin(2/)cos(2)sin(2) sin(*/2*/2)sin(*/24) s s s s K t K t K x f n f f nt f nt f nt t ππππ+-=-+=-+ 因为f 0=30MHz ,整体向左平移30MHz 。 -40-20 带宽为5MHz 通过仿真得到()x n 的时域波形和频域波形,如下图所示。 clc;clear all;close all; f0=30e6; 中心频率 B=5e6; 带宽 T=30e-6; 脉冲宽度 fs=40e6; 采样频率 N=T*fs; 采样点数 K=B/T; 频率变换率 ts=1/fs; 采样周期

t=-T/2:ts:T/2-ts; x=cos(2*pi*(f0*t+K*t.^2/2)); figure(1); title('时域波形'); xlabel('point '); figure(2); plot(abs(fft(x))); title('频域波形'); xlabel('point'); I路信号和Q路信号: ddc_i = x.*cos(2*pi*f0*(1:N)/fs); I路信号ddc_q = -x.*sin(2*pi*f0*(1:N)/fs); Q路信号figure(3); subplot(211); plot(t,ddc_i);grid; title('I路波形');

通信系统中的数字上变频和下变频

通信系统中的数字上变频和下变频 数字上变频器(DUC)和数字下变频器(DDC)不仅仅是通信应用(如软件无线电)中的关键,而且在需要窄带信号高速流的应用中也是重要的。另外,DDC结构容易控制所有取样速率下的混淆防止分样。 让我们看看数字记录5MHz带宽(中心在50MHz)信号的问题。此信号可以是来自RF-IF模拟下变频器的信号或者是直接从天线接收的信号。为了满足尼奎斯特准则,我们需要以 105ms/s取样率取样此信号。然而,为了合理地捕获此信号,应该在较高的取样率(至少200ms/s)取样此信号。假设ADC为16位,在该速率下被取样的信号会产生400MB/s数据。也许更难办的是以这样高速率采集和存储数据缺乏商业可用的方案。大多数可用的PC基数字器仅能在大约几分之几秒内存储此数据。 数字下变频 DDC在持续时间期间可以数字记录RF信号。在此实例中,我们仅需要记录5MHz信号(中心频率50MHz),而不是ADC的整个尼奎斯特带宽。DDC允许除去其余数据,并降低数据率。在现场可编程门阵列(FPGA)中实现时,简单的数字下变频分为3个性质不同的步:频率变换、滤波和分样(图1)。 频率变换和滤波 第1步是频率变换。5MHz频带需要降低变换到基带,靠乘或与载频(fc)正弦信号混频实现这种变换。用数字控制振荡器(NCO)数字产生正弦波。NCO通常也称之为本机振荡器(LO),它可以在精确频率和相位下产生取样波形。 随着信号从50MHz变频到基带,信号拷贝也从50 MHz变频到100 MHz。基于此原因,新的基带信号必须滤波,去除较高频率的信号。然而,到此我们的任务没有完成。我们仍有1个在200ms/s取样的低频基带信号。传输额外不必要数据时不希望PC总线过载,我们重新取样信号来降低有效取样率。这靠分样实现,在规则的时间间隔内从数字化的信号中去除数据点。在此例中,取样从200ms/s下降到10ms/s,每20个取样去除19个取样。 防止混淆的分样 采用分样,数字化器的采集引擎继续以同样的最大速率进行取样。然而,仅有少量的采集点被存储、被取出和传输到PC,这降低取样率到所希望的水平。但是,此技术不是极简单的。 为便于说明,假定数字化器的最大取样率是100MS/s,使其尼奎斯特频率为50 MHz,而信号有两个分量:10 MHz基频和20MHz激励频率分量。若数字化器分辨率为14位,则在100MS/S总数据率是200MB/s,这远远高于PCI总线理论极限132MB/s。这是采用较低取样率(如25MS/s)的1个原因。现在尼奎斯特频率应该是12.5MHz。然而,20MHz频率分量混淆回到5MHz。现在,不可能告知信号实际上是否是5MHz信号或混淆到5MHz的另外较高频率信号(20MHz,30MHz,45MHz)。 解决此问题的1种方案是称之为防止混淆分样的增强分样技术。在此技术中,数字化器继续在100MS/s最高取样率下采集数据,但加1个低通数字滤波器,在分样前截止尼奎斯特频率(图2)。 正交数字下变频 图1所示DDC只适用于单维调制信号。这种信号的1个实例是AM无线电的双边带幅度调制信号,它用比实际所需两倍的带宽。这样的信号在低和高于载频是相同的。

变频器控制部分参数设置

变频器控制部分参数设置功率部分,快速调试见说明书。 调整变频器接线: 拨动拨码开关: AIN1=OFF AIN2=ON 设置变频器数字量输入()部分: P0700.0=2; P0700.1=2 命令源为外部端子 P0701.0=1; P0701.1=1 DI1为ON/OFF1 P0702.0=99; P0702.1=99 DI2为使能BICO P0703.0=9; P0703.1=9 DI3为故障复位 P0810=722.1 CDS位0为DI2 设置变频器数字量输出部分: P0731.0=52.3; P0731.1=52.3 DO1为故障激活信号 P0732.0=52.2; P0732.1=52.2 DO2为变频器运行反馈信号 设置变频器模拟量输入部分: P1000.0=2; P1000.1=7 CDS1主给定为AI1;CDS2主给定为AI2 P0756.0=0; P0756.1=2 AI1信号为电压信号;AI2信号为电流信号

P0757.0=0; P0757.1=4 ADC1定标值x1为0V; ADC2定标值x1为4mA P0758.0=0; P0758.1=0 ADC1定标值y1为0%; ADC2定标值y1为0% P0759.0=10; P0759.1=20 ADC1定标值x2为10V; ADC2定标值x2为20mA P0760.0=100; P0760.1=100 ADC1定标值y2为100%; ADC2定标值y2为100% P0761.0=0; P0761.1=4 ADC1死区为0V; ADC2死区为4mA P0762.0=10; P0762.1=10 ADC1信号丢失延时为10ms; ADC2信号丢失延时为10ms 设置变频器模拟量输出部分: P0771.0=21; P0771.1=21 输出为变频器频率 P0773.0=5; P0773.1=5 DAC平波时间为5ms P0776.0=0; P0776.1=0 DAC类型为电流输出 P0777.0=0; P0777.1=0 DAC定标x1为0% P0778.0=4; P0778.1=4 DAC定标y1为4mA P0779.0=100; P0779.1=100 DAC定标y1为0% P0780.0=20; P0780.1=20 DAC定标y2为20mA P0781.0=0; P0781.1=0 DAC死区为0

变频调速技术ACS6000概述

变频调速技术 现代工业生产过程中,各种设备的传动部件大都离不开电动机,且电动机的传动在许多场合要求能够调速。电动机的调速运行方式很多,以电动机类型分大致可分为直流调速与交流调速两种,而交流调速方式又可分为变极调速、改变转差率调速和变频调速等几种方式。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。 1. 交流变频调速的优异特性 (1) 调速时平滑性好,效率高。低速时,特性静关率较高,相对稳定性好。 (2) 调速范围较大,精度高。 (3) 起动电流低,对系统及电网无冲击,节电效果明显。 (4) 变频器体积小,便于安装、调试、维修简便。 (5) 易于实现过程自动化。 (6) 必须有专用的变频电源,目前造价较高。 (7) 在恒转矩调速时,低速段电动机的过载能力大为降低。 2. 与其它调速方法的比较 这里仅就交流变频调速系统与直流调速系统做一比较。 在直流调速系统中,由于直流电动机具有电刷和整流子,因而必须对其进行检查,电机安装环境受到限制。例如:不能在有易爆气体及尘埃多的场合使用。此外,也限制了电机向高转速、大容量发展。而交流电机就不存在这些问题,主要表现为以下几点: 第一,直流电机的单机容量一般为12-14MW,还常制成双电枢形式,而交流电机单机容量却可以数倍于它。第二,直流电机由于受换向限制,其电枢电压最高只能做到一千多伏,而交流电机可做到6-10kV。第三,直流电机受换向器部分机械强度的约束,其额定转速随电机额定功率而减小,一般仅为每分钟数百转

线性调频信号脉冲压缩-数字下变频程序 DDC

线性调频信号脉冲压缩-数字下变频程序DDC clc; clear all; close all; B=5e6; %%信号带宽 f0=30e6; %中频 fs=40e6; %采样频率 fs1=(20/3)*1e6; %%抽取后频率 T=24.9e-6; %%时宽 k=B/T; fk=127; %%做DDC时的低通滤波器的阶数 fid=fopen('20090724fc1yindao4-0.dat','r'); sss=fread(fid,32*4096,'int16'); fclose(fid); figure(100);plot(sss);grid on;xlabel('点数');ylabel('幅度');title('32个周期信号时域波形');grid on; L=length(sss); N=4096; R=fix(L/N); for r=1:R ss(r,:)=sss((r-1)*N+1:1:r*N); end figure(1);plot(ss(R,:));xlabel('点数');ylabel('幅度');title('信号时域波形');grid on; %%%%%%%%%%%%%%% 低通滤波器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ff=[0 1/8 1/4 1]; aa=[1 1 0 0]; b=firpm(fk,ff,aa); [h,w]=freqz(b,1,1024); % figure(2); % f=linspace(0,fs/2,1024); % plot(f/1e6,20*log10(abs(h)));xlabel('f/Mhz');ylabel('dB');title('低通滤波器的幅频响应');grid on; %%%%%%%%%%%%%%% DDC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ddcs=zeros(R,N+fk); for r=1:1:R n=-N/2:1:N/2-1; si=ss(r,:).*cos(2*pi*f0*n/fs); sq=-ss(r,:).*sin(2*pi*f0*n/fs); I=conv(si,b);

基于FPGA的DDC(数字下变频)设计与实现

基于FPGA的DDC(数字下变频)设计与实现

微系统设计、测试与控制 课程大作业之 基于FPGA的DDC(数字下变频) 的设计与仿真

摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1 数字下变频(DDC)研究背景 (3) 1.2 DDC概述 (4) 1.3 本文研究内容和结构安排 (5) 第二章数字下变频(DDC)基础理论 (7) 2.1 数字下变频器 (7) 2.1.1 数字变频的基本原理与结构 (7) 2.1.2影响数字变频器性能的主要因素7 2.2 数字信号采样理论 (8) 2.2.1低通信号采样理论 (8) 2.2.2 带通信号采样理论 (9) 2.3 数字正交检波 (10) 2.3.1 低通滤波法 (10) 2.3.2 多相滤波结构变换法 (11) 2.4 多抽样率数字信号处理理论 (13)

2.4.1 整数倍抽取和内插 (13) 2.4.2 多抽样率系统的恒等变换 (16) 2.4.3 多相滤波结构 (17) 2.5 相关算法介绍 (19) 2.5.1 CORDIC算法 (19) 2.5.2 FIR滤波器 (21) 2.6 本章小结 (22) 第三章数字下变频(DDC)各模块设计 (23) 3.1 数字下变频的基本实现方案 (23) 3.2 基于DDS的数控振荡器的设计 (23) 3.2.1 混频器模块设计 (23) 3.2.2 DDS的特点 (25) 3.3抽取滤波 (27) 3.4 本章小结 (29) 第四章数字下变频器设计验证和逻辑综合 (30) 4.1基于DDS的数控振荡器的仿真和验证30 4.2 FIR滤波器的仿真和验证 (32)

数字下变频

因为最近在做宽带数字信号的数字下变频,所以重点看了这一方面的论文。下文重点对IEEE 上的一篇论文Real-time wideband DDC based on parallel architecture in synthetic instrument 做了个读书笔记,并对自己在这方面的工作做了一个小结。 主要内容:这篇论文主要解决宽带数字中频信号处理过程中的一些问题,并行处理结构可以有效的降低采样率,多通道并行处理则可以有效降低处理成本。该论文介绍了数字下变频技术,分析了多种数控振荡器导致输出相位的不同,并总结了减少信噪比的误差因素,提供了特殊工程设计的指数分布依据。 图1DDC总体结构 原理:数字下变频器(D DC)是接收机A/D变换后,首先要完成的处理工作,一般的DDC 由本地振荡器(NCO)、混频器、低通滤波器和抽取器组成.主要作用:其一是把中频信号变为零中频信号;其二是降低采样率。从频谱上看,数字下变频将A/D采样后信号从中频变换,到基带。这样的处理由两步完成:首先是将输入信号与正交载波相乘,然后进行数字滤波滤除不需要的频率分量。NCO,混频器,数字滤波器速率要等于采样率,采样率低于600MHz,很难实时的在FPGA中进行处理。 结构: NCO:产生正余弦序列,即I/Q两路信号。 CIC滤波器,适用于系统中的第一级抽取和进行大的抽取因子的抽取工作,并降低速率。FIR滤波器,完成对整个信道的整形滤波。 DDC主要有三种实现途径:采用专用芯片、自制专用芯片、基于DSP或FPGA等通用芯片。论文主体: 1.并行处理结构:抽取滤波器模块通过多相滤波器结构降低采样率和实现低通滤波。 图2 DDC并行处理结构

【高速中频采样和数字下变频的研究】第九章 数字下变频的设计

第九章数字下变频的设计 数字下变频又称数字I、Q复解调。它广泛应用于雷达、声纳和无线电接收机中。数字下变 频的原理已经在第一章和第八章得到阐述。在本章中先介绍主要的数字下变频芯片,然后介绍 数字I、Q复解调板的设计。 第一节主要的数字下变频芯片 对于不同的厂商,数字下变频(digital down converter)芯片有时又被称为数字解调器(digital tuner)或数字接收信号处理器(digital receive signal processor) 。目前世界上生产数字下变频芯片 的厂家主要有GrayChip、Harris Semiconductor、Analog Device、National Semiconductor等,其 中GrayChip公司虽然是一个小公司,但它却是一个专门生产数字下变频ASIC芯片的专业公司。 其生产的品种多、功能全、是选择数字下变频芯片的首选公司。Harris公司生产数字下变频芯 片的历史也较长。由于其具备产生高速A/D变换器的功能,所以其数字下变频芯片和ADC芯 片配合良好,可以配套使用。由于软件无线电技术的发展和市场对数字接收机的大量需求,近 几年来,半导体芯片的头号厂商Analog Device和National Semiconductor也涉足数字下变频芯 片市场,并且发展势头非常迅猛。特别是生产ADC芯片的龙头老大Analog Device公司,凭借 其雄厚的模拟和数字电路芯片的设计和生产技术,开发了先进的数字接收器芯片AD6620和 AD6624。与此同时,Analog Device公司还将其新一代中频A/D转换器芯片和DSP芯片与其数 字下变频芯片相结合,提出了多套完整的数字接收机的完整解决方案。表9-1-1是市场上常用的 数字下变频芯片。 表9-1-1 常用的数字下变频芯片的对照表 名称AD6620 HSP50214 CLC5902 GC1012A 生产厂家ADI Harris NS Graychip 输入数据宽度16bit 16bit 16bit 12bit 输入数据速率65MHz 52MHz 52MHz 80MHz NCO精度0.02Hz 0.02Hz 0.02Hz 0.1Hz CIC5 CIC4 无 CIC滤波器CIC2 CIC5 固定系数FIR 系数FIR RAM系数FIR1, FIR滤波器 RAM 系数FIR RAM FIR2 随着软件无线电的发展,通信、雷达、声纳等领域将需要更多的数字下变频芯片,从而也 会出现更多的新芯片和厂家。 9-1-1. 窄带数字下变频芯片AD6620 AD6620数字接收器芯片主要由四部分组成,如图9-1-1所示,包括一个频率转换部分(NCO 和混频器)、两个固定系数的抽选滤波器、一个程控系数的抽选滤波器。

用fpga实现数字下变频

用FPGA实现数字下变频 杨力生,谭晓衡,杨士中 (重庆大学通信工程学院,重庆 400044) 摘要:在接收信号的数字化、软化的实现中,数字下变频起着重要的作用。本文首先介绍了数字下变频的组成结构,然后详细分析了数字下变频的工作原理,描述了在实现数字下变频时,设计方案所采用的高效滤波器——CIC滤波器和多相抽取滤波器的结构和原理。最后,用通过Simulink对数字下变频的性能进行了仿真。在仿真的基础上使用Insight公司的FPGA开发系统,用测试电路实测了数字下变频的性能。 关键词:数字下变频器;FPGA;CIC数字滤波器;多相滤波器 Realize Digital Downconversion by FPGA YANG Li-sheng, TAN Xiao-heng, YANG Shi-zhong (Communication Engineering School, Chongqing University, Chongqing400044, China) Abstract: Digital downcoversion plays a key role in the digitized and software-oriented process of the received signal. First, the architecture of the digital downconvertor (DDC) is introduced.Then the operational principle of DDC is analysed.At the same time, the efficient structure of digital filter is described in which DDC is adopted.Finally, the performance simulation results of the DDC is given by Simulink, and on this base,the perfomance of DDC is tested with the FPGA devoloping system of Insight corp. Keywords:Digital downcovertor; FPGA;CIC digital filter;Polyphase filter 一、序言 在数字接收机中,数字下变频器(DDC)一般执行信道的访问功能。DDC接收经过高速采样的中频信号,将所需的频带下变为基带。现代基站收发器为了支持多载波环境或实现下变频,以便将很多窄带信道组合成一个宽带的数字信号,常常需要大量的DDC。DDC通常位于信号处理链的前端,靠近A/D,一般要求DDC 支持100 MSPS以上的采样率。 数字下变频由数字振荡器、数字乘法器、数字滤波器三部分组成,其组成的系统框图如图1所示。

传统的PLC与变频器之间的接口大多采用的是依靠PLC的数字量输出来控制变频器的启停

传统的PLC与变频器之间的接口大多采用的是依靠PLC的数字量输出来控制变频器的启停,依靠PLC 的模拟输出来控制变频器的速度给定,这样做存在以下问题: 1、需要控制系统在设计时采用很多硬件,价格昂贵 2、现场的布线多容易引起躁声和干扰 3、PLC 和变频器之间传输的信息受硬件的限制,交换的信息量很少。 4、在变频器的启停控制中由于继电器接触器等硬件的动作时间有延时,影响控制精度。 5、通常变频器的故障状态由一个接点输出,PLC能得到变频器的故障状态,但不能准确的判断当故障发生时,变频器是何种故障。 如果PLC通过与变频器进行通讯来进行信息交换,可以有效地解决上述问题,通讯方式使用的硬件少,传送的信息量大,速度快,等特点可以有效地解决上述问题,另外,通过网络,可以连续地对多台变频器进行监视和控制,实现多台变频器之间的联动控制和同步控制,通过网络还可以实时的调整变频器的参数。 目前各个厂家的变频器都相继的开发出了支持连网的功能,比如,很多变频器都有了支持现场总线(如:DEVICENET、PROFIBUS、AS_I)等的接口协议,可以很方便的与PLC进行数据通信。现在主要介绍西门子S7-200和MicroMaster变频器之间的通讯协议USS,使用USS通讯协议,用户可以通过程序调用的方式实现S7-200和MicroMaster变频器之间的通信,编程的工作量小,通讯网络由PLC和变频器内置的RS485通讯口和双绞线组成,一台S7-200最多可以和31台变频器进行通讯,这是一种费用低、使用方便的通讯方式。 一、USS通讯协议介绍 USS通讯协议的功能,所有的西门子变频器都带有一个RS485通讯口,PLC作为主站,最多允许31个变频器作为通讯连路中的从站,根据各变频器的地址或者采用广播方式,可以访问需要通讯的变频器,只有主站才能发出通讯请求报文,报文中的地址字符指定要传输数据的从站,从站只有在接到主站的请求报文后才可以向从站发送数据,从站之间不能直接进行数据交换。在使用USS协议之前,需要先安装西门子的指令库。USS协议指令在STEP7—MICRO/WIN32指令树的库文件夹中,STEP7—MICRO/WIN32指令库提供14个子程序、3个中断程序和8条指令来支持USS协议。调用一条指令时,将会自动地增加一个或几个子程序。 USS协议使用CPU的下列资源: 1)USS协议占用PLC的通讯端口0或1,使用USS——INIT指令可以选择PLC的端口是使用USS 协议还是PPI协议,选择USS协议后PLC的相应端口不能在做其它用途,包括与 STEP7-WICRO/WIN32的通讯,只有通过执行另外一条USS指令或将PLC——CPU的模式开关拨到RUN或STOP状态,才能钟新在进行PPI通讯,当PLC和与变频器通讯中断时,变频器将停止运行,所以在本例中选择CPU226 因为它有两个通讯端口,当第一个口用于USS通讯时,第二个端口可以用于程序监控,USS指令要占用2300~3600字节的程序存储空间和400个字节的变量存储区间 2)变频器的通讯与CPU的扫描时异步的,完成一次变频器的通讯通常需要几个CPU的扫描周期,通讯时间和链路上变频器的台数、波特率和扫描周期有关,本例中通讯的波特率设定为19200,变频器的台数为3台,经实际调试检测通讯时间大约为50ms. 二、使用USS协议的步骤: 1)安装指令库后在STEP7-Micro/win32指令树的/指令/库/USS PROTOOL文件夹中将出现8条指令,用它门来控制变频器的运行和变频器参数的读写操作,这些子程序是西门子公司开发的用户不需要关注这些指令的内部结构,只需要在程序中调用即可。 2)调用USS—INIT初始化改变USS的通讯参数,只需要调用一次即可,在用户程序中每一个被激活的变频器只能用一条USS-DRIVE-CTRL指令,可以任意使用USS-RPM-X 或USS-WPM-X指令,但是每次只能激活其中的一条指令。 3)为USS指令库分配V存储区。在用户程序中调用USS指令后,用鼠标点击指令书中的程序块图标,

变频器试题及答案

变频器试题及答案 一、填空题 1频率控制功能是变频器的基本控制功能。控制变频 器输出频率有以下几种方法:面板控制外接模拟量固定频率通讯控制 2变频器具有多种不同的类型: 按变换环节可分为交—交型和 交—直—交型; 按改变变频器输出电压的方法可分为 脉冲幅度调制(PAM)型和脉冲宽度调制(PWM)型;按用途可分为专用型变频器和通用型变频器。 3为了适应多台电动机的比例运行控制要求,变频器 具有频率增益功能。 4电动机在不同的转速下、不同的工作场合需要的转 矩不同,为了适应这个控制要求,变频器具有转矩补 偿功能 5有些设备需要转速分段运行,而且每段转速的上升、下降时间也不同,为了适应这些控制要求,变频器具 有段速控制功能和多种加、减速时间设置功能。

6某电动机在变频运行时需要回避17~23Hz 之间的频率,那么应设定回避频率值为__20Hz___,回避频率的范围为__3Hz_ 7变频器安装要求垂直安装,其正上方和正下方要避 免可能阻挡进风、出风的大部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应小于300mm 8变频器是通过(电力电子器件)的通断作用将(工频交流电流)变换成(电压频率均可调)的一种电能控制装置。 9.有些设备需要转速分段运行,而且每段转速的上升、下降时间也不同,为了适应这些控制要求,变频器具 有段速控制功能和多种加、减速时间设置功能。 10变频器接点控制端子可由以下信号控制其通断: ⑴接点开关控制;⑵晶体管开关____;⑶光电耦合器开关控制。 11变频器的组成可分为主电路和控制电路。 12变频器交流电源输入端子为L1、L2、L3,根据应用电压不同,可分为220V单相和380V三相两种规格,当三相时,接入L1、L2、L3的L1、L2、L3端上,当单相时,接入L1、L2、L3的L1、L2、端上。13.变频调速过程中,为了保持磁通恒定,必须保持 U/F=常数

一种基于FPGA的数字下变频方法

*收稿日期:2006-09-11 文章编号:1008-8652(2007)02-84-06一种基于FPGA 的数字下变频方法 涂维政 刘书明 (西安电子科技大学 西安 710071) =摘要> 提出用FPGA 器件实现一个完整的数字下变频系统的方法,给出VerilogH DL 语言 的描述,实现高效的运算结构,减小了运算量,提高了系统性能。本系统已经在某型气象雷达的数字接收系统中得到采用,参数得到验证,性能优良。 关键词:FPGA ;VerilogH DL;欠采样技术;数字下变频;多抽样率系统 中图分类号:T N74211 文献标识码:A A Method of Digital Down Converting Based on FPGA T u Weizheng Liu Shuming (X idian Univ ersity ,X i .an,710071) Abstract :A method of using FPGA device to realize dig ital dow n converting system is presented,and the descr iptio n of Verilog H DL language is g iv en so that the hig h efficiency operational structure is fu-l filled,and the oper and is reduced and the system perform ance is enhanced.T his m ethod has been adopted in the digital receiving subsy stem of a certain m eteoro logical radar,and the specificatio ns are verified and the perfo rmance is perfect. Keywords :FPGA;Verilog H DL;under sampling techno log y;digital dow n converter;multiple sam -pling rate system 随着数字技术的飞速进步和发展,FPGA 器件因其高速、可编程、模块化的特点而被大量采用。同时,诸如数字下变频等一系列新的数字信号处理方法的提出,为降低系统成本提供了可能,相关的多抽样率系统理论,更是大大的降低了数字系统的运算量,明显的提升了系统性能。 本文论述数字下变频技术的一种FPGA 实现方法,用比较低的系统成本,实现比较高的谱分辨率的数字接收系统,完成对气象信号的有效处理。实际的系统选用48M H z 时钟对60MH z 的雷达中频信号采样,然后经过FPGA 的数字下变频及其滤波处理,得到信号的包络和相位信息。 1 欠采样技术 为了降低对ADC 器件的要求,对于低通、带通信号,可以用带通信号的采样方法,在低于奈奎斯特采样率时进行数模转换:只要采样率不低于两倍信号带宽f h -f l ,时域的采样就不会导致信号频谱的混叠,如公式(1)所示: 2f h N +1[f S [2f l N (1)其中,N 为自然数,且1[N [f l f h -f l 。84

相关文档
最新文档