专题摩擦力做功与能量转化问题
第2课时 摩擦力做功与能量转化

第二专题 功和能 第2课时 摩擦力做功与能量转化
姓名:范友祥
校名:厦门第二中学 2019.2.16
考点一 摩擦力做功的特点及应用 [考点解读]
不 同 点
相同 点
类别 比较
能量转化 的方面
一对摩 擦力做 功方面 做功方面
静摩擦力
滑动摩擦力
在静摩擦力做功的过程中,只有机械能从一
例 2 如图所示,固定直杆上套有一个质量为 m 的小球和两根原长均为 L 的轻弹簧,两根 轻弹簧的一端与小球相连,另一端分别固定在杆上相距为 2L 的 A、B 两点。已知直杆与水
平面的夹角为 θ,两弹簧的劲度系数均为
,小球在距 B 点 L 的 P 点处于静止状
态,此时小球受到的摩擦力为最大静摩擦力,且与滑动摩擦力相等,重力加速度为 g。求: (1)从固定点 B 处剪断弹簧的瞬间小球加速度的大小和方向; (2)若小球从 P 点以初速度 v0 沿杆向上运动,恰能到达距 A 点 L 的 Q 点,求初速度 v0
电动机的平均输出功率
代入数据解得 ≈23.39W.
答:(1)A 上升的最大高度 H 为 3.6m;
(2)B 从开始运动到落地前经历的时间 t 为 3.95s,刚落地时的速率为 2
m/s;
(3)B 在传送带上运动的过程中电动机的平均输出功率 为 23.39W.
【点评】解决本题的关键理清 A、B 在整个过程中的运动规律,结合牛顿第二定律和运动学
公式综合求解,知道 B 在传送带上先受到滑动摩擦力,然后受静摩擦力.
内能
两种摩擦力都可以对物体做正功,做负功,还可以不做功
例 1 如图所示,A 物体放在 B 物体的左侧,用水平恒力 F 将 A 拉至 B 的右端,第一次 B
关于摩擦力做功与能量转化的问题_张智慧

学知报/2011年/3月/14日/第C06版教学论坛关于摩擦力做功与能量转化的问题绥德中学张智慧在我们生活的世界里,到处充满了摩擦,而我们也离不开摩擦,设想,这个世界没有了摩擦,我们是否能习惯?我们每天的行为、生活,无时无刻在体现能量之间的转化,而这些转化是靠做功来完成。
那么摩擦力就在我们身边,它是怎样做功以及如何进行能量之间的转化呢?一、滑动摩擦力做功与能量转化滑动摩擦力的方向总是与物体间相对运动方向相反,它可以对物体做正功,也可以做负功,还可以不做功。
例如:从研究对象角度来说1、A冲上固定在光滑地面上的物体B上,运动到B的右端,对A而言,它所受到的滑动摩擦力向左阻碍了A、B之间的相对运动,做了负功。
那么对A来说,它的机械能减少转化为由于摩擦而产生的内能。
2、对B而言,尽管A对B有向右的滑动摩擦力,但由于B物体相对地面在力的方向上并没有发生位移,所以A对B的滑动摩擦力对B并没有做功。
那么,B的能量没有变化。
倘若B不固定,A以一定初速度冲上B,在A的“带动下”,B相对地面向右也发生了一段位移。
那么这时候,A对B的滑动摩擦力对B就做了正功,B的机械能要增加。
3、对A、B组成的系统来说,这一对相互作用的滑动摩擦力做功的总和又如何呢?能量如何转化呢?对(1)图来说,B对A的摩擦力WBA=—FBA×L ,WAB=0 ,W合=WAB+WBA=—FBA×L<0,负功对(2)图来说,WBA=—FBA×(L+S),WAB=FAB×S ,W合=WBA+WAB=—FBA×L <0,负功从功能关系角度来说,A、B间发生相对滑动,“摩擦生热”,系统的机械能必然损失转化为内能,原因是A、B系统内力做功之和为负,使系统的机械能损失。
看来,相互作用的两个物体之间,一对滑动摩擦力做功的代数和应该为负值。
二、静摩擦力做功与能量转化静摩擦力的方向总是与物体间的相对运动趋势方向相反。
浅议滑动摩擦力做功中的能量转化

浅议滑动摩擦力做功中的能量转化摘要:对学生而言,滑动摩擦力难以把握,处理滑动摩擦力做功问题更是容易出错。
特别是滑动摩擦力做功,涉及到机械能转化为内能,需要学生同时运用力的观点和能的观点来解决问题,对学生的要求很高。
本文以几个典型的滑动摩擦力做功中的能量转化模型切入点,对其进行了剖析,意在使学生碰到类似的问题时,能够快速攻克难点,达到弄懂的目的。
关键词:滑动摩擦力做功机械能模型内能滑动摩擦力做功在高中物理中非常重要,其中涉及到的能量转化是高考的重点和难点。
但这部分知识,由于涉及到的面较广,学生处理起来很容易出错。
本文从功是能量转化的量度这一角度出发,针对高中阶段出现的一些滑动摩擦力做功的典型模型,剖析了滑动摩擦力做功过程中能量的转化情况,树立了能量守恒的思想。
最后通过典型模型的具体运用,帮助学生提高分析问题,解决问题的能力。
1.典型模型关于做功的公式,学生还比较清楚,可是涉及到滑动摩擦力做功,就出现了很多问题,其能量转换更是模糊不清,需要对高中阶段涉及到滑动摩擦力做功中的能量转化问题,归纳出典型的模型,做全面的分析。
1.1 滑动摩擦力对单个物体做功中的能量转化情况例 1 如图1所示,一质量为m的物体在滑动摩擦力f的作用下,沿粗糙的平面上滑动了L的距离而停下来,求:摩擦力对物体所做的功?摩擦力对地面所做的功?= -f L (1)解:对m ,滑动摩擦力对物体做功Wf对地面, 地面的位移为零, 滑动摩擦力对地面做功W=0 (2)f 地2(3)对m,由动能定理有:-f L = 0 - mv对(3)式,从能量角度来看,物体减少的动能等于系统增加的内能。
具体转化过程如图2:由图2可知,单个小木块在地面滑动过程中,滑动摩擦力做了多少功,就有多少动能转化成内能。
系统的内能 Q=f动L相对(物体相对地的路程)1.2 无外力作用时,一对滑动摩擦力做功中的能量转化情况例V2 如图3所示,木板B长为L,质量为M,静止在光滑水平面上,一个小物体A质量为m以速度V滑上B的左端,当A滑到B的右端时恰好相对B静止(假设A物块的大小忽略不计)此时物体B运动了S的位移,求:这一对摩擦力对A和B做功的总和?mmL解:A和B的受力分析,及位移关系如上可以判断B对A的摩擦力做功为:W1 =-f动(S+L) (1)A对B的摩擦力做功: W2= f动S(2)所以这一对摩擦力对系统做功总和为:W=- f动L (3)从动量的观点看,此题A, B组成的系统动量守恒(无外力作用)mv0 = (M+m) v1(4)对A 由动能定理有: -f动(S+L) = mv12 - mv2(5)对B由动能定理有: f动 S = M v12 -0 (6)对(5) ,(6)消元得: m v02- mv12 = M v12+ f动L (7)对于(7)式,从能的角度看,就是m减少的动能等于M增加的动能和系统增加的内能,具体转化过程如图4:由图4可知,一对滑动摩擦力做功的过程中,能量的转化有两个方向。
动能守恒定理摩擦力做功

动能守恒定理摩擦力做功
根据动能守恒定理,在没有外力和内能转化的情况下,系统的总机械能保持不变。
当物体受到摩擦力时,摩擦力会做负功。
摩擦力的方向与物体运动的方向相反,因此它所做的功为负值。
摩擦力做负功的原因是,摩擦力将物体的机械能转化为热能和其他形式的非机械能。
这使得物体的机械能减少,即动能减少。
其中,摩擦力的大小可以通过摩擦系数、物体受力的垂直分量以及物体所受压力的大小来计算。
摩擦力的功可以通过摩擦力与物体所移动的距离的乘积来计算。
总的来说,摩擦力对物体做负功,使得物体的动能减少。
这符合动能守恒定理。
摩擦力做功问题及求变力做功的几种方法(学生版)-高考物理热点模型

摩擦力做功问题及求变力做功的几种方法学校:_________班级:___________姓名:_____________模型概述1.摩擦力做功问题1)无论是静摩擦力还是滑动摩擦力都可以对物体可以做正功,也可以做负功,还可以不做功。
2)静摩擦力做功的能量问题①静摩擦做功只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能。
②一对静摩擦力所做功的代数和总等于零,而总的机械能保持不变。
3)滑动摩擦力做功的能量问题①滑动摩擦力做功时,一部分机械能从一个物体转移到另一个物体,另一部分机械能转化为内容,因此滑动摩擦力做功有机械能损失。
②一对滑动摩擦力做功的代数和总是负值,总功W =-F f ⋅x 相对,即发生相对滑动时产生的热量。
2.求变力做功的几种方法1.用W =Pt 求功当牵引力为变力,且发动机的功率一定时,由功率的定义式P =W t,可得W =Pt .1)“微元法”求变力做功:情形一:当力的大小不变,而方向始终与运动方向相同或相反时,力F 做的功与路程有关,W =Fs 或W =-Fs ,其中s 为物体通过的路程.情形二:当力的大小不变,运动为曲线时,将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做功的代数和,此法适用于求解大小不变、方向改变的变力做功.【举例】质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ⋅Δx 1+F f ⋅Δx 2+F f ⋅Δx 3+...=F f ⋅(Δx 1+Δx 2+Δx 3+...)=F f ⋅2πR2)“图像法”求变力做功:在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移内所做的功,且位于x 轴上方的“面积”为正功,位于x 轴下方的“面积”为负功,但此方法只适用于便于求图线与x 轴所围面积的情况(如三角形、矩形、圆等规则的几何图形).【举例】一水平拉力拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x3)“平均力”求变力做功:当力的方向不变而大小随位移线性变化时,可先求出力对位移的平均值F =F 0+F 12,再由W =F l cos θ计算,如弹簧弹力做功.【举例】弹力做功,弹力大小随位移线性变化,取初状态弹力为0,则W =F x =0+F k 2x =0+kx 2x =12kx 24.应用动能定理求解变力做功:在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12mv 22-12mv 21,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12mv 22-12mv 21-W 恒,就可以求出变力做的功了.【举例】用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F +W G =0⇒W F -mgl (1-cos θ)=0⇒W F =mgl (1-cos θ)5)等效转换法求解变力做功:将变力转化为另一个恒力所做的功。
56 高考真题解析:必修2 第五章 专题突破 功能关系 能量守恒定律

专题突破功能关系能量守恒定律突破一功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
2.几种常见的功能关系及其表达式PQ竖直悬挂。
用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距13l。
重力加速度大小为g。
在此过程中,外力做的功为()图1A.19mglB.16mglC.13mglD.12mgl解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p =23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、 D 错误。
答案 A1.如图2所示,某滑翔爱好者利用无动力滑翔伞在高山顶助跑起飞,在空中完成长距离滑翔后安全到达山脚下。
他在空中滑翔的过程中( )图2A.只有重力做功B.重力势能的减小量大于重力做的功C.重力势能的减小量等于动能的增加量D.动能的增加量等于合力做的功解析 由功能关系知,重力做功对应重力势能的变化,合外力做功对应物体动能的变化,选项D 正确。
答案 D2.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。
他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J。
韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J解析由题可得:重力做功W G=1 900 J,则重力势能减少1 900 J ,故选项C正确,D错误;由动能定理得,W G-W f=ΔE k,克服阻力做功W f=100 J,则动能增加1 800 J,故选项A、B错误。
摩擦力做功和产生热能的关系

摩擦力做功与产生热能的关系众所周知,恒力做功的公式为W=F.Scosθ, 但当做功的力涉及到摩擦力时,往往会使问题变的复杂化. 我们知道摩擦力属于“耗散力”,做功与路径有关,如果考虑摩擦力做功的过程中与产生热能关系时,很多学生就会对之束手无策,从近几年的高考命题中,这类问题是重点也是难点问题,以下就针对摩擦力做功与产生热能的关系作一总结的分析.1.摩擦力做功的特点与产生热能的机理.根据,<费曼物理学讲义>中的描述:“摩擦力的起因:从原子情况来看,相互接触的两个表面是不平整的,它们有许多接触点,原子好象粘接在一起,于是,当我们拉开一个正在滑动的物体时,原子啪的一下分开,随及发生振动,过去,把这种摩擦的机理想象的很简单,表面起因只不过布满凹凸不同的形状,摩擦起因于抬高滑动体越过突起部分,但是事实不可能是这样的,因为在这种情况中不会有能量损失,而实际是要消耗动力的。
动力消耗的机理是当滑动体撞击突起部分时,突起部分发生形变,接着在两个物体中产生波和原子运动,过了一会儿,产生了热。
”从以上对摩擦力做功与产生热能的机理的描述,我们从微观的角度了解到摩擦生热的机理,”所以,我们对“做功”和“生热”实质的解释是:做功是指其中的某一个摩擦力对某一个物体做的功,而且一般都是以地面为参考系的,而“生热”的实质是机械能向内能转化的过程。
这与一对相互作用的摩擦力所做功的代数和有关。
为了说明这个问题,我们首先应该明确摩擦力做功的特点.2.摩擦力做功的特点.我们学习的摩擦力包括动摩擦力和静摩擦力,它们的做功情况是否相同呢?下面我们就分别从各自做功的特点逐一分析。
2.1静摩擦力的功静摩擦力虽然是在两个物体没有相对位移条件下出现的力,但这不等于静摩擦力做功一定为零。
因为受到静摩擦力作用的物体依然可以相对地面或其它参考系发生位移,这个位移如果不与静摩擦力垂直,则静摩擦力必定做功,如果叠在一起的两个木块A、B,在拉力F的作用下沿着光滑水平面发生一段位移s,图一所示,则A物体受到向前的静摩擦力f0对A作正功W= f0s图一图二在圆柱体沿水平面向前无滑滚动时,(图二所示),虽然圆柱体相对地面存在位移,但地面对车轮的静摩擦力f 0并不做功,这时,不能认为滚动的圆柱体是一个质点,从地面参考系来看,在一段微小时间间隔内,f 0作用于地面接触的圆柱体边缘一点A,对于静摩擦力f 0而言A的瞬时速度v A=0,故A的微小位移dr =v Adt =0,元功为零,下一个微小时间间隔内,静摩擦力f 0则作用在另一个质点B,同样元功为零.所以滚动过程中静摩擦力f 0对圆柱体做功为零.在此过程中,滚动摩擦要阻止圆柱体滚动,柱体需要克服这种阻碍消耗能量做功,但这主要是克服滚动过程中地面形变后产生的支持力所导致的阻力矩的功.高中阶段,一般我们只分析第一种情况的静摩擦力的做功情况.由以上分析,我们可以归纳出静摩擦力做功有以下特点:1、静摩擦力可以做正功,也可以做负功,还可以不做功.2、在静摩擦力做功的过程中,只有机械能的相互转移,而没有机械能相互为其它形式的能.3、相互作用的系统内,一对静摩擦力所做的功的和必为零。
传送带的摩擦力问题

传送带中的摩擦力做功与能量转化问题传送带问题具有理论联系实际,综合性较强的特点。
通过归类教学把相近、类似的问题区别开来,经过典型例题分析、比较,充分认识这类问题的特点、规律,掌握对该类问题的处理方法、技巧,采用归类教学有利于提高分析、鉴别并解决物理综合问题的能力。
一、运动时间的讨论问题1:(水平放置的传送带)如图所示,水平放置的传送带以速度v=2m/s 匀速向右运行,现将一质量为2kg 的小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数μ=0.2,若A 端与B 端相距4 m ,求物体由A 到B 的时间和物体到B 端时的速度分别是多少?解析:小物体放在A 端时初速度为零,且相对于传送带向左运动,所以小物体受到向右的滑动摩擦力,小物体在该力作用下向前加速,a=μg,当小物体的速度与传送带的速度相等时,两者相对静止,摩擦力突变为零,小物体开始做匀速直线运动。
所以小物体的运动可以分两个阶段,先由零开始匀加速运动,后做匀速直线运动。
小物体做匀加速运动,达到带速2m/s 所需的时间 1v t s a == 在此时间内小物体对地的位移m at x 1212== 以后小物体以2m/s 做匀速直线运动的时间 s s v x s t AB 5.123==-=' 物体由A 到B 的时间T=1s+1.5s=2.5s ,且到达B 端时的速度为2m/s.讨论:若带长L 和动摩擦因数μ已知,则当带速v 多大时,传送时间最短?22()()22v v v L v T vT a g a a aμ=+-=-= 22L v L v T T v a v a=+=当时最短此时v =这说明小物体一直被加速过去且达到另一端时恰与带同速时间最短。
变式:如图所示,传送带的水平部分长为L ,传动速率为v ,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是 ( )A.L v +v 2μgB.L vC.2L μgD.2L v 解析:因木块运动到右端的过程不同,对应的时间也不同,水平传送带传送物体一般存在以下三种情况(1)若一直匀加速至右端仍未达带速,则L =12μgt 2,得:t =2L μg,C 正确;(2)若一直加速到右端时的速度恰好与带速v 相等,则L =0+v 2t ,有:t =2L v,D 正确;(3)若先匀加速到带速v ,再匀速到右端,则v22μg +v ⎝ ⎛⎭⎪⎫t -v μg =L ,有:t =L v +v 2μg,A 正确,木块不可能一直匀速至右端,故B 不可能.问题2:(倾斜放置的传送带)如图所示,传送带与地面的倾角θ=37°,从A 端到B 端的长度为16m ,传送带以v 0=10m/s 的速度沿逆时针方向转动。
物体克服安培力做功将动能转化为焦耳热

①电磁感应产生的效果总是要阻碍引起电磁感应的磁 通量的变化和机械运动
②电磁感应的本质:通过克服磁场力做功,把机械能 或其它形式的能转化为电能的过程
3、基本方法
①用法拉第电磁感应定律和楞次定律确定感应电动势的 大小和方法
②画出等效电路,求出回路中电阻消耗电功率的表达式 ③分析导体机械能的变化,用能量守恒关系得到机械功
CD)
A、安培力对ab做的功相等
B、电流通过整个回路所做的功相等
C、整个回路产生的总热量相等
D、 ab棒的动能的改变量相等
D
a
C
B
E
b
F
例8.两根金属导轨平行放置在倾角为30度的斜面上导轨左 端接有电阻R=10欧姆,导轨自身电阻忽略不计。匀强磁 场垂直于斜面向上,磁感应强度B=0.5T。质量为m=0.1kg, 电阻可不计的金属棒ab由静止开始释放,沿导轨下滑。设 导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终 与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到 最大速度,试求此过程中金属棒达到的最大速度和电阻中 产生的热量。
率的改变与回路中电功率的改变所满足的方程。
例7.如图所示,CDEF是固定的、水平放置的、足够长的
U形金属导轨,整个导轨处于竖直向上的匀强磁场中,在导轨
上架着一个金属棒ab,在极短的时间给ab棒一个水平向右的
速度,ab将开始运动,最后又静止在导轨上,则ab在运动过
程中,就导轨是光滑和粗糙两种情况比较 (
5m/s, 1.75J
例9.如图所示,置于水平面上两根平行导轨间距离为 d=0.5m,金属细杆ab 置于导轨一端,跨在导轨之间,它 与每根导轨的最大静摩擦力为F=0.2N,导轨另一端用导 线相连形成一矩形回路,导轨长l=0.8m,电阻不计,杆 的电阻R=0.2Ω,整个装置处在方向竖直向上的匀强磁 场中,如果磁感应强度从B0=1T瞬间开始,以0.2T/s的 变化率均匀地增大,求:
摩擦力做功与能量转化问题

专题专题专题 摩擦力做功与能量转化问题摩擦力做功与能量转化问题【学习目标】【学习目标】1.1.理解静摩擦力和滑动摩擦力做功的特点;理解静摩擦力和滑动摩擦力做功的特点;理解静摩擦力和滑动摩擦力做功的特点;2.2.2.理解摩擦生热及其计算。
理解摩擦生热及其计算。
理解摩擦生热及其计算。
【知识解读】【知识解读】1.1.静摩擦力做功的特点静摩擦力做功的特点静摩擦力做功的特点如图5-1515--1,放在水平桌面上的物体A 在水平拉力F 的作用下未动,则桌面对A 向左的静摩擦力不做功,因为桌面在静摩擦力的方向上没有位移。
如图5-1515--2,A 和B 叠放在一起置于光滑水平桌面上,在拉力F 的作用下,的作用下,A A 和B 一起向右加速运动,则B 对A 的静摩擦力做正功,的静摩擦力做正功,A A 对B 的静摩擦力做负功。
可见静摩擦力做功的特点是:的静摩擦力做负功。
可见静摩擦力做功的特点是: (1)静摩擦力可以做正功,也可以做负功,还可以不做功。
功,还可以不做功。
(2)相互作用的一对静摩擦力做功的代数和总等于零。
数和总等于零。
(3)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其它形式的能。
,而没有机械能转化为其它形式的能。
2.2.滑动摩擦力做功的特点滑动摩擦力做功的特点滑动摩擦力做功的特点如图5-1515--3,物块A 在水平桌面上,在外力F 的作用下向右运动,桌面对A 向左的滑动摩擦力做负功,A 对桌面的滑动摩擦力不做功。
力不做功。
如图5-1515--4,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度v 从木板的左端滑上木板,当铁块和木板相对静止时木板相对地面滑动的距离为s,小铁块相对木板滑动的距离为d ,滑动摩擦力对铁块所做的功为:W 铁=-f(s+d)―――①―――①根据动能定理,铁块动能的变化量为:k w =f s+d ED 铁铁=-()―――②―――②②式表明,铁块从开始滑动到相对木板静止的过程中,其动能减少。
摩擦力做功与能量的关系

m/s。
( 2) 对物体 A 接触弹簧,将弹簧压缩了 x 到最短后又恰回到 C 点这段过 程,对系统应用动能定理有: -Ff·2x=0- ×3mv2,解得:x=0.4 m 弹簧从压缩最短到恰好能弹到 C 点的过程中,对系统根据能量守恒有 Ep+mgx=2mgxsin θ+Ffx,解得 Ep=6 J。
小车右端平滑对接。 小车质量 M=3 kg,车长 L=2.06 m,车上表面距地面的高 度 h=0.2 m,现有一质量 m=1 kg 的滑块,由轨道顶端无初速度释放,滑到 B 端 后冲上小车。 已知地面光滑,滑块与小车上表面间的动摩擦因数 μ=0.3,当车 运动了 t0=1.5 s 时,车被地面装置锁定(g 取 10 m/s2)。试求:
拓展训练 2(2013·海南单科,13)一质量 m=0.6 kg 的物
体以 v0=20 m/s 的初速度从倾角 α=30° 的斜坡底端沿斜坡向上运动。当物 体向上滑到某一位置时,其动能减少了 ΔEk=18 J,机械能减少了 ΔE=3 J。不 计空气阻力,重力加速度 g 取 10 m/s ,求:
2
(1)物体向上运动时加速度的大小。 (2 A 和斜面间的滑动摩擦力 Ff=2μmgcos θ,物体 A 沿斜面向下运 动到 C 点的过程中, 对 A、B 整体根据动能定理有:2mgLsin θ-mgL-FfL= ×3mv2- ×3mv0 2 解得:v= ������0 2 +
2������������ (2������������������θ-2μ������������������θ-1)=2 3 1 2 1 2
1 vB 2 2 mgR= mvB ,FNB-mg=m 2 R
则:FNB=30 N。 (2)设 m 滑上小车后经过时间 t1 与小车同速,共同速度大小为 v 对滑块有:μmg=ma1,v=vB-a1t1 对于小车:μmg=Ma2,v=a2t1 解得:v=1 m/s,t1=1 s,因 t1<t0 故滑块与小车同速后,小车继续向左匀速行驶了 0.5 s,则小车右端距 B v 端的距离为 l 车=2t1+v(t0-t1) 解得 l 车=1 m。 vB+v v (3)Q=μmgl 相对=μmg( t1- t1)
摩擦力做功与产生热能的关系

摩擦力做功与产生热能的关系摩擦力做功与产生热能的关系众所周知,恒力做功的公式为W=F.Scosθ, 但当做功的力涉及到摩擦力时,往往会使问题变的复杂化. 我们知道摩擦力属于“耗散力”,做功与路径有关,如果考虑摩擦力做功的过程中与产生热能关系时,很多学生就会对之束手无策,从近几年的高考命题中,这类问题是重点也是难点问题,以下就针对摩擦力做功与产生热能的关系作一总结的分析.1.摩擦力做功的特点与产生热能的机理.根据,<费曼物理学讲义>中的描述:“摩擦力的起因:从原子情况来看,相互接触的两个表面是不平整的,它们有许多接触点,原子好象粘接在一起,于是,当我们拉开一个正在滑动的物体时,原子啪的一下分开,随及发生振动,过去,把这种摩擦的机理想象的很简单,表面起因只不过布满凹凸不同的形状,摩擦起因于抬高滑动体越过突起部分,但是事实不可能是这样的,因为在这种情况中不会有能量损失,而实际是要消耗动力的。
动力消耗的机理是当滑动体撞击突起部分时,突起部分发生形变,接着在两个物体中产生波和原子运动,过了一会儿,产生了热。
”从以上对摩擦力做功与产生热能的机理的描述,我们从微观的角度了解到摩擦生热的机理,"所以,我们对“做功”和“生热”实质的解释是:做功是指其中的某一个摩擦力对某一个物体做的功,而且一般都是以地面为参考系的,而“生热”的实质是机械能向内能转化的过程。
这与一对相互作用的摩擦力所做功的代数和有关。
为了说明这个问题,我们首先应该明确摩擦力做功的特点.2.摩擦力做功的特点.我们学习的摩擦力包括动摩擦力和静摩擦力,它们的做功情况是否相同呢?下面我们就分别从各自做功的特点逐一分析。
2.1静摩擦力的功静摩擦力虽然是在两个物体没有相对位移条件下出现的力,但这不等于静摩擦力做功一定为零。
因为受到静摩擦力作用的物体依然可以相对地面或其它参考系发生位移,这个位移如果不与静摩擦力垂直,则静摩擦力必定做功,如果叠在一起的两个木块A、B,在拉力F的作用下沿着光滑水平面发生一段位移s,图一所示,则A物体受到向前的静摩擦力f对A作正功0sW= f0sfA0BF图转移,而没有机械能相互为其它形式的能.3、相互作用的系统内,一对静摩擦力所做的功的和必为零。
【高中物理】高考难点摩擦力的理解和应用汇总,你都记住了吗

【高中物理】高考难点摩擦力的理解和应用汇总,你都记住了吗?摩擦力两个相互接触的物体,当它们对运动或具有相对运动的趋势时,就会在接触面上产生阻碍相对运动或相对运动趋势的力。
产生的条件①接触面粗糙②接触且挤压③接触面间有相对运动(或相对运动趋势)方向①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。
②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。
注意(1)“与相对运动方向相反”不能等同于“与运动方向相反”。
滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。
(2)滑动摩擦力可能起动力作用,也可能起阻力作用。
摩擦力的大小①静摩擦力静摩擦力随拉力的变化而变化,并且F静=F。
当拉力增大到某一值时候,物体就要滑动,此时静摩擦力达到最大值,我们把Fmax称为最大静摩擦力。
最大静摩擦力略大于滑动摩擦力。
静摩擦力的取值范围:0<f≤Fmax②滑动摩擦力当一个物体在另一个物体表面滑动时,会受到另一个物体阻碍它滑动的力,这种力叫做滑动摩擦力方向:沿着接触面,并且跟物体的相对运动的方向相反。
大小:滑动摩擦力跟压力成正比,也就是两个物体表面间的垂直作用力成正比。
公式:F=μFNμ叫动摩擦因数,它与相互接触的两个物体的材料有关,还与接触面的情况(粗糙程度等)有关。
注意①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。
②μ与接触面的材料、接触面的情况有关。
③滑动摩擦力大小,与相对运动的速度大小无关。
③滚动摩擦一个物体在另一个物体表面上滚动时产生的摩擦。
当压力相同时,滚动摩擦比滑动摩擦小很多。
摩擦力的效果总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。
说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。
第六章 第4课时 功能关系 能量守恒定律(解析版)-2025年物理大一轮复习讲义

第六章机械能守恒定律第4课时 功能关系 能量守恒定律学习目标1.熟练掌握几种常见的功能关系,并会用于解决实际问题。
2.掌握一对摩擦力做功与能量转化的关系。
3.会应用能量守恒观点解决综合问题。
考点01 常见的功能关系的理解和应用一、对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
二、常见的功能关系能量功能关系表达式重力做的功等于重力势能减少量弹力做的功等于弹性势能减少量势能静电力做的功等于电势能减少量W=E p1-E p2=-ΔE p动能合外力做的功等于物体动能变化量W=E k2-E k1=1 2 mv2-12m v02机械能除重力和弹力之外的其他力做的功等于机械能变化量W其他=E2-E1=ΔE摩擦产生的内能一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q=F f·x相对电能克服安培力做的功等于电能增加量W克安=E2-E1=ΔE电[典例1·对常见的功能关系的理解和应用的考查](多选)(2023·四川广安市二模)滑沙运动是继滑冰、滑水、滑雪和滑草之后又一新兴运动,它使户外运动爱好者在运动的同时又能领略到沙漠的绮丽风光。
如图所示,质量为50 kg的人坐在滑沙板上从沙坡的顶端由静止沿直线匀加速下滑,经过10 s到达坡底,速度大小为20 m/s。
已知沙坡的倾角为30°,重力加速度g 取10 m/s2,下列关于此过程的说法中正确的是( )A .人的重力势能减少5.0×104 JB .人的动能增加1.0×104 JC .人的机械能减少1.5×104 JD .人克服阻力做功4.0×104 J 答案 BC解析 人沿沙坡下滑的距离l =12v t =100 m ,重力势能减少ΔE p =mgl sin 30°=2.5×104 J ,故A错误;人的动能增加ΔE k =12m v 2=1.0×104 J ,故B 正确;人的机械能减少ΔE =ΔE p -ΔE k =1.5×104 J ,故C 正确;人克服阻力做功W 克f =ΔE =1.5×104 J ,故D 错误。
第四章机械能及其守恒定律之摩擦力做功与能量转化课件

d
S
课堂小结
1.静摩擦力和滑动摩擦力都可以对物体做正功,也 可以对物体做负功,还可以不做功。
2、一对静摩擦力对物体做功,没有相对位移,因此 不会产生内能。
知识回顾
问题1:怎样区分滑动摩擦和静摩擦? 问题2:功的计算公式是? 位移X的含义。 W=FXcosα 问题3:如何判断力是做正功还是负功?
问题4:搓手时摩擦力做功,能量如何转化? 机械能转化为内能!
探究1:
做功和能量转化
• ◆如图,放在水平桌面上的物体A在水平拉力F的作用下静止。
。
A
F
• ◆如图,A和B叠放在一起置于光滑水平桌面上,在拉力F的作
3.一对滑动摩擦力做功的过程中,有相对位移,会 产生内能。 Q=f∆x
4. 能量转化:系统减小的机械能转化为增加的内能
Q=f滑d =E机
• 课后习题:如图,质量为M、长度为L的小车静止在光滑的水 平面上.质量为m的小物块(可视为质点)放在小车的最左 端.现在一水平恒力F作用在小物块上,使物块从静止开始 做匀加速直线运动,物块和小车之间的摩擦力为f.经过时间t, 小车运动的位移为x,物块刚好滑到小车的最右端( )
如图,上表面粗糙的长木板B,放在光滑的水平地面上, A
v0
一小物块A以速度V0 从木板的左端滑上木板,当物块A
B
和木板B相对静止时木板B相对地面滑动的距离为S,小
物块A相对木行受力分析(水平方向)
s
d
(2)分别计算摩擦力对A、B做了多少功
(3)计算A、B之间这对摩擦力的总功
2023届浙江高三物理高考复习专题模型精讲精练第31讲 与摩擦力做功及摩擦热相关的6种题型(解析版)

第31讲与摩擦力做功及摩擦热相关的6种题型1.(2021·浙江)如图所示,质量m=2kg的滑块以v0=16m/s的初速度沿倾角θ=37°的斜面上滑,经t=2s滑行到最高点。
然后,滑块返回到出发点。
已知sin37°=0.6,cos37°=0.8,求滑块(1)最大位移值x;(2)与斜面间的动摩擦因数;(3)从最高点返回到出发点的过程中重力的平均功率P。
【解答】解:(1)小车向上做匀减速直线运动,根据匀变速直线运动推论有:x=v0 2 t代入数据解得:x=162×2m=16m(2)小车向上做匀减速直线运动,根据加速度定义得加速度大小:a1=Δvt=16−02m/s2=8m/s2上滑过程,由牛顿第二定律得:mgsinθ+μmgcosθ=ma1得:a1=mgsinθ+μmgcosθm=gsinθ+μgcosθ代入数据解得:μ=a1−gsinθgcosθ=8−10×0.610×0.8=14=0.25(3)小车下滑过程,由牛顿第二定律得:mgsinθ﹣μmgcosθ=ma2代入数据解得:a2=mgsinθ−μmgcosθm=gsinθ﹣μgcosθ=10×0.6﹣0.25×10×0.8m/s2=4m/s2由运动学公式得:v t=√2a2x=√2×4×16m/s=8√2m/s=11.3m/s得重力的平均功率:P=mg v cos(90°﹣θ)=2×10×8√22×0.6W=48√2W=67.9W答:(1)最大位移值x为16m;(2)与斜面间的动摩擦因数为0.25;(3)从最高点返回到出发点的过程中重力的平均功率P为67.9W。
一.知识回顾1.摩擦力做功正负情况运动的物体受到滑动摩擦力或静摩擦力时,若摩擦力的方向与运动方向相反,则摩擦力做负功,该摩擦力就是阻力;若摩擦力的方向与运动方向相同,则摩擦力做正功,该摩擦力就是动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 摩擦力做功与能量转化问题
【学习目标】
1.理解静摩擦力和滑动摩擦力做功的特点;
2.理解摩擦生热及其计算。
【知识解读】
1.静摩擦力做功的特点
如图5-15-1,放在水平桌面上的物体A 在水平拉力F 的作用下未动,则桌面对A 向左的静摩擦力不做功,因为桌面在静摩擦力的方向上没有位移。
如图5-15-2,A 和B 叠放在一起置于光滑水平桌面上,在拉力F 的作用下,A 和B 一起向右加速运动,则B 对A 的静摩擦力做正功,A 对B 的静摩擦力做负功。
可见静摩擦力做功的特点是: (1)静摩擦力可以做正功,也可以做负功,还可以不做功。
(2)相互作用的一对静摩擦力做功的代数和总等于零。
(3)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其它形式的能。
2.滑动摩擦力做功的特点
如图5-15-3,物块A 在水平桌面上,在外力F 的作用下向右运动,桌面对A 向左的滑动摩擦力做负功,A 对桌面的滑动摩擦力不做功。
如图5-15-4,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度 v 从木板的左端滑上木板,当铁块和木板相对静止时木板相对地面滑动的距离为s ,小铁
块相对木板滑动的距离为d ,滑动摩擦力对铁块所做的功为:W 铁=-f(s+d)―――①
根据动能定理,铁块动能的变化量为:
k w =f
s +d E ∆铁铁=-()―――②
②式表明,铁块从开始滑动到相对木板静止的过程中,其动能减少。
那么,铁块减少的动能转化为什么能量了呢?
以木板为研究对象,滑动摩擦力对木板所做的功为:w fs 板=――――――③ 根据动能定理,木板动能的变化量为:k E w fs ∆板板==――④
5-15-1
图
5152
图-
-5153
图--
5154
图--
④式表明木板的动能是增加的,由于木板所受摩擦力的施力物体是铁块,可见木块减小的动能有一部分(fs )转化为木板的动能。
将②、④两式相加得:k k E E fd ∆∆物板+=-―――――――⑤
⑤式表明铁块和木板组成的系统的机械能的减少量等于滑动摩擦力与铁块相对木板的位移的乘积,这部分能量转化为系统的内能。
综上所述,滑动摩擦力做功有以下特点:
①滑动摩擦力可以对物体做正功,也可以对物体做负功,还可以不做功。
②相互摩擦的系统内,一对滑动摩擦力所做的功总为负值,其绝对值等于滑动摩擦力与相对位移的乘积,且等于系统损失的机械能。
③一对滑动摩擦力做功的过程中,能量的转化有两种情况:一是相互摩擦的物体间机械能的转移;二是机械能转化为内能。
滑动摩擦力、空气阻力等,在曲线运动或者往返运动时所做的功等于力和路程(不是位移)的乘积。
3.摩擦生热
摩擦生热是指滑动摩擦生热,静摩擦不会生热。
产生的热Q 等于系统机械能的减少,又等于滑动摩擦力乘以相对位移,即Q=fd=E ∆机 【案例剖析】
例1.如图5-15-5,质量为M 的足够长的木板,以速度0v 在光滑的水平面上向左运动,一质量为m (M m 〉)的小铁块以同样大小的速度从板的左端向右运动,最后二者以共同的速度01
3
v v =做匀速运动。
若它们之间的动摩擦
因数为μ。
求:
(1)小铁块向右运动的最大距离为多少? (2)小铁块在木板上滑行多远?
【解析】小铁块滑上木板后,由于铁块相对木板向右滑动,铁块将受到向左的滑动摩擦力作用而减速,木板将受到向右的滑动摩擦力作用而减速。
由于M m 〉,所以当m 的速度减为零时,M 仍有向左的速度,m 相对于M 仍向右滑行,m 将在向左的滑动摩擦力作用下相对地面向左做初速为零的匀加速运动,木板M 继续向左减速,直到二者达到相同的速度,而后保持相对静止一起向左匀速运动。
正确理解“小铁块向右运动的最大距离”和“在木
板上滑行距离”的区别是解决问题的关键。
(答案:(1)2012v s g μ=;(2)204()9v M m L mg
μ+=)
【目标达成】
5155
图--
1. 光滑水平面上有一质量为M ,长为l 的木板,木板上有一木块,质量为m 。
木块和木板间的滑动摩擦力为f ,木块在恒力F 的作用下,从木板的一端运动到另一端。
第一次将木板固定,第二次木板可以自由运动,则两种情况下比较,下列说法正确的是( ) A.第一次产生的热量多 B.第二次产生的热量多 C.两次产生的热量一样多 D.两次F 做功一样多
2.从离地H 高处竖直向上抛出一个小球,小球所受阻力大小始终为f ,小球上升了h 高后开始下落,直到落地。
在此全过程中,小球克服阻力做的功为( )
A.fH
B.()f H h +
C.(2)f H h +
D.()f H h -+ 3. 一木块放在光滑水平面上,一子弹水平射入木块中,射入深度为d ,平均阻力为f 。
设
木块离出发点距离为s 时开始匀速前进,下列判断正确的是( ) A .fs 量度子弹损失的动能 B .f (s +d )量度子弹损失的动能 C .fd 量度子弹损失的动能
D .fd 量度子弹、木块系统总机械能的损失
4.质量为m 的物体从距地面高度为H 处以速度0v 被竖直向上抛出,已知它运动时受到的阻力大小恒为f F ,且f F m g 〈。
假定每次与地面碰撞时损失的机械能可忽略不计,它在停止运动以前在空中通过的路程为多少?
5.如图5-15-6,AB 和CD 为两个对称的斜面,其上部足够长,下部分别与一光滑的圆弧面的两端相切,圆弧的圆心角为120φ=︒,半径2R m =,一物体在离圆弧底E 高度为3h m =处,以初速4.0/m s 沿斜面向下运动,若物体与两斜面的动摩擦因数0.2μ=,则物体在两斜面上(不包括圆弧面部分)一共能走多长的路程?
5-15-6
图
6.如图5-15-7,水平方向的传送带以2m/s 的速度匀速运动,把一质量为2kg 的小物体轻轻放在传送带的左端,经过4s 物体到达传送带的右端。
已知物体与传送带间的动摩擦因数为0.2,求: (1)传送带的长度。
(2)这一过程中摩擦力对物体所做的功。
(3)这个过程中由于物体与传送带的摩擦而转化为内能的数值。
7.如图5-15-8,一质量为m 的物块从倾角为60︒的斜面上的A 点由静止释放,下滑到B 点时与挡板碰撞,碰撞后物块以碰前的速率反弹沿斜面向上滑动。
若物块与斜面间的动摩擦因数是0.1μ=, 1.73AB m =。
(1)试分析物块最终停在何处? (2)求物块在全过程中运动的路程。
8.如图所示,质量为2kg 的物体,在倾角为0
30=θ的斜面上自A 点向B 点下滑,
m AB 8.4=。
物体在A 点的速率为s m v A /3=,物体到B 点时开始压缩弹簧,当弹簧被
压缩了20cm 到最短时,物体在C 点。
斜面对物体的摩擦力N f 8=,弹簧的质量可忽略不计,若物体能沿斜面弹回到B 点的上方,求物体向上弹回能达到的最高点距点C 的高度差。
5-15-7
图
5-15-8
图
515图--9。