山东省冠县武训高级中学等比数列中难题训练 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则
5678a a a a +++=( )
A .80
B .20
C .32
D .
255
3
2.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4
B .5
C .8
D .15
3.已知等比数列{}n a 中,1354a a a ⋅⋅=
,公比q =,则456a a a ⋅⋅=( ) A .32
B .16
C .16-
D .32-
4.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里
B .86里
C .90里
D .96里
6.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=1
4
,且a n =1n n b b +,则b 2020=( )
A .22017
B .22018
C .22019
D .22020
7.已知等比数列{}n a 的前n 项和为n S ,且1352
a a +=,245
4a a +=,则n n S =a ( )
A .14n -
B .41n -
C .12n -
D .21n -
8.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()
{}
1
11n n n a a -+-的
前n 项的和为( )
A .()23
82133n n +--
B .()23
182155n n +---
C .()2382133
n n ++-
D .()23182155
n n +-+-
9.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8
B .8±
C .8-
D .1
10.已知单调递增数列{}n a 的前n 项和n S 满足()(
)*
21n n n S a a n =+∈N
,且0n
S
>,记
数列{}
2n
n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )
A .7
B .8
C .10
D .11
11.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a
14a =,则
14
m n +的最小值为( ) A .
53
B .
32
C .
43
D .
116
12.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16
B .32
C .64
D .128
13.数列{a n }满足2
1
1232222
n n n
a a a a -+++⋯+=
(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )
A .55
12⎛⎫ ⎪⎝⎭
B .10
112⎛⎫- ⎪⎝⎭
C .9
112⎛⎫- ⎪⎝⎭ D .66
12⎛⎫ ⎪⎝⎭
14.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度
之和不小于9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,
lg30.4771=)
A .4
B .5
C .6
D .7
15.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有
312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
16.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
17.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )
A .32
B .31
C .16
D .15
18.数列{}n a 满足1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩,,
,则该数列从第5项到第15项的和为( )
A .2016
B .1528
C .1504
D .992
19.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092
B .2047
C .2046
D .1023
20.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方
法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
大吕
=大吕
=
太簇.据此,可得
正项等比数列{}n a 中,k a =( )
A
.n -
B
.n -C
. D
. 二、多选题21.题目文件丢失!
22.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫
⎨
⎬⎩⎭
为等差数列 B .数列{}2
n
a 为等比数列
C .若,()m n a n a m m n ==≠,则0m n a +=
D .若,()m n S n S m m n ==≠,则0m n S += 23.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A
B
C
D
24.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,13511121
4
a a a ++=,则( ) A .{}n a 必是递减数列 B .5314
S =
C .公比4q =或
14
D .14a =或
14
25.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1
13()2
n n a -=⋅-
B .36n
n S a =+
C .若数列{}n a 中存在两项p a ,s a
3a =,则19p s +的最小值为83
D .若1n n t S m S ≤-
≤恒成立,则m t -的最小值为116
26.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-= B .12n n a
C .21n
n S =-
D .1
21n n S -=-
27.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )
A .1{}n
a B .2
2log ()n a
C .1{}n n a a ++
D .12{}n n n a a a ++++
28.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-=
B .12n n
a
C .21n
n S =- D .1
21n n S -=-
29.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路
B .此人第三天走的路程站全程的
18
C .此人第一天走的路程比后五天走的路程多六里
D .此人后三天共走了42里路
30.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设213
2
n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若1
4q =-
,则n n T S > D .若3
4
q =-
,则n n T S > 31.已知数列{}n a 满足11a =,()*123n
n n
a a n N a +=
∈+,则下列结论正确的有( ) A .13n a ⎧⎫
+⎨⎬⎩⎭
为等比数列 B .{}n a 的通项公式为1123
n n a +=-
C .{}n a 为递增数列
D .1n a ⎧⎫⎨⎬⎩⎭
的前n 项和2
234n n T n +=--
32.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称
{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )
A .公比大于1的等比数列一定是间隔递增数列
B .已知4
n a n n
=+
,则{}n a 是间隔递增数列 C .已知()21n
n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2
D .已知2
2020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<
33.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫
⎨⎬⋅⎩⎭
的前
n 项和为n T ,*n ∈N ,则下列选项正确的为( )
A .数列{}1n a +是等差数列
B .数列{}1n a +是等比数列
C .数列{}n a 的通项公式为21n
n a =-
D .1n T <
34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8
B .9
C .10
D .11
35.关于等差数列和等比数列,下列四个选项中不正确的有( )
A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等差数列
C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.A 【分析】
由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】
根据题意,由于{}n a 是各项均为正数的等比数列,
121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q
则()()4
56781234161480a a a a q a a a a +++=+++=+=.
故选:A 2.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 3.A 【分析】
由等比数列的通项公式可计算得出()6
456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.
【详解】
由6
326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.
故选:A. 4.C 【分析】
根据数列的递推关系,利用取倒数法进行转化得1121n n a a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭
为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=
+,所以两边取倒数得
12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭
, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则111
11122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭
,
所以121n n a =-,故10
1011
211023
a ==-. 故选:C 【点睛】
方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中
1
q
x p =
-)来进行求解. 5.D 【分析】
由题意得每天行走的路程成等比数列{}n a 、且公比为1
2
,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】
由题意可知此人每天走的步数构成
1
2
为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]
2378
1
12a -=-, 解得1192a =,∴此人第二天走1
192962
⨯
=里, ∴第二天走了96里,
故选:D . 6.A 【分析】
根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为
2020
1
b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1
n n n
b a b +=
,所以3201920202020
24
12320182019123
201820191
b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=
⋅⋅⋅⋅
⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()
()123
201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅
22
22019
201910101010
1010101010102a a a a a =⋅⋅⋅==
所以20192020
12b b =,又114
b =,所以201720202b =, 故选:A. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
7.D
根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】
因为等比数列{}n a 的前n 项和为n S ,且1352
a a +=
,2454a a +=,
所以2
4135
1
452
2
q a a a a =++==, 因此()()11
1
1111112
21112n n
n
n n n n n n
a q S q q a a q q q ---⎛⎫- ⎪
--⎝⎭=
=
==--⎛⎫ ⎪⎝⎭
. 故选:D. 8.D 【分析】
根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入
()
1
11n n n a a -+-可知数列为等比数列,求和即可.
【详解】
因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,
所以31121
208a q a q a q ⎧+=⎨=⎩,
解得2q
,12a =,
所以1222n n
n a -=⨯=,
()
()
()
111
1
1
1222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,
()
{
}
1
11n n n a a -+∴-是以8为首项,4-为公比的等比数列,
()
23
3
5
7
9
21
11
8[1(4)]8222222
(1)1(4)155
n n n n n n S -++---∴=-+--+
+⋅==+---, 故选:D 【点睛】
关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 9.A 【分析】
分析出70a >,再结合等比中项的性质可求得7a 的值.
设等比数列{}n a 的公比为q ,则2
750a a q =>,
由等比中项的性质可得2
75964a a a ==,因此,78a =.
故选:A. 10.B 【分析】
由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1
122n n T n +=-⋅+,即可得解.
【详解】
由题意,()()*
21n n n S a a n N
=+∈,
当2n ≥时,()11121n n n S a a ---=+,
所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,
因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,
所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,
()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,
所以()()2
3
4
1
11212222222
212212
n n
n n n n T n n n +++--=++++⋅⋅⋅+-⋅=
-⋅=-⋅--,
所以()1
12
2n n T n +=-⋅+,
所以876221538T =⨯+=,9
87223586T =⨯+=,
所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】
关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 11.B 【分析】
设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得2
2q q =+,解得2q
,
根据存在两项m a 、n a 14a =14a =,6m n +=.对m ,n 分类讨论即可得出.
解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,
22q q ∴=+,
解得2q
,
存在两项m a 、n a 14a =,
∴14a =,
6m n ∴+=,
m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),
则
14m n
+的最小值为143242+=.
故选:B . 12.A 【分析】
由()4633512a a a a a a q +++=+,求得3
q ,再由()3
7s 94s 6a a a a a a q ++=++求解.
【详解】
1234a a a ++=,4568a a a ++=.
∴3
2q =,
∴()3
78945616a a a a a a q ++=++=.
故选:A 13.B 【分析】
根据题意得到2
212311
2222
n n n a a a a ---+++
+=
,(2n ≥),与条件两式作差,得到12n n a =
,(2n ≥),再验证112a =满足12n n a =,得到12n n
a =()*
n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足2
11232222
n n n a a a a -+++
+=
, 2212311
2222
n n n a a a a ---+++
+=
,(2n ≥) 则1
112
222--=
-=n n n n a ,则12
n n a =,(2n ≥), 又112a =
满足12n n a =,所以12
n n a =()*
n N ∈,
因此101021012310101111111221122
2212
S a a a a ⎛⎫- ⎪⎛⎫
⎝⎭++=
+++==- ⎪+⎝-=⎭.
故选:B 14.C 【分析】
依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】
第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19
的区间,长度和为2
9;第
三次操作去掉四个长度为
127的区间,长度和为427;…第n 次操作去掉12n -个长度为1
3
n 的区间,长度和为1
23
n n -,
于是进行了n 次操作后,所有去掉的区间长度之和为1
122213933n
n n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭
, 由题意,90
2131n
⎛⎫-≥ ⎪⎝⎭,即21lg lg
1031n ≤=-,即()lg3lg21n -≥,解得:11
5.679lg3lg 20.47710.3010
n ≥
=≈--,
又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】
本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 15.C 【分析】
根据等比数列的定义和判定方法逐一判断. 【详解】
对于A ,若24n
n
a =,则2n
n a =±,+1
+12n n a =±,则1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由
312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若
()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2
210n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 16.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可 【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则3
1327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 17.B 【分析】
先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】
因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q
,所以2
11a a q
=
=,又因为1111n
n
a q S q
q
,所以()551123112
S -=
=-.
故选:B. 18.C 【分析】
利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】
因为1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩,,
,
所以,410
4
9104561022222212
a a a -+++=+
+==--,
49
8
4
4
8
941112152222222212
a a a -+++=+
+=+
+==--,
该数列从第5项到第15项的和为
10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=
故选:C 【点睛】
解题关键在于利用等比数列的求和公式进行求解,属于基础题 19.A 【分析】
根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】
因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12
,2n
n a n N n -=∈≥,因此()12n n a n N ++=∈,
即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212
-=-.
故选:A. 20.C 【分析】
根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】
因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}
n a 中的k a 可由首项1a 和末项n a 表示,因为
11n n a a
q -=,所以q = 所以11
1
111k k n n k a a a a
a ---⎛⎫ ⎪
⎛== ⎭
⎝
⎝
1111
n k k n n n
a a
----==⋅ 故选:C.
二、多选题 21.无
22.ABC 【分析】
设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为
()
112
n n n S na d -=+
,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选项进行逐一判断可得答案. 【详解】 设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()
112
n n n S na d -=+ 选项A.
112n S n a d n -=+,则+1111+1222
n n S S n n d a d a d n n -⎛
⎫⎛⎫-=+-+
= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫
⎨⎬⎩⎭为等差数列,故A 正确. 选项B. ()1122
n
a n d
a +-=,则112222n n n n
a a a d a ++-==(常数),所以数列{}
2n a
为等比数列,故B
正确.
选项C. 由,m n a n a m ==,得()()1111m n
a a m d n
a a n d m ⎧=+-=⎪⎨
=+-=⎪⎩ ,解得11,1a m n d =+-=- 所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112
n n n n S a d m -=+=,()112
m m m m S a d n -=+
=
将以上两式相减可得:()()()2212d
m n a m m n n n m ⎡⎤-+
---=-⎣
⎦
()()()112
d
m n a m n m n n m -+-+-=-,又m n ≠
所以()1112d a m n +
+-=-,即()1112
d
m n a +-=-- ()()()()()()()1
11112
m n m n m n d S m n a m n a m n a m n +++-=++
=+++--=-+,所
以D 不正确. 故选:ABC 【点睛】
关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应
用,解答本题的关键是利用通项公式得出()()1111m n
a a m d n a a n d m ⎧=+-=⎪
⎨
=+-=⎪⎩,从中解出1,a d ,从而
判断选项C ,由前n 项和公式得到()112
n n n n S a d m -=+
=,
()112
m m m m S a d n -=+
=,然后得出
()1112
d
m n a +-=--,在代入m n S +中可判断D ,属于中档题. 23.AB 【分析】
因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】
解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2
111q
q q q -=-+,
因为1q ≠,所以21q q =+, 因为0q >
,所以解得q =
, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3
21q q =+,
整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >
,所以解得12
q -+=,
综上12q +=
或12
q -+=, 故选:AB 24.BD 【分析】
设设等比数列{}n a 的公比为q ,则0q >,由已知得11121
14
a a ++=,解方程计算即可得答案. 【详解】
解:设等比数列{}n a 的公比为q ,则0q >,
因为2
153
1a a a ==,2311a a q == , 所以
511151351515111111121
11114
a a a a a a a a a a a a a ++=++=++=+=+++=,
解得1412a q =⎧⎪⎨=⎪⎩或1
142.
a q ⎧=⎪⎨
⎪=⎩, 当14a =,12q =时,5514131
21412
S ⎛
⎫- ⎪
⎝⎭==-,数列{}n a 是递减数列;
当11
4
a =
,2q 时,531
4
S =
,数列{}n a 是递增数列; 综上,5314
S =. 故选:BD. 【点睛】
本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为11121
14
a a ++=,进而解方程计算. 25.ABD 【分析】
根据等差中项列式求出1
2
q =-
,进而求出等比数列的通项和前n 项和,可知A ,B 正确;
3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,可知19p s +的最小值为
114
,C 不正确;利用1n
n y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】
设等比数列{}n a 的公比为q ,
由13a =,21344a a a -=+得2
43343q q -⨯=+⨯,解得1
2
q =-
,所以11
3()2
n n a -=⋅-,
1
3(1())
1221()121()2
n n n S --⎛⎫==-- ⎪⎝⎭--;
1111361()66()63()63222n n n n n S a -⎛
⎫=--=--=+⋅-=+ ⎪⎝
⎭;所以A ,B 正确;
3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,
所以11
4p s q
q
q --=,所以6p s +=,
则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1p s =⎧⎨=⎩
,此时19145p s +=或114或194或465;C 不正确,
122,2121()2122,2n
n n n
n S n ⎧⎛⎫
+⎪ ⎪⎪⎝⎭⎛
⎫=--=⎨ ⎪⎝⎭⎛⎫
⎪- ⎪⎪⎝⎭⎩
为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3
[,2)2
n S ∈,
又1n n y S S =-
关于n S 单调递增,所以当n 为奇数时,138
(,]23
n
n S S -∈,当n 为偶数时,153
[,)62n n S S -
∈,所以83
m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】
本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 26.BC 【分析】
根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】
数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>
23464a a a =,2364a ∴=,解得34a =,
2410a a +=,4
410q q
∴+=即22520q q -+=,解得2q
或
12
, 又数列{a n }为单调递增的等比数列,取2q
,3124
14
a a q =
==, 1
2
n n
a ,212121
n n n S -==--,()1121212n n n
n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 27.AD 【分析】
主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定.
【详解】
1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,
由等比数列的定义知1{}n
a 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】
本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 28.BC 【分析】
先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】
由23464a a a =得33
34a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由
2410a a +=,得4
410q q
+=,即22520q q -+=,解得2q
或1
2q =
.又因为数列{}n a 单调递增,所以2q
,所以112810a a +=,解得11a =.所以12n n
a ,
()
1122112
n n n S ⨯-=
=--,所以()1121212n n n
n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.
29.ACD 【分析】
若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列,由6378S =求得首项,然后分析4个选项可得答案.
【详解】
解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列, 因为6378S =,所以1661(1)
2=
378112
a S -
=-,解得1
192a =,
对于A ,由于21
192962
a =⨯
=,所以此人第二天走了九十六里路,所以A 正确;
对于B ,由于 3148119248,43788
a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程
多六里,所以C 正确; 对于D ,由于45611
11924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭
,所以D 正确, 故选:ACD 【点睛】
此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 30.BD 【分析】
先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】
由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q
-=
>-,即
101n
q q ->-,上式等价于1010n q q ⎧->⎨->⎩
①或10
10
n q q ⎧-<⎨
-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.
综上所述,q 的取值范围是()
()1,00,-+∞.
2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛
⎫=- ⎪⎝
⎭,所以
()2311222n n n n T S S q q S q q ⎛⎫⎛
⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝
⎭,而0n S >,且()()1,00,q ∈-⋃+∞.
所以,当1
12
q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当1
2(0)2
q q -
<<≠时,0n n T S -<,即n n T S <. 当12
q =-
或2q 时,0,n n n n T S T S -==,A 选项错误.
综上所述,正确的选项为BD. 故选:BD 【点睛】
本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 31.ABD 【分析】 由()*123n
n n
a a n N a +=
∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为
112323n n
n n a a a a ++==+,所以11132(3)n n a a ++=+,又11
340a +=≠, 所以13n a ⎧⎫+⎨
⎬⎩⎭
是以4为首项,2位公比的等比数列,1
1342n n a -+=⨯即1123n n a +=-,故
选项A 、B 正确. 由{}n a 的通项公式为1
12
3
n n a +=
-知,{}n a 为递减数列,选项C 不正确.
因为1
231n n
a +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-+
+-=++
+-
22(12)2312
234n n n n +-⨯-=⨯-=--.选项D 正确,
故选:ABD 【点睛】
本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 32.BCD 【分析】
根据间隔递增数列的定义求解. 【详解】 A. ()
1111
111n k n n n k k n a a a a q
q q a q +---+=-=--,因为1q >,所以当10a <时,
n k n a a +<,故错误;
B. ()()244441++n k
n n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛
⎫-=++-+=-= ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭
,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;
C. ()()
()()()()
21212111n k
n n k
n k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦
,当n 为奇数时,()2110k
k --+>,存在1k 成立,当n 为偶数时,()2110k
k +-->,存在2
k ≥
成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确;
D. 若{}n a 是间隔递增数列且最小间隔数是3,
则()()()
2222020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *∈N 成立,
则()220k t k +->,对于3k ≥成立,且()2
20k t k +-≤,对于k 2≤成立 即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立
所以23t -<,且22t -≥
解得45t ≤<,故正确.
故选:BCD
【点睛】
本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题.
33.BCD
【分析】
由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公
式可得n a ,1112211(21)(21)2121
n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】
解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,
可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,
则12n n a +=,即21n n a =-, 又1112211(21)(21)2121
n n n n n n n n a a +++==-----,可得22311111111111212121212121
n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确.
故选:BCD .
【点睛】
本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题.
34.AB
【分析】
由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案.
【详解】
由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,
n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,
其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1)
=(21+22+…+2n )﹣n ()21212n
n -=-=-2n +1﹣2﹣n .
当n =9时,T n =1013<2019;
当n =10时,T n =2036>2019.
∴n 的取值可以是8,9.
故选:AB
【点睛】
本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
35.ABD
【分析】
根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.
【详解】
根据题意,依次分析选项:
对于A ,若数列{}n a 的前n 项和2n S an bn c =++,
若0c =,由等差数列的性质可得数列{}n a 为等差数列,
若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;
对于B ,若数列{}n a 的前n 项和122n n S +=-,
可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;
对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,
即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,
故C 正确;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,
比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.
故选:ABD .
【点睛】
本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题.。