二乙醇单异丙醇胺合成实用工艺研究

二乙醇单异丙醇胺合成实用工艺研究
二乙醇单异丙醇胺合成实用工艺研究

声明本学位论文是我在导师的指导下取得的研究成果,尽我所知,在本学位论文中,除了加以标注和致谢的部分外,不包含其他人已经发表或公布过的研究成果,也不包含我为获得任何教育机构的学位或学历而使用过的材料。与我一同工作的同事对本学位论文做出的贡献均已在论文中作了明确的说明。研究生签名:黝眵\年月日l学位论文使用授权声明理工大学有权保存本学位论文的电子和纸质文档,可以借阅或上网公布本学位论文的部分或全部容,可以向有关部门或机构送交并授权其保存、借阅或上网公布本学位论文的部分或全部容。对于论文,按的有关规定和程序处理。研究生签名:1呷年月摘要本文以一异丙醇胺(MIPA)、二乙醇胺(DEA)、环氧乙烷(EO)、环氧丙烷(PO)为原料合成二乙醇单异丙醇胺(简称DEIPA),通过小试实验获得最佳的合成工艺条件,研究容如下:(1)通过单因素实验研究了时间、胺烷比、温度三因素对合成产率及纯度的影响规律,实验结果表明,DEA路线中,当胺烷比为1:1.,反应时间为80min,反应温度为50℃时,DEIPA产品纯度达到市售标准;在MIPA路线中,当胺烷比为l:2,反应时间为40min,反应温度为50℃所得DEIPA产品中副产物较少,可以通过后处理工艺较为方便地取得符合标准的DEIPA产品。‘.(2)为取得高纯度的DEIPA产品,则必须控制合成过程中产生的

副产物含量,本文通过实验研究高沸点副产物的含量随时间、温度、胺烷比的变化规律,结果表明,高胺烷比及高温有利于高沸点副产物的生成,当DEA及MIPA路线中的胺烷比为1:1,l:2时,温度为50℃时,DEIPA产品中的副产物含量能控制在合适的围。(3)以小试实验选取的合成工艺条件进行放大实验,放大实验结果表明,DEIPA产品的纯度及副产物的含量都能控制在合理的围之,因此小试实验工艺条件是可靠的。jj(4)MIPA路线合成的DEIPA产品中含有20%DEA,这部分需通过精馏去除,。本文设计了间歇精馏实验,研究了真空度及回流比等因素对DEIPA的纯度的影响规律,实验结果表明。,在真空度O.099MPa,回流比为2:1,精馏操作时间为160min的条件下,DEIPA产品符合市售标准。关键词:二乙醇单异丙醇胺、一异丙醇胺、二乙醇胺、间歇精馏by—productcouldbe髓controlledinappropriatera

Ilgeatthereactcondition:

tllerateofDEAaIldPOis1:1a11dtheMIPA锄dE0is1:2,temperatureofreaction5

0℃..3.Theamplificationex

perimentw够c删edout、析出thech

oosenprocessconditionsbysmanscaleexperimem.TheresIiltoftheexperimentindicatedtllatprocessconditions、Ⅳerereliable,锄dⅡleb硒ic№wereprovidedbyt:heamplificationexperiment..4.Thebatchf}actionatingexperimentwaSexecuted晰thcmdeproductofDEIPAwhichcomained

20%DEA,whichwaLssymhesizedbytllerouteofMIPA.Thelight丘.actionofcrudeproductwaSseparated.Theinnuenceofp埘t)rforDEIPA、)、raSstudied诵ththef.aCtorsofdegreeofVacuumaJldrefluXratio.Tlleresultoftheexperimentindicatedttlatthepuri够ofDEIPAhaSbeenachievedthestalldardofmarketattherecti匆conditionthatdeg

reeofvacuumrateis0.099MPa,renuxratiois2:landoperationtimeis160min.Keywords:N-N-bis(2-hydroxyethyl)isopropanolamine;MIPA;batchf.ractionating;DFAIl摘AB.2……….…….….………….…....…….…..19……….……….……….….…….…..…….:11……………………………………………..:!l……………………………………………..:11……………………………………………..22……………………………………………。22……...…………:……。…….:…………..22……………………………..:…………….。23…………………j…………….……………:!zl……………………………………………..:!!;…j..….………….…….....….….….….i…:!!;……………………………………………..:!!;…….…………….…………..….….……..21;……………………………………………..26……………………………………………..27……………………………………………..27●

乙醇胺

乙醇胺 乙醇胺水溶液呈碱性.有极强的吸湿性,能吸收酸性气体,加热后又可将吸收的气体释放.有乳化及气泡作用.能与无机酸和有机酸生;成盐类,与酸酐作用生成酯.其氨基中的氢原子可被酰卤、卤代烷等置换.可燃!遇明火、高温有燃烧的危险,蒸汽有毒。密度:相对密度(水=1)1.02;相对密度(空气=1)2.11 稳定性稳定 1 理化常数 国标编号:82504 CAS号:141-43-5 中文名称:2-氨基乙醇 中文别名:2-氨基乙醇;2-羟基乙胺;一乙醇胺;单乙醇胺 英文名称:Monoethanolamine;2-Aminoethanol 英文别名:2-Aminoethanol; 2-Hydroxyethylamine; Ethanolamine solution; Ethanolamine Monoethanolamine; olamine; Monoethanolamine; H-Glycinol; 2-aminoethanethiol 分子式:C2H7NO;HO(CH2)2NH2 分子量:61.08 InChI:InChI=1/C2H7NO/c3-1-2-4/h4H,1-3H2 外观与性状无色液体,在室温下为无色透明的粘稠液体,有吸湿性和氨臭。 蒸汽压0.80kPa/60℃ 闪点:93℃ 折射率:1.4540 熔点10.5℃ 沸点:170.5℃ 溶解性与水混溶,微溶于苯,与水、甲醇、乙醇、丙酮等混溶,微溶于乙醚和四氯化碳。 水溶液呈碱性.有极强的吸湿性,能吸收酸性气体,加热后又可将吸收的气体释放.有乳化及气泡作用.能与无机酸和有机酸生 成盐类,与酸酐作用生成酯.其氨基中的氢原子可被酰卤、卤代烷等置换.可燃!遇明火、高温有燃烧的危险,蒸汽有毒。 密度相对密度(水=1)1.02;相对密度(空气=1)2.11 稳定性稳定 危险标记20(碱性腐蚀品) 主要用途用作化学试剂、农药、医药、溶剂、染料中间体、橡胶促进剂、腐蚀抑制剂及表面活性剂等。也用作酸性气体吸收剂、乳化剂、增塑剂、橡胶硫化剂、印染增白剂、织物防蛀剂等。

三异丙醇胺、聚羧酸减水剂

三异丙醇胺的用途和性能能 (1)用途(Useage) 三异丙醇胺〔1,1,1″氨基-2-丙醇,简称TIPA〕三种同系物产品。属烷醇胺类物质,是一种具有胺基和醇性羟基的醇胺化合物,由于它的分子中既含有氨基,又含有羟基,因此具有胺和醇的综合性能,具有广泛的工业用途,是一种重要的基础性化工原料。 (2)性能: 1、分散性更好:应用在水泥助磨剂中时,起到助磨剂作用的根本原理是,二者作为表面活性剂所具有的分散性,因三异丙醇胺的烷链和羟基异构的空间立体结构,而使得三异丙醇胺的分散性优于三乙醇胺;而分散性是水泥的重要指标,在实际应用中,三异丙醇胺对水泥的提产效果要优于三乙醇胺,且对水泥的流动性改善也优于三乙醇胺。 2、早期增强性能:二者都是早强剂,但三乙醇胺扭转了水泥的早期凝结特性,从而达到早强的效果,而三异丙醇胺是通过促进早期凝结特性达到早强的效果。具体说就是三乙醇胺促进铝酸盐的早期水化,延缓硅酸盐的水化,提高了早强,但缩短了凝结时间;三异丙醇胺通过促进较难水化的

铁酸盐的水化及分散性达到提高水泥矿物的水化程度,从而提高早期强度。 3、后期增强性能:三乙醇胺主要对早期强度有所促进,而三异丙醇胺通过促进难水化矿物的水化和提高水泥的分 散性,大大提高水泥的后期强度,国外试验表明在后期强度可提高3个兆帕以上,甚至5-12个兆帕。 4、应用性能稳定:三乙醇胺的应用对其掺量有明显的限制,当掺量超过0.1%达到超量时,有时会产生闪凝现象,影响水泥的凝结特性;三异丙醇胺的掺量范围为0.001%到0.2%,而随着掺量的增加,会逐渐提高增强效果。 聚羧酸减水剂的成分说明 其成分说明如下: (1)高减水率:本产品在掺量为0.15~0.3%(以固体含量计),减水率为18~40%,可满足超低水灰比、高流动性混凝土的需要,同时节约水泥10~20%。 (2)低坍落度损失:本产品在合成过程中引入大分子长侧链,一方面抑制水化,另一方面提供空间位阻作用,可使浆体长时间保持塑性,具有较好的坍落度保持性。

一异丙醇胺的合成研究太化集团公司化工厂(精)

摘要叙述了采用环氧丙烷和氨水常压气化法合成一异丙醇胺的方法。 关健词环氧丙烷氨水合成 0 前言 随着我国精细化工的发展, 一异丙醇胺由于其用途的广泛性和特殊性越来越受到人们的重视。在工业上, 一异丙醇胺与脂肪酸作用可生成脂肪酸异丙醇胺和醋, 它具有优良的起泡性、泡沫稳定性和溶解油脂的能力, 可作为工业合成洗涤剂与硫代乙醇酸中和所得产物可用作化妆品的基质;它的磷酸盐、亚硝酸盐也可用作各种润滑油和切削液的抗氧剂;在纺织工业上, 由于其吸湿性好, 并具有弱碱性, 故可作表面活性剂的原料以及纤维的精炼剂、抗静电剂、染色助剂和纤维润滑剂。 1 产品性质和反应原理 本品为无色或微黄色液体, 溶点1.7℃,沸点159.4℃,相对密度0.9611 (20/4),折光率1.4479,闪点73℃,能溶于水﹑醇,不溶于醚。 1.1 产品规格(见表1) 表1 产品规格 优级品工 业品 外观 无 色粘状液体 浅 黄色粘状液 体 一异丙醇胺 ≧ 98﹪ ≥ 80﹪ 二≤≤

异丙醇胺2﹪20﹪ 三异丙醇胺 无≤2﹪ 2 试验内容 合成一异丙醇胺有两种方法, 即高压法和常压法, 我们分别采用这两种方法进行了试验, 并做出对比。 2.1 高压法 在2L的高压釜内一次性加入氨水和环氧丙烷, 然后开动搅拌, 升温至70~80℃,压力为0.3~0.5MPa,反应3~4h,脱氨、脱水、减压蒸馏得成品。 2.2 常压法 在1L的三口烧瓶中先加人氨水, 然后将环氧丙烷气化后通人氨水中。通够量后维持反应1h, 得到粗品。 粗品在蒸馏瓶中常压下加热到30℃左右, 过量的氨被蒸出(可用水吸收, 回收使用),继续升温到90℃时物料中的水蒸出,液温120℃时,停止蒸馏。然后进行减压蒸馏, 收集80~90℃、余压2.67kPa的馏分。 3 试验结果与讨论 3.1 高压法的试验结果(见表2 表2 高压法试验结果 批号 NH3: PO 1﹟2﹟3﹟

常用各种外加剂原理及特性共18页

常用外加剂之减水剂原理及特性 减水剂是当前外加剂中品种最多、应用最广的一种,根据其功能分为:普通减水剂(在混凝土坍落度基本相同的条件下,能减少拌合用水量的外加剂);高效减水剂 (在保持混凝土坍落度基本相同的条件下,能大幅度减少用水量的外加剂);引气减水剂(兼有引气和减水功能的外加剂);缓凝减水剂(兼有缓凝和减水功能的外加剂);早强减水剂(兼有早强和减水功能的外加剂)。 减水剂按其主要化学成分为:木质素磺酸盐系;多环芳香族磺酸盐系;水溶性树脂磺酸盐系;糖钙等。 1.常用减水剂 (1)木质素磺酸盐系减水剂。这类减水剂根据其所带阳离子的不同,有木质素磺酸钙(木钙)、木质素磺酸钠(木钠)、木质素磺酸镁(木镁)等。其中木钙减水剂(又称M型减水剂)使用较多。木钙减水剂是由生产纸浆或纤维浆的废液,经生物发酵提取酒精后的残渣,再用石灰乳中和、过滤、喷雾干燥而制得的棕黄色粉末。木钙减水剂的掺量,一般为水泥质量的0.2%~O.3%,当保持水泥用量和混凝土坍落度不变时,其减水率为1 0%~15%,混凝土28d抗压强度提高 10%~20%;若保持混凝土的抗压强度和坍落度不变,则可节省水泥用量10%左右;若保持混凝土的配合比不变,则可提高混凝土坍落度80~100mm。木钙减水剂对混凝土有缓凝作用,掺量过多或在低温下缓凝作用更为显著,而且还可能使混凝土强度降低,使用时应注意。木钙减水剂是引气型减水剂,掺用后可改善混凝土

的抗渗性、抗冻性、降低泌水性。木钙减水剂可用于一般混凝土工程,尤其适用于大模板、大体积浇注、滑模施工、泵送混凝土及夏季施工等。木钙减水剂不宜单独用于冬季施工,在日最低气温低于5℃时,应与早强剂或早强剂、防冻剂等复合使用。木钙减水剂也不宜单独用于蒸养混凝土及预应力混凝土。 (2)多环芳香族磺酸盐系减水剂 这类减水剂的主要成分为萘或萘的同系物的磺酸盐与甲醛的缩合物,故又称萘系减水剂。萘系减水剂通常是由工业萘或煤焦油中的萘、蒽、甲基萘等馏分,经磺化、水解、缩合、中和、过滤、干燥而制成。萘系减水剂一般为棕色粉末,也有为棕色粘稠液体。使用液体减水剂时,应注意其有效成分含量(即含固量)。 萘系减水剂的适宜掺量为水泥质量的O.5%~1.O%,减水率为10%~25%,混凝土28d强度提高20%以上。在保持混 凝土强度和坍落度相近时,则可节省水泥用量10%~20%。掺用萘系减水剂后,混凝土的其他力学性能以及抗渗性、耐久性等均有所改善。且对钢筋无锈蚀作用。萘系减水剂的减水、增强效果显著,属高效减水剂。萘系减水剂对不同品种水泥的适应性较强。适用于配制早强、高强、流态、防水、蒸养等混凝土。也适用于日最低气温0℃以上施工的混凝土,低于此温度则宜与早强剂复合使用。 (3)水溶性树脂系减水剂

二乙醇胺

二乙醇胺 陈恒标 10601144 漳州师范学院化学系10化本(一) 摘要:二乙醇胺的发展史,由二乙醇胺的性质决定其用途,从近几年二乙醇胺的出产和 销售数据以及它的运用领域预测未来的趋势。 关键词:二乙醇胺EA 2 2’-二羟基二乙胺 前沿 二乙醇胺(Diethanolamine,DEA)是乙醇胺(Ethanolamine,EA,包括一乙醇胺、二乙醇胺、三乙醇胺)的同系产品之一。乙醇胺作为环氧乙烷重要的衍生物之一,是氨基醇中最有实用价值的产品,产量占氨基醇总产量的90%~95—。乙醇胺最初在1860年由法国化学家Wurts首先发现,从1930年开始工业制备,1945年以后实现大规模生产。 二乙醇胺的结构式为: H N HO Diethanolamine 二乙醇胺,别名2 2’-二羟基二乙胺,常温下无色、粘稠液体,稍有氨味,易溶于水、乙醇。可腐蚀铜、铝及其合金。液体和蒸气腐蚀皮肤和眼睛。可与多种酸反应生成酯、酰胺盐。沸点269.1℃,熔点28℃。主要用于除草剂草甘膦的生产。也可用于制药工业用缓蚀剂、高回弹聚氨酯泡沫生产用交联剂;与三乙醇胺混合作为飞机引擎活塞的去结剂;与脂肪酸反应生产烷基醇酰胺;也用于有机合成原料、生产表面活性剂原料和酸性气体吸收剂。

目录 1 二乙醇胺的简介 (1) 2 二乙醇胺的发展情况 (3) 3 理化性质 物理性质 (3) 化学性质 (3) 4 工业设计工艺及流程 (4) 5 用途 (5) 6 表征 (6) 7 消费市场现状与预测与结论 (7) 参考文献 (11)

一发展情况 我国乙醇胺的工业生产始于20世纪60年代,但是由于当时使用的原料环氧乙烷多产自氯醇法生产工艺,含有一定量的醛酸等杂质,加上乙醇胺的生产技术落后,大多采用间歇法生产,能耗和物耗高,产品质量差,影响了市场的推广和应用,因而到1998年以前,我国乙醇胺的总生产能力只有2万吨/年左右,生产规模平均不到2000吨/年,产量不足6000吨/年,所需产品主要依赖进口,严重影响了我国乙醇胺工业的发展。 20世纪90年代吉林化工集团农药厂和抚顺北方化工有限责任公司(抚顺华丰化工厂)先后引进国外技术和设备,我国乙醇胺工业才开始摆脱整体落后局面,走上良性发展的道路。 目前国内的乙醇胺生产厂家已达10多家,2007年乙醇胺总产能超过了6.7万t/a。2007年我国乙醇胺主要生产企业及产能统计见表1,其产能占全国总产能70%以上。 2008年7月嘉兴金燕化工10万t/a的乙醇胺装置顺利投产后,国内乙醇胺的规模已经超过了15万t/a。 二理化性质 物理性质 简称:DEA 别名二乙醇胺 分子式C4H11NO2;HO(CH2)2NH(CH2)2OH 相对分子量:105.14 外观与性状无色粘性液体或结晶。有碱性,能吸收空气中的二氧化碳和硫化氢等气体。 分子量105.14 蒸汽压0.67kPa/138℃ 闪点:137℃ 密度:1.097 凝结点(℃):28 沸点(℃):268.8 闪点(℃):146;137(闭式) 粘度mPa·s(20℃):351.9(30℃) 折射率:1.4776 溶解性易溶于水、乙醇,微溶于苯和乙醚,有吸湿性。

二乙醇单异丙醇胺合成工艺研究

声明本学位论文是我在导师的指导下取得的研究成果,尽我所知,在本学位论文中,除了加以标注和致谢的部分外,不包含其他人已经发表或公布过的研究成果,也不包含我为获得任何教育机构的学位或学历而使用过的材料。与我一同工作的同事对本学位论文做出的贡献均已在论文 中作了明确的说明。研究生签名:黝眵\年月日l学位论文使用授权声明南京理工大学有权保存本学位论文的 电子和纸质文档,可以借阅或上网公布本学位论文的部分或 全部内容,可以向有关部门或机构送交并授权其保存、借阅 或上网公布本学位论文的部分或全部内容。对于保密论文, 按保密的有关规定和程序处理。研究生签名:1呷年月摘要本文以一异丙醇胺(MIPA)、二乙醇胺(DEA)、 环氧乙烷(EO)、环氧丙烷(PO)为原料合成二乙醇单 异丙醇胺(简称DEIPA),通过小试实验获得最佳的合 成工艺条件,研究内容如下:(1)通过单因素实验研究 了时间、胺烷比、温度三因素对合成产率及纯度的影响规律,实验结果表明,DEA路线中,当胺烷比为1:1.,反 应时间为80min,反应温度为50℃时,DEIPA产 品纯度达到市售标准;在MIPA路线中,当胺烷比为l:2,反应时间为40min,反应温度为50℃所得DEI PA产品中副产物较少,可以通过后处理工艺较为方便地取 得符合标准的DEIPA产品。‘ .(2)为取得高纯度的

DEIPA产品,则必须控制合成过程中产生的副产物含量, 本文通过实验研究高沸点副产物的含量随时间、温度、胺烷 比的变化规律,结果表明,高胺烷比及高温有利于高沸点副 产物的生成,当DEA及MIPA路线中的胺烷比为1:1,l:2时,温度为50℃时,DEIPA产品中的副产物含 量能控制在合适的范围。(3)以小试实验选取的合成工 艺条件进行放大实验,放大实验结果表明,DEIPA产品 的纯度及副产物的含量都能控制在合理的范围之内,因此小 试实验工艺条件是可靠的。jj(4)MIPA路线合 成的DEIPA产品中含有20%DEA,这部分需通过精 馏去除,。本文设计了间歇精馏实验,研究了真空度及回流 比等因素对DEIPA的纯度的影响规律,实验结果表明。,在真空度O.099MPa,回流比为2:1,精馏操作时 间为160min的条件下,DEIPA产品符合市售标准。 关键词:二乙醇单异丙醇胺、一异丙醇胺、二乙醇胺、间歇 精馏by—productcouldbe髓cont rolledinappropriateraIlg eatthereactcondition:tll erateofDEAaIldPOis1:1a11dtheMIPA锄dE0is1:2,tem peratureofreaction50℃..3.Theamplificationex

二乙醇胺MSDS

二乙醇胺msds 名称: diethanolamine二乙醇胺分子式:C4H11N O2 分子量:105.14 有害物成分:二乙醇胺 健康危害:吸入二乙醇胺蒸气或雾,刺激呼吸道。高浓度吸入出现咳嗽、头痛、恶心、呕吐、昏迷。蒸气对眼有强烈刺激性;液体或雾可致严重眼损害,甚至导致失明。长时间皮肤接触,可致灼伤。大量口服出现恶心、呕吐和腹痛。慢性影响:长期反复接触可能引起肝肾损害。 环境危害:对环境有危害,对水体可造成污染。 燃爆危险:二乙醇胺可燃,具腐蚀性、刺激性,可致人体灼伤。 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 危险特性:二乙醇胺遇明火、高热可燃。受热分解放出有毒的氧化氮烟气。与强氧化剂接触可发生化学反应。能腐蚀铜及铜的化合物。 有害燃烧产物:一氧化碳、二氧化碳、氧化氮。 灭火方法:喷水保持火场容器冷却,直至灭火结束。灭火剂:水、干粉、二氧化碳、抗溶性泡沫。 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。若是液体。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。若是固体,用洁净的铲子收集于干燥、洁净、有盖的容器中。若大量泄漏,收集回收或运至废物处理场所处置。 操作注意事项:二乙醇胺密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴头罩型电动送风过滤式防尘呼吸器,穿聚乙烯防毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止烟雾或粉尘泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:二乙醇胺储存于阴凉、通风的库房。远离火种、热源。包装密封。应与氧化剂、酸类等分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 前苏联 MAC(mg/m3): 5 TLVTN:ACGIH 0.46ppm,2mg/m3[皮] 工程控制:密闭操作,注意通风。提供安全淋浴和洗眼设备。

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

异丙醇胺制备方法22

说明书 一种异丙醇胺的制备方法 技术领域 本发明涉及一种石油化工原料的制备方法。 技术背景 异丙醇胺是丙醇胺类的一种。制备方法与正丙醇胺,新丙醇胺不同。合成异丙醇胺最早见于1935年美国专利(US 1988225);直到上世纪八十年代,一些发达国家开始工业化生产,传统的合成方法主要以氨水和环氧丙烷(PO)加成反应生成的混合物经脱氨,脱水,减压蒸馏,精馏而得,是一串联反应,所获得反应液多为异丙醇胺的三种衍生物,分离技术是一难题,虽然反复高效减压分馏,但仍不够理想。 异丙醇胺与乙醇胺为烷基醇胺类同系物,异丙醇胺具有比乙醇胺更为优异的性能,而且对环境和人类危害较小,逐步成为一种绿色化工产品,已有替代乙醇胺的趋势,应用范围广泛已获“十二五”六大新材料国家重点支持项目,在这一潜在巨大商机下,极待突破诸多方面,如制备高质量工艺技术等障碍,以加快行业发展步伐。 随着世界各国对环境问题的日益重视,乙醇胺的应用正逐步受到限制,如发达国家的《污染物的排放及转移登记制度》已将乙醇胺列为有害物质限制使用,从而加快了乙醇胺被异丙醇胺替代步伐,有广阔发展前景,但是,长期尚不能解决高品质异丙醇胺生产技术,如工业用TIPA国家标准GB/T27564-2011规定,其含量(W/%)分三级,即≥98.0,90.0,85.0;目前国产品大多企业达不到≥85.0的规定,产品仅用在水泥外加剂等方面,再高的质量产品不得不依赖进口。TIPA含量85%德国进口报价1.95万元/吨,含量98%日本进口价7.7万元/吨;即便进口试剂级产品规格标注含量亦是98%,然而却是一概的“天价”。说明产品质量的提高要经过复杂的工艺过程。目前国内一般工业品TIPA含量在80%以上,它含有1%以下水,2.5%以下的MIPA和约15%的DIPA以及少量的丙二醇等有机杂质,极待研究出简易可行的分离办法。以解决高品质依赖进口的困境。 经研究发现二异丙醇胺盐酸盐为液态化合物,在-20℃亦是如此。与一异丙醇胺盐酸盐(熔点86-87.5℃)和三异丙醇胺盐酸盐(熔点143-145℃)这一显著区别,为其分离提供方便,并能得到各自高纯度产品,TIPA·HCl化合物及其性质尚未见到文献记载。 发明内容 本发明的内容就是提供一种制备高质量异丙醇胺类产品的简便方法且经济实用,弥补现行工艺的不足,并增加产品种类,它包括一异丙醇胺(MIPA)及其盐(MIPA·HCl),二异丙醇胺(DIPA)及其盐(DIPA·HCl),三异丙醇胺(TIPA)及其盐(TIPA·HCl)共六个产品。以满足不同行业的特殊要求;同时特别指出的化合物TIPA·HC及其性质在国内外出版物上尚未有记载,经过大量实验表明用于水泥外加剂方面与传统的TEA对照效果更佳、使用更方便,且具有多功能性;其所具有的技术效果和商业价值是未曾预料到的,在水泥行业作为外加剂广泛推广使用,仅就国内需求量将以百万吨计。 本发明所采用的技术方案是: 步骤一、取市售商品MIPA,与当量盐酸反应,析出结晶,降温至零度,过滤

炼化25万吨年环氧丙烷、8万吨年异丙醇胺生产项目-设备一览表2003版

炼化25万吨/年环氧丙烷、8万吨/年异 丙醇胺生产项目 设备一览表

塔设备选型一览表 设备位号设备名称类型 塔体内径 /mm 筒体高 度/mm 设计压 力/MPa 设计温度 /℃ 封头形式材料保温层空塔质量/t 个数/台 T0101丙烷粗分塔浮阀塔3200 32800 2.1 120 标准椭圆封头Q345R 复合硅酸盐棉97.85 1 T0201A~F变压吸附塔填料塔4000 24000 0.88 60 标准椭圆封头Q345R 复合硅酸盐棉49.35 6 T0202加氢脱乙烷塔填料塔2-19:5500 20-39:7000 25000 3.66 100 标准椭圆封头Q345R 复合硅酸盐棉44.8 1 T0203丙烯精制塔浮阀塔7200 90000 2.1 80 标准椭圆封头Q345R 复合硅酸盐棉1147 1 T0301氧气分离塔填料塔2-4:1800 5-11:2400 15800 0.22 -90 标准椭圆封头S30409 复合硅酸盐棉53.38 1 T0302脱水塔浮阀塔5800 21000 0.11 120 标准椭圆封头Q345R 复合硅酸盐棉103 1 T0303丙烯回收塔填料塔2-18:1200 19-44:2000 25000 1.65 170 标准椭圆封头Q345R 复合硅酸盐棉16.78 1 T0304甲醇回收塔浮阀塔4600 28400 0.11 85 标准椭圆封头Q345R 复合硅酸盐棉51.77 1 T0305甲醇吸附塔填料塔2600 20000 0.11 180 标准椭圆封头Q345R 复合硅酸盐棉15.17 2 T0401脱氨塔填料塔1600 11700 0.11 135 标准椭圆封头Q345R 复合硅酸盐棉 4.619 1 T0402分隔壁塔填料塔5000 21600 0.0022 200 标准椭圆封头Q345R 复合硅酸盐棉44.615 1 1

合成工艺设计

石墨烯合成材料工艺设计 【摘要】石墨烯是一种量子霍尔效应、双极性电场效应、隧道效应等优异性能的新型材料,其在应用于传感器、晶体管、太阳能电池等领域,并且具备有广泛开发的潜能。本文对石墨烯材料应用及发展趋势进行研究,并采用两种设计方案对石墨烯的制备工艺进行描述。 关键词:石墨烯、氧化还原法制备、热熔法制备 一.引言 2004年,盖姆和诺沃肖洛夫等人用机械剥离法,从三维石墨中提取出单层石墨烯,随后,又通过石墨烯获得了石墨烷。石墨烯独特的性质引起了许多科研人员的关注.它不仅可以用来论证相对论的量子力学,还能应用于传感器、晶体管、太阳能电池等。因此,对石墨烯制备方法、独特性质、以及改性的研究就如火如荼的展开了。 石墨烯,英文名Graphene,是碳元素的一种单质形态。碳是自然界里最重要的素之有着独特的性质,是生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。石墨烯是碳的另一张奇妙脸孔,具有由单层碳原子紧密堆积成二维蜂窝状晶格结构。它像一张单层的网,每一个网格都是一个完美的六边形,每一个绳结是一个碳原子。这张网只有个原子那么厚,可以说没有高度、只有长宽,是二维结构的碳。人类已知的最薄材料,其厚度只有0.335纳米,由于它包含烯类物质的 基本特征一一碳原子之间的双键,所

以称为石墨烯。 二.石墨烯制备的方法 经研究发现,合成石墨烯的方法已有很多,例如微机械剥离、化学气相沉积、氧化还原法,以及最新溶剂剥离和溶剂热法等,不同的制备工艺各自存在着优缺点,下面简单的介绍各方法简单制备过程及优缺点,并经行比较,从中筛选出最佳工艺方案以达到生产流程简单、生产工艺多元化,降低成本的工业目的。 (1)微机械剥离法 利用胶带剃离高定向石墨的方法获得了独立存在的二维石墨烯晶体。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,目前只能作为实验室小规模制备。 (2)化学气相沉积法 一种以镍为基片的管状简易沉积炉,通人含碳气体,例如,碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。 (3)氧化一还原法 氧化一还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(Go),经过超声分散制备成氧化石墨烯(单层氧化石墨),加人还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。这种制备方法简便且成本较低,不仅可以制备出大量石墨烯悬浮液,而且有利于制备石墨烯的衍生物,拓展了石墨烯的应用领域。 (4) 溶剂剥离法 它的原理是将少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化一还原法那样破坏石墨烯的结构,可以制备高

二甲基异丙醇胺标准

上海子涵化学科技有限公司 N·N-二甲基异丙醇胺 上海子涵化学科技有限公司发布

前言 本标准自实施之日起,代替Q/320418SZH 118-2010《N·N-二甲基异丙醇胺》。本标准与上次版本标准主要差异: 本标准的结构与编写遵循GB/T1.1-2009的规定。 本标准由上海子涵化学科技有限公司负责起草。 本标准主要起草人:王萍、贲立红、苏芳、殷勇。 本标准于2010年10月首次发布。

N·N-二甲基异丙醇胺 1 范围 本标准规定了N·N-二甲基异丙醇胺的要求、试验方法、检验规则、标志、包装、运输及贮存。 本标准主要由环氧丙烷与二甲胺反应而制得N·N-二甲基异丙醇胺。 本产品主要用作有机合成原料,用于合成医药异丙嗪的中间体。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 190 危险货物包装标志 GB/T 267-1988 石油产品闪点与燃点测定法(开口杯法) GB/T 617-2006 化学试剂熔点范围测定通用方法 GB/T 4472-1984 化工产品密度、相对密度测定通则 GB/T 6324.1-2004 有机化工产品试验方法第1部分:液体有机化工产品水混溶性试验 GB/T 6680-2003 液体化工产品采样通则 3 要求 N·N-二甲基异丙醇胺质量指标应符合表1的规定。 表1 质量指标 项目指标 外观无色至浅黄色液体 熔点,℃≤-20 密度 (20℃) g/cm30.83~0.86 闪点,℃≥32 溶解性与水互溶 4 试验方法 4.1 外观 目测。 4.2 熔点的测定 按GB/T 617规定进行。 4.3 相对密度的测定 按GB/T 4472中密度计法规定进行。 4.4闪点的测定 按GB/T 267规定进行。 4.5溶解性的测定 按GB/T 6324.1规定进行。 5 检验规则

2019年聚氨酯硬泡组合聚醚异丙醇胺企业发展战略和经营计划

2019年聚氨酯硬泡组合聚醚异丙醇胺企业发展战略和经营计划 2019年3月

目录 一、公司所在行业的市场竞争格局及发展趋势 (4) 1、聚氨酯硬泡组合聚醚领域 (4) (1)行业竞争格局 (4) (2)行业发展趋势 (5) 2、异丙醇胺领域 (8) (1)行业竞争格局 (8) (2)行业发展趋势 (9) 3、聚氨酯保温板材领域 (10) (1)行业竞争格局 (10) (2)行业发展趋势 (11) 二、公司行业地位及变动趋势,优势和困难 (13) 1、硬泡组合聚醚领域 (13) 2、异丙醇胺领域 (15) 3、高阻燃保温板领域 (16) 三、公司发展机遇和挑战、发展战略 (18) 1、公司面临发展机遇和挑战 (18) (1)环氧丙烷产业 (19) (2)硬泡组合聚醚领域 (20) (3)异丙醇胺领域 (21) (4)新兴材料领域 (22) 2、公司发展战略 (24) 3、拟开展新业务、拟开发新产品 (25) 四、2019年度经营计划及经营目标 (26)

1、增强经营绩效,实现高质量 (26) 2、确保PO及衍生物业务顺利起航,注入强能量 (27) 3、加大研发力度,打造高品质 (27) 4、有效利用资产,实现高效率 (27) 5、开展降本增效,挖掘高潜能 (27) 6、加大人才培养,筑牢高保障 (27) 五、可能面对的风险因素 (28) 1、管理风险 (28) 2、原材料价格波动风险 (28) 3、汇率风险 (29) 4、技术流失风险 (30)

一、公司所在行业的市场竞争格局及发展趋势 公司主要产品聚氨酯硬泡组合聚醚、异丙醇胺系列产品,以及高阻燃保温板等产品,其所从事的行业均是国家鼓励发展的行业。 1、聚氨酯硬泡组合聚醚领域 (1)行业竞争格局 聚氨酯泡沫分为硬泡和软泡,聚氨酯硬泡应用领域广,主要用于家电、建筑、冷链、管道等领域作隔热保温材料,硬泡组合聚醚是聚氨酯硬泡的主要原料之一,硬泡组合聚醚在发达国家主要消费领域是建筑外保温材料,而在我国冰箱(柜)冷藏行业是硬泡组合聚醚最主要的消费领域,占50%以上。因此,我国聚氨酯硬泡组合聚醚市场竞争主要体现在冰箱(柜)、冷藏集装箱等冷藏行业上,俗话说“得冰箱者得天下”,且该类产品对聚氨酯硬泡产品质量的要求最高,而聚氨酯硬泡的质量稳定性和性能改进取决于硬泡组合聚醚,因此硬泡组合聚醚供应商生产产品质量、技术创新和服务能力直接影响其在行业中的供应份额。供应商需要围绕行业发展方向,针对冷藏行业内不同客户的不同要求,在新产品开发、工艺改进与优化等方面加大投入力度,以满足客户个性化需求,并推动行业技术进步。 中国是世界冰箱生产基地,国家节能环保政策的深入推进对冰箱行业在节能、低碳环保等方面提出了更高的要求,冰箱(柜)制造企业经过多年的发展已经具有了较强的自主研发能力,并不断地推出节

43种化妆品保密配方

1配方:(收敛性化妆水) 质量分数/% 质量分数/% 明矾 1.5 乙醇 11.0 苯甲酸 1.0 甘油 5.0 硼酸 3.0 香精 0.5 吐温20 2.5 蒸馏水 75.5 2配方:(雪花膏) 质量分数/% 质量分数/% 硬脂酸 10 苛性钾 0.2 十八醇 4 香精 1 甘油单硬脂酸酯 2 防腐剂适量硬脂酸丁酯 8 蒸馏水 64.8 丙二醇 10 3配方:(美白雪花膏) 质量% 质量% 蜂蜡 1.2 防腐剂 0.5 硬脂酸 6 抗氧化剂 0.2 鲸蜡醇 3 丙二醇 3

豆蔻酸异丙酯 2.5 薏苡仁提取物(固体) 0.5 聚氧乙烯山梨糖醇 3 香精 0.3 单硬脂酸酯角鲨鱼烷 6 蒸馏水 73.8 4配方:(瓶装冷霜) 质量分数/% 质量分数/% 蜂蜡 10 乙酰化化羊毛醇 2 白凡士林 7 蒸馏水 41.4 18# 白油 34 硼砂 0.6 鲸蜡 4 香精、防腐剂和抗氧化剂各加适量斯潘80 1 5配方:(盒装冷霜) 质量分数/% 质量分数/% 三压硬脂酸 1.2 双硬脂酸铝 1 蜂蜡 1.2 丙二醇单硬脂酸酯 1.5 天然地蜡75℃7 氢氧化钙0.1 18# 白油 47 蒸馏水 41

6配方:(特效营养霜) 质量分数/% 质量分数/% A1甘油 10 B1硬脂酸 12 A2 α-丙二醇 5 B2甘油单硬脂酸酯 5 B3羊毛脂 1 D1 BHT 0.03 B4吐温 0.2 结构式: C(CH3)3 (H3C)3 OH B5尼泊金乙脂 0.01 C1乙醇 0.5 C2对氯-3,5-二甲基苯酚 0.05 C3蒸馏水 63.49 C4珍珠 0.3 C5丹皮 0.25 C6玉竹 0.3 C7薏苡仁 0.25 C8磷酸酯 0.8 D2柠檬酸 0.02 E1白油 0.8 E2香精适量

红宝丽三异丙醇胺信息讲解

2001-2006 年国内异丙醇胺产能、产量统计如下: 单位:万吨 年份 2001年 2002年 2003年 2004年 2005年 2006年 产能[注1] 0.22 0.25 0.37 0.47 2.27[注2] 2.45 产量 0.14 0.2 0.28 0.34 0.52 0.92 开工率 64% 80% 76% 72% 23% 38% 进口量 0.05 0.08 0.1 0.18 0.26 0.18 第一章招股意向书及发行公告招股意向书 1-1-108 出口量 0.01 0.03 0.04 0.05 0.22 0.38 消费量 0.18 0.25 0.34 0.47 0.56 0.72 [上述数据摘自五洲化工在线《异丙醇胺市场调研报告》] [注1]:本公司认为上表中的产能未包括本公司利用单体聚醚生产装置生产三异丙醇胺 的能力4000 吨/年。2006 年1 月本公司年产2 万吨异丙醇胺装置投产后即不再利用单体聚 醚生产装置生产三异丙醇胺。 [注2]:本公司年产2 万吨异丙醇胺装置于2005 年底建成,于2006 年1 月正式投产。 (3)未来市场供求状况预测

目前由于异丙醇胺的生产相对集中于德国、美国、英国等少数几个发达国 家,绝大多数国家的异丙醇胺只能依赖于进口,随着世界经济的发展,表面活性剂、水泥外加剂、医药农药中间体、金属加工用润滑油等各种化工产业规模持续扩大;同时,随着科技的发展,人们认识水平的提高,异丙醇胺的应用领域正逐步扩大。正是由于异丙醇胺在传统应用领域和新兴应用领域的应用同时 增长,成为异丙醇胺市场持续、快速增长的主要动力。预计未来2-3年内国际市场的异丙醇胺需求量要增长到25万吨左右,5-8年内要增长到50万吨左右。以水泥外加剂领域为例,三异丙醇胺在水泥及混凝土外加剂领域作为分散剂应用,可以有效降低水泥的熟料用量、降低水泥生产成本,同时还可有效增加水泥的后期强度,目前已在拉法基等跨国水泥生产企业中广泛应用。从国外看,除中国外,2005年世界水泥产量约为12亿吨,据有关资料统计,国外发达国家通过水泥外加剂生产的水泥所占比例为70%-80%,对应的水泥产量约为8.4 亿吨,按三异丙醇胺平均耗用量为水泥的万分之一计算,按50%的水泥产量用三异丙醇胺, 对三异丙醇胺及其衍生物的年需求量达到4.2万吨。从国内方面看,水泥生产企业已逐渐认识到水泥外加剂在水泥生产过程中的降本增效作用,目前已有湖北华新水泥、小野田等大型或外资水泥生产企业使用以三异丙醇胺作为原料的水泥外加剂。2006年中国水泥产量在12亿吨左右(源自中国水泥协会《2006年1至7月份水泥工业运行情况及分析》),但仍大多工艺较为落后、环境污染较大,随着国内水泥市场竞争的加剧,伴随着水泥生产企业提高水泥标号和降低成本的需求,水泥外加剂必然越来越被大多数企业接受,按70%的水泥外加剂使用量计算,三异丙醇胺的需求量每年就将达到4.2万吨左右。根据目前国外异丙醇胺的消费结构和平均增长速度,谨慎预测至2010年国第一章招股意向书及发行公告招股意向书 1-1-109 内异丙醇胺的需求量将达到2.6万吨左右。预测2010年国内异丙醇胺应用领域工业活性剂

二乙醇胺

化学品安全技术说明书 化学品中文名:2,2'-二羟基二乙胺; 二乙醇胺 化学品英文名:diethanolamine; 2,2'-dihydroxydiethylamine 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: √纯品混合物 有害物成分浓度CAS No. 二乙醇胺111-42-2 危险性类别:第8.2类碱性腐蚀品 侵入途径:吸入、食入、经皮吸收 健康危害:吸入本品蒸气或雾,刺激呼吸道。高浓度吸入出现咳嗽、头痛、恶心、呕吐、昏迷。蒸气对眼有强烈刺激性;液体或雾可致严重眼损害,甚至导致失 明。长时间皮肤接触,可致灼伤。大量口服出现恶心、呕吐和腹痛。慢性影 响长期反复接触可能引起肝、肾损害。 环境危害:对水体、土壤和大气可造成污染。 燃爆危险:可燃,其粉体或蒸气与空气混合,能形成爆炸性混合物。 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗20~30分钟。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。

危险特性:遇明火、高热可燃。受热分解放出有毒的氧化氮烟气。与强氧化剂接触可发生化学反应。能腐蚀铜及铜的化合物。 有害燃烧产物:一氧化碳、氮氧化物。 灭火方法:用水、干粉、二氧化碳、抗溶性泡沫灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处 在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。 应急行动:根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。消除所有点火源。建议应急处理人员戴正压自给式呼吸器, 穿防酸碱服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可能切 断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏: 用干燥的砂土或其它不燃材料吸收或覆盖,收集于容器中。也可以用大量水 冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用耐腐 蚀泵转移至槽车或专用收集器内。 操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴头罩型电动送风过滤式防尘呼吸器,穿聚乙烯防毒服, 戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风 系统和设备。防止烟雾或粉尘泄漏到工作场所空气中。避免与氧化剂、酸类 接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消 防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。包装密封。应与氧化剂、酸类等分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有 泄漏应急处理设备和合适的收容材料。 接触限值: MAC(mg/m3): 未制定标准PC-TWA(mg/m3): 未制定标准 PC-STEL(mg/m3): 未制定标准TLV-C(mg/m3): - TLV-TWA(mg/m3): 2TLV-STEL(mg/m3): 监测方法:无资料。 工程控制:密闭操作,注意通风。提供安全淋浴和洗眼设备。 呼吸系统防护:空气中粉尘浓度超标时,应该佩戴过滤式防尘呼吸器;可能接触其蒸气时,建议佩戴过滤式防毒面具(半面罩)。

各种醇的价格

甲醇钠 30% 4.7元 200kg 乙醇钠 21% 8.6元 200kg 甲醇钠 99.9% 德 25000 100kg 碘化钠 99.9% 特日 20万 15kg 异丙醇钠 99% 33元 180kg 叔丁醇钠 99% 32元 100kg 叔丁醇钠 99% 美 36000 30kg 聚丙烯酸钠食添日22000 150kg 正己醇 99.9% 德国 14元 170kg 正丁醇 99.9% 日本 10元 170kg 正辛醇 99.8% 韩10元 170kg/143kg/160kg 正丙醇 99.8% 美国 9.5元 167kg/165kg 正戊醇 99% 德国 15元 175kg 丙二醇 99.6% 日本 10元 210kg 丙二醇 99.6% 美国 10元 210kg/215kg/180kg 丙烯醇 99.5% 日本 14元 200kg/190kg 丙炔醇 99.8% 德国 31元 190kg 异丁醇 99.9% 美国 10元 165kg 异辛醇 99.7% 韩国 11元 170kg/160kg 异壬醇 99.5% 韩国 9.5元 160kg 异丙醇 99.9% 英国10元 170kg/180kg/160kg 异戊醇 99.5% 英国 8元 180kg 乙二醇 99.9% 韩国 8元 220kg 乙硫醇 99.9% 法国 20元 160kg 二甘醇 99.5% 美国 6.5元 220kg

三甘醇 99% 德国 8元 225kg/200kg 四甘醇 99.4% 美国 16元 235kg 环己醇 99.8% 韩国 7元 180kg/200kg 苯乙醇 99% 美国 15元 170kg 氯乙醇 99% 美国 12元 200kg 仲丁醇 99.9% 美国 12.5元 165kg 叔戊醇 99% 台湾 11元 165kg 叔丁醇 99.9% 日本 9元 155kg 戊二醇 99.5% 美国 11元 165kg 甘露醇 99.9% 美国 13元 125kg 十二醇 99.9% 美国 9.1元 170kg 十四醇 99.9% 印尼 9.5元 170kg 十六醇 98.5% 10元 250kg 十八醇 99% 14元 250kg 苯甲醇 99% 德国 11元 200kg 环戊醇 99% 52元 190kg 甲硫醇 99.9% 30元 140kg 苄硫醇 99.8% 22元 180kg 丙三醇 99% 8.8元 250kg 炔丙醇 99.2% 36元 180kg 频哪醇 99% 230元 50kg 植物醇 99% 235元 50kg 异丙醇铝 99% 15元 180kg 二苯甲醇 99% 美国 36元 125kg 二丙酮醇 99.9% 法国 12元 195kg

相关文档
最新文档