一元二次方程测试题含答案

合集下载

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案) 一元二次方程测试题1.一元二次方程$(1-3x)(x+3)=2x^2+1$化为一般形式为:二次项系数$2$,一次项系数$-7$,常数项$10$。

2.若$m$是方程$x^2+x-1=3mx+1$的一个根,代入可得$m+2\sqrt{m+2013}$的值为$-1$,解得$\sqrt{m+2013}=-\frac{m+1}{2}$,代入可得$m=-2014$。

4.关于$x$的一元二次方程$(a-2)x^2+x+a-4$的一个根为$1$,代入可得$a=5$。

5.若代数式$4x-2x-5$与$2x+1$的值互为相反数,则$x=-\frac{3}{2}$。

6.已知$2y+y-3=2$,代入可得$4y^2+2y+1=27$。

7.若方程$(m-1)x+m\cdot x=1$是关于$x$的一元二次方程,则$m$的取值范围为$m\neq 0$。

8.已知关于$x$的一元二次方程$ax+bx+c(a\neq 0)$的系数满足$a+c=b$,则此方程必有一根为$\frac{c}{a}$。

10.设$x_1,x_2$是方程$x^2+bx+b-1=0$有两个相等的实数根,则$b=2$。

12.若$x=-2$是方程$x^2+mx-6=0$的一个根,则方程的另一个根是$3$。

13.设$m,n$是一元二次方程$x^2+4x+m=0$的两个根,则$m+n=-4$。

14.一元二次方程$(a+1)x^2-ax+a-1=0$的一个根为$1$,代入可得$a=2$。

15.若关于$x$的方程$x^2-2ax+a^2=0$的两个根互为倒数,则$a=\pm\sqrt{2}$。

17.已知关于$x$的方程$x^2-x-2=0$与$2x^2-(a+b)x+ab-1=0$有一个解相同,则$a=1$。

18.$a$是二次项系数,$b$是一次项系数,$c$是常数项,且满足$a-1+(b-2)+|a+b+c|=0$,则满足条件的一元二次方程为$(a-1)x^2+(b-2)x+c=0$。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x)(x+3)=2x2+1 化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。

2.若m是方程x2+x-1=0的一个根,试求代数式m3+2m2+2013的值为。

3.方程是关于x的一元二次方程,则m的值为。

4.关于x的一元二次方程的一个根为0,则a的值为。

5.若代数式与的值互为相反数,则的值是。

6.已知的值为2,则的值为。

7.若方程是关于x的一元二次方程,则m的取值范围是。

8.已知关于x的一元二次方程的系数满足,则此方程必有一根为。

9.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是。

10.设x1,x2是方程x2﹣x﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是。

13.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=。

14.一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= 。

15.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a= 。

16.关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a= 。

17.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是.(填上你认为正确结论的所有序号)18.a是二次项系数,b是一次项系数,c是常数项,且满足+(b-2)2+|a+b+c|=0,满足条件的一元二次方程是。

19.巳知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于____.20.已知关于x的方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,则k的值为.21.已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.22.设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= 。

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题一、填空题1、若x1=-1是关于x的方程x2+mx-5=0的一个根,则此方程的另一个根x2=。

(答案:5)2、若a为方程x2+x-5=0的解,则a2+a+1=0的值为。

(答案:6)3、若x2+6x+9+√y−3=0,则x-y的值为。

(答案:-6)4、已知直角三角形的两条直角边的长恰好是方程x2-5x+6=0的两根,则此直角三角形的斜边长为。

(答案:√13)5、由关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为。

(答案:-1)6、已知三角形两边长分别为2和9,第三边的长为一元二次方程x2-14x+48=0的一根,则这个三角形的周长为。

(答案:19)的值等于零的x是。

(答案:6)7、使分式x2−5x−6x+18、若关于y的一元二次方程ky2-4y-3=3y+4有实根,则,且k≠0)k的取值范围是。

(答案:k≥-749、如果2x2+1与4x2-2x-5互为相反数,则x的值为。

)(答案:1或-2310、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1,则a= ,b= 。

(答案:1,-2)11、一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于 。

(答案:3)12、已知3-√2是方程x 2+mx+7=0的一个根,则m= ,另一根为 。

(答案:-6,3+√2)13、已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是 。

(答案:x 2-7x+12=0或x 2+7x+12=0)14、已知x 1,x 2是方程x 2-2x-1=0的两个根,则等于1x 1+1x 2 。

(答案:-2)15、设m 、n 是一元二次方程x 2+3x-7=0的两个根,则m 2+4m+n= 。

(答案:4)二、解答题21、解下列方程:(1)x 2-5x+1=0;(答案:5±√212) (2)3(x -2)2=x (x -2);(答案:2,3) (3)2x 2-2√2x -5=0;(答案:√2±2√32) (4)(y+2)2=(3y -1)2;(答案:-14,32) (5)x 2-7x -18=0;(答案:-2,9)(6)x 2-x -6=0;(答案:-2,3)(7)(3-x )2+x 2=5;(答案:1,2)(8)2x 2+12x -6=0;(答案:-3±2√3)22、已知关于x 的一元二次方程x 2+(2m -1)x+m 2=0有两个实数根和。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。

3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

(完整版)一元二次方程经典测试题(含答案)

(完整版)一元二次方程经典测试题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案

一.选择题(每小题3分,共39分)1.下列方程是关于x 的一元二次方程的是(D );A .02=++c bx axB .2112=+x xC .1222-=+x x xD .)1(2)1(32+=+x x 2.方程()()24330x x x -+-=的根为( D );A .3x =B .125x =C .12123,5x x =-=D .12123,5x x == 3.解下面方程:(1)()225x -=(2)2320x x --=(3)260x x +-=,较适当的方法分别为( D )A .(1)直接开平法方(2)因式分解法(3)配方法B .(1)因式分解法(2)公式法(3)直接开平方法C .(1)公式法(2)直接开平方法(3)因式分解法D .(1)直接开平方法(2)公式法(3)因式分解法4.方程5)3)(1(=-+x x 的解是 ( B );A .3,121-==x xB .2,421-==x xC .3,121=-=x xD .2,421=-=x x5.方程x 2+4x =2的正根为( D )A .2-6B .2+6C .-2-6D .-2+6 6.方程x 2+2x -3=0的解是( B )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-37.某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是x ,则可以列方程( B );A .720)21(500=+xB .720)1(5002=+xC .720)1(5002=+xD .500)1(7202=+x 8.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( B )A .200(1+a%)2=148B .200(1-a%)2=148C .200(1-2a%)=148D .200(1-a 2%)=1489.关于x 的一元二次方程02=+k x 有实数根,则( D )A .k <0B .k >0C .k ≥0D .k ≤010.方程02=x 的解的个数为( C )A .0B .1C .2D .1或211.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( A )A .m >-1B .m <-2C .m ≥0D .m <012.已知x =1是一元二次方程x 2-2mx +1=0的一个解,则m 的值是( A)A .1B .0C .0或1D .0或-1 13.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于( C )A .6-B .1C .6-或1D .2二.填空题(每小题3分,共45分)1.把一元二次方程12)3)(31(2+=+-x x x 化成一般形式是: 5x 2 +8x-2=0 _____________ ;它的二次项系数是 5 ;一次项系数是 8 ;常数项是 -2 。

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。

(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。

(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。

(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。

3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。

一元二次方程测试题及答案

一元二次方程测试题及答案

一元二次方程测试姓名 学号一、选择题(每题3分,共30分):1.下列方程中不一定是一元二次方程的是() A.(a-3)x 2=8 (a *3) 2+bx+c=0 C.(x+3)(x-2)=x+5 D..3x 2 —x 2 0572下列方程中,常数项为零的是()22-x-12=12 ; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+2次方程 2x 2-3x+1=0 化为(x+a)2=b则a 值为(A 11x 2-14x+48=0的一根,则这个三角形的周长为() A.11 B.17 C6 .已知一个直角三角形的两条直角边的长恰好是方程 2x 2 8x7 0的两个根,则这个直角三角形的斜边长是()A 百B 、3C 、6D 、97 .使分式x 25x 6的值等于零的x 是()x 16 C8.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值 范围是()A.k>——>—且 kw0 C.k》— D.k> — 且 k4 444W09.已知方程x 2 x 2,则下列说中,正确的是()(A)方程两根和是1 (B)方程两根积是2 (C)方程两根和是 1(D)方程两根积比两根和大210 .某超市一月份的营业额为200万元,已知第一季度的总营业 额共1000万元,如果平均每月增长率为x,则由题意列方程 应为()A.200(1+x) 2=1000B.200+200 X2x=1000C.200+200X 3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共30分) 11 .用 _____ 法解方程3(x-2) 2=2x-4比较简便. 12 .如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为.3. ()A. 的形式,正确的是4.关于x 的216; B. 2 x 次方程a116; C.21 160的一个根是 0,25.已知三角形两边长分别为 9,第三边的长为二次方程13. x2 3x (x )214.若一元二次方程 ax2+bx+c=0(a w0)有——个根为-1,则a、b、c的关系是.15.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1,贝U a= , b=.16.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于.17.已知3- J2是方程x2+mx+7=03勺——个根,贝U m=另——根为.18.已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是.1 119.已知“,x2是方程x2 2x 1 0的两个根,则x1 x2等于20.关于x的二次方程x2 mx n 0有两个相等实根,则符合条件的一组m, n的实数值可以是m , n .三、用适当方法解方程:(每小题5分,共10分)24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570n2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,四、列方程解应用题:(每小题8分,共48分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,求这个百分数.(3 x)2 x2 5 22. x2 2 3x 3 0商场平均每天可多售出2件。

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题(含答案)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-20XX=0的两个实数根,则2+3+的值为( )A、20XXB、20XXC、-20XXD、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、kB、k- 且k0C、kD、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2B、-1C、0D、17、某城20XX年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到20XX年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )A、300(1+x)=363B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )A、x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2B、0C、-1D、10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为( )A、2 或B、或2C、或2D、、2 或二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、20XX年某市人均GDP约为20XX年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则 + 的值为 .三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1)求k的取值范围(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?参考答案一、选择题1~5 BCBCB 6~10 CBDAD提示:3、∵是方程x2+2x-20XX=0的根,2+2=20XX又+=-2 2+3+=20XX-2=20XX二、填空题11~15 4 25或16 10%16~20 6.7 , 4 3提示:14、∵AB、AC的长是关于x的方程x2-10x+m=0的两根在等腰△ABC中若BC=8,则AB=AC=5,m=25若AB、AC其中之一为8,另一边为2,则m=1620、∵△=32-411=5又+=-30,0,0,0三、解答题21、(1)x=9或1(2)x=2 (3)x=0或3或-1(4)22、解:依题意有:x1+x2=1-2a x1x2=a2又(x1+2)(x2+2)=11 x1x2+2(x1+x2)+4=11a2+2(1-2a)-7=0 a2-4a-5=0a=5或-1又∵△=(2a-1)2-4a2=1-4a0aa=5不合题意,舍去,a=-123、解:(1)当△0时,方程有两个实数根[-2(m+1)]2-4m2=8m+4 m-(2)取m=0时,原方程可化为x2-2x=0,解之得x1=0,x2=224、解:(1)一元二次方程x2-4x+k=0有两个不相等的实数根△=16-4k k4(2)当k=3时,解x2-4x+3=0,得x1=3,x2=1当x=3时,m= - ,当x=1时,m=025、解:由于方程为一元二次方程,所以c-b0,即bc又原方程有两个相等的实数根,所以应有△=0即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,所以a=b或a=c所以是△ABC等腰三角形26、解:(1)1250(1-20%)=1000(m2)所以,该工程队第一天拆迁的面积为1000m2(2)设该工程队第二天,第三天每天的拆迁面积比前一天增长的百分数是x,则1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.27、解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000解得x=5或x=10,为了使顾客得到实惠,所以x=5(2)设涨价x元时总利润为y,则y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125当x=7.5时,取得最大值,最大值为6125答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。

一元二次方程经典测试题(含答案及解析)

一元二次方程经典测试题(含答案及解析)

WORD格式可编辑专业知识整理分享一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育第Ⅰ卷(选择题)一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m +2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.第Ⅱ卷(非选择题)二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.219.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ 0(填:“>”或“=”或“<”).三.解答题(共8小题) 21.(6分)解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法)22.(6分)关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0 (1)若x=﹣1是方程的一个根,求m 的值及另一个根. (2)当m 为何值时方程有两个不同的实数根.23.(6分)关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实根. (1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;②求2x 2﹣的值.24.(6分)关于x 的方程x 2﹣(2k ﹣3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1x 2+|x 1|+|x 2|=7,求k 的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.WORD 格式 可编辑专业知识整理分享26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x 的一元二次方程x 2﹣(m +6)x +3m +9=0的两个实数根分别为x 1,x 2. (1)求证:该一元二次方程总有两个实数根;(2)若n=4(x 1+x 2)﹣x 1x 2,判断动点P (m ,n )所形成的函数图象是否经过点A (1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根4WORD 格式 可编辑专业知识整理分享B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大 【解答】解:x 2+bx ﹣2=0, △=b 2﹣4×1×(﹣2)=b 2+8, 即方程有两个不相等的实数根, 设方程x 2+bx ﹣2=0的两个根为c 、d , 则c +d=﹣b ,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c +d=﹣b 和b <0得出方程的两个根中,正数的绝对值大于负数的绝对值, 故选B .8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1【解答】解:根据根与系数的关系,得x 1+x 2=﹣1,x 1x 2=k . 又x 12+x 1x 2+x 22=2k 2, 则(x 1+x 2)2﹣x 1x 2=2k 2, 即1﹣k=2k 2, 解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去. ∴取k=﹣1. 故本题选A .9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根C .有一正根一负根且正根绝对值大D .有一正根一负根且负根绝对值大 【解答】解:∵a >0,b <0,c <0, ∴△=b 2﹣4ac >0,<0,﹣>0,∴一元二次方程ax 2+bx +c=0有两个不相等的实数根,且两根异号,正根的绝对值较大. 故选:C .10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1【解答】解:A 、在方程ax 2+bx +c=0中△=b 2﹣4ac ,在方程cx 2+bx +a=0中△=b 2﹣4ac , ∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; B 、∵“和符号相同,和符号也相同,∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确; C 、∵5是方程M 的一个根, ∴25a +5b +c=0, ∴a +b +c=0,∴是方程N 的一个根,正确;D 、M ﹣N 得:(a ﹣c )x 2+c ﹣a=0,即(a ﹣c )x 2=a ﹣c , ∵a ﹣c ≠1,∴x 2=1,解得:x=±1,错误. 故选D .11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7B .11C .12D .16【解答】解:∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根, ∴m +n=2t ,mn=t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A .B .C .D .【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a <,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a 的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a >﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.6WORD 格式 可编辑专业知识整理分享17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 4 .【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根, ∴m ﹣1≠0且△=(﹣3)2﹣4(m ﹣1)>0,解得m <且m ≠1,,∵解不等式组得,而此不等式组的解集是x <﹣1, ∴m ≥﹣1, ∴﹣1≤m<且m ≠1,∴符合条件的整数m 为﹣1、0、2、3. 故答案为4.18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 2 . 【解答】解:由已知得:△=b 2﹣4ac=22﹣4(m ﹣2)≥0, 即12﹣4m ≥0, 解得:m ≤3,∴偶数m 的最大值为2. 故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x 米(0<x <3),根据题意得: (18﹣3x )(6﹣2x )=60, 整理得,(x ﹣1)(x ﹣8)=0.解得:x 1=1,x 2=8(不合题意,舍去).即:人行通道的宽度是1米. 故答案是:1.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ > 0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx +b 的图象经过第一、三、四象限,∴k >0,b <0,∴△=(﹣2)2﹣4(kb +1)=﹣4kb >0. 故答案为>.三.解答题(共8小题) 21.解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法) (4)2(x ﹣3)2=x 2﹣9.【解答】解:(1)x 2﹣14x +49=57, (x ﹣7)2=57, x ﹣7=±,所以x 1=7+,x 2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121, x=,所以x 1=9,x 2=﹣2;(3)(2x +3)2﹣4(2x +3)=0, (2x +3)(2x +3﹣4)=0, 2x +3=0或2x +3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m >且m≠1,∴当m >且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x +=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k <;(2)∵k <,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k <,∴k=﹣1.8WORD 格式 可编辑专业知识整理分享25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数解析式为y=kx +b , 把(90,100),(100,80)代入y=kx +b 得,,解得,,y 与销售单价x 之间的函数关系式为y=﹣2x +280.(2)根据题意得:w=(x ﹣80)(﹣2x +280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x 米. 由题意(60﹣2x )(40﹣2x )=1500, 解得x=5或45(舍弃), 答:通道的宽度为5米.(2)设种植“四季青”的面积为y 平方米. 由题意:y (30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元? 【解答】22.(1)假设甲种商品的进货单价为x 元、乙种商品的进货单价为y 元, 根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m )(500+×100)+500=1000即2m 2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.10。

一元二次方程测试题及答案

一元二次方程测试题及答案

一元二次方程测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 2x + 1 = 0B. 2x + 3 = 0C. 3y^2 - 5 = 0D. x^3 - 4 = 0答案:A2. 一元二次方程 ax^2 + bx + c = 0 中,a的取值范围是:A. a ≠ 0B. a > 0C. a < 0D. a ≥ 0答案:A3. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ的值为:A. 1B. 4C. 16D. 25答案:B4. 如果一元二次方程的两个根为x1和x2,那么x1 * x2的值为:A. c/aC. b/aD. a/c答案:A5. 对于方程 x^2 - 4x + 4 = 0,以下哪个说法是正确的?A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断答案:B6. 一元二次方程 2x^2 - 6x + 4 = 0 的根为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B7. 方程 x^2 - 2ax + a^2 - a = 0 的根必定是:A. 0B. 1C. aD. -1答案:B8. 方程 3x^2 - 4x + 1 = 0 的判别式Δ等于:B. -12C. 12D. 20答案:C9. 如果一元二次方程的系数a、b、c都是整数,那么这个方程必有:A. 两个实数根B. 两个共轭复数根C. 两个有理数根D. 两个整数根答案:A10. 方程 x^2 + 3x + 2 = 0 的根的和为:A. -3B. -2C. 3D. 2答案:A二、填空题(每题4分,共20分)11. 一元二次方程的一般形式是____________________。

答案:ax^2 + bx + c = 0(a ≠ 0)12. 如果一元二次方程的判别式Δ < 0,那么该方程____________________。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x -2=0,③22x +3x=(1+2x)(2+x),④32x-=0,⑤32x x-8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个D.4个3.把方程())+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0B.x 2-5=0C.5x 2-2x+1=0D.5x 2-4x+6=04.方程x 2=6x 的根是( ) A.x 1=0,x 2=-6 B.x 1=0,x 2=6C.x=6D.x=05.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A.23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对6.若两个连续整数的积是56,则它们的和是( )A.11B.15C.-15D.±157.不解方程判断下列方程中无实数根的是( )A.-x2=2x-1B.4x2+4x+5=0;4C.20-= D.(x+2)(x-3)==-5x8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x;(2)3y2+1=;(3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+1k2-2=0.2(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案) 时间:40分钟 分数:100分一、选择题(每小题3分,共24分)1、下列方程中,关于x 的一元二次方程是( )A.()()12132+=+x xB.02112=-+x xC.02=++c bx ax D. 1222-=+x x x2、方程x x 22=的解为( ) A. x =2 B. x 1=2-,x 2=0 C. x 1=2,x 2=0 D. x =03、解方程)15(3)15(2-=-x x 的适当方法是( )A 、直接开平方法B 、配方法C 、公式法D 、因式分解法 4、已知m 方程012=--x x 的一个根,则代数式m m -2的值等于( ) A.—1 B.0 C.1 D.25、用配方法解下列方程时,配方有错误的是( )A.x 2-2x -99=0化为(x -1)2=100B.x 2+8x +9=0化为(x +4)2=25C.2t 2-7t -4=0化为1681)47(2=-t D.3y 2-4y -2=0化为910)32(2=-y6、下面是李明同学在一次测验中解答的填空题,其中答对的是( ).A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy ≠),则y x =6或yx=-1 D.若分式1232-+-x x x值为零,则x =1,27、用配方法解一元二次方程02=++c bx ax ,此方程可变形为( )A 、222442a ac b a b x -=⎪⎭⎫ ⎝⎛-B 、222442a b ac a b x -=⎪⎭⎫ ⎝⎛-C 、222442a ac b a b x -=⎪⎭⎫ ⎝⎛+D 、222442a b ac a b x -=⎪⎭⎫ ⎝⎛+ 8、从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A.9cm 2B.68cm 2C.8cm 2D.64cm 2二、填空题(每小题3分,共18分)9、把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 ,其中二次项系数是 ,一次项系数是 ,常数项是 。

一元二次方程测试题含答案

一元二次方程测试题含答案

一元二次方程测试题含答案一、选择题1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的判别式是:A. \( b^2 - 4ac \)B. \( 4b^2 - 4ac \)C. \( b^2 + 4ac \)D. \( 4a^2 - 4ac \)答案:A2. 方程 \( x^2 - 5x + 6 = 0 \) 的根是:A. \( x = 2 \) 或 \( x = 3 \)B. \( x = 1 \) 或 \( x = 6 \)C. \( x = -2 \) 或 \( x = -3 \)D. 无实数解答案:A3. 一元二次方程 \( 2x^2 - 3x + 1 = 0 \) 的判别式 \( \Delta \) 等于:A. 5B. 1C. -1D. 0答案:C二、填空题4. 方程 \( 3x^2 - 4x + 1 = 0 \) 的判别式 \( \Delta \) 为______ 。

答案:75. 方程 \( x^2 + 4x + 4 = 0 \) 的根是 ______ 。

答案:\( x = -2 \)(重根)三、解答题6. 解方程 \( 2x^2 - 7x + 3 = 0 \) 并给出根。

解:首先计算判别式 \( \Delta = b^2 - 4ac = (-7)^2 - 4\times 2 \times 3 = 49 - 24 = 25 \)。

由于 \( \Delta > 0 \),方程有两个不相等的实数根。

使用求根公式 \( x = \frac{-b \pm \sqrt{\Delta}}{2a} \) 得到:\( x_1 = \frac{7 + 5}{4} = 3 \),\( x_2 = \frac{7 - 5}{4} = 0.5 \)。

7. 已知方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和\( x_2 \),求 \( x_1 + x_2 \) 和 \( x_1 \cdot x_2 \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。

3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

6.已知322-+y y 的值为2,则1242++y y的值为 。

7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值围是 。

8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。

10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值围是 。

13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。

14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。

15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。

16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。

17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。

19.巳知a 、b 是一元二次方程x2-2x -1=0的两个实数根,则代数式(a -b )(a+b -2)+ab 的值等于____.20.已知关于x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k 的值为 .21.已知分式2-3-5+x x x a,当x =2时,分式无意义,则a = ;当a <6时,使分式无意义的x 的值共有 个.22.设x 1、x 2是一元二次方程x 2+5x ﹣3=0的两个实根,且,则a= 。

23. 方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。

24. 若=•=-+yx则y x 324,0352 。

25. 已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。

二、选择题:(每题3分共42分)1、关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .1或1-D .122、关于x 2=-2的说法,正确的是 ( )A.由于x 2≥0,故x2不可能等于-2,因此这不是一个方程B.x2=-2是一个方程,但它没有一次项,因此不是一元二次方程 C .x 2=-2是一个一元二次方程D.x2=-2是一个一元二次方程,但不能解3、若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( )A .2a >-B .2a <-C .2a >-且0a ≠D .12a >4、关于x 的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A 、1B 、-1C 、1或-1D 、2 5、下列方程是一元二次方程的是_______。

(1)x 2+x1-5=0 (2)x 2-3xy+7=0(3)x+12-x =4 (4)m 3-2m+3=0(5)22x 2-5=0(6)ax 2-bx=46、已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A 、3或﹣1B 、3C 、1D 、﹣3或17、若一元二次方程式x2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b 之值为()A .-57B .63C .179D .1818、若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )A 、x 1<x 2<a <bB 、x 1<a <x 2<bC 、x 1<a <b <x 2D 、a <x 1<b <x 2. 9、关于x 的方程:①,②,③;④中,一元二次方程的个数是( ) A.1 B.2 C.3 D.410、若方程nx m+x n-2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=111、已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为( )A.-10B.4C.-4D.1012、若m 是关于x 的一元二次方程02=++m nx x的根,且m ≠0,则n m +的值为( )A.1-B.1C.21- D.2113、关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是( )A.0,0==n mB.0,0≠=n mC.0,0=≠n mD.0,0≠≠n m14、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )A.1,0B.-1,0C.1,-1D.无法确定三、计算题:(1.2.3.4.5.6每题5分,.7.8.9.10每题7分,共58分)1、证明:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.2、已知关于x 的方程x 2+x+n=0有两个实数根﹣2,m .求m ,n 的值.3、已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。

4、已知m 是方程x 2﹣x ﹣2=0的一个实数根,求代数式的值.5、已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,数m 的值.6、当x满足条件时,求出方程x2﹣2x﹣4=0的根..7、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.8、关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值围.(2)若2(x1+x2)+ x1x2+10=0.求m的值.9、已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1-x2|=22,求m的值,并求出此时方程的两根.10、当m 为何值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。

附加题(15分):已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.一元二次方程测试题参考答案:一、填空题:1、5x 2+8x -2=0 5 8 -2 2、2014 3、2 4、-2 5、1或32-; 6、11 7、m ≥0 且m ≠1 8、-1 9、2 10、2014 11、3 12、k ≤4且k≠0 13、4 14、1 15、-1 16、417、①② 18、x 2+2x -3=019、解:∵a、b 是一元二次方程x2-2x -1=0的两个实数根, ∴ab=-1,a+b=2,∴(a -b )(a+b -2)+ab=(a -b )(2-2)+ab=0+ab=-1,故答案为:-1.20、解:设方程方程x 2+(2k +1)x +k 2-2=0设其两根为x 1,x 2,得x 1+x 2=-(2k+1),x 1•x 2=k 2-2, △=(2k+1)2-4×(k 2-2)=4k+9>0,∴k>-49, ∵x 12+x 22=11,∴(x 1+x 2)2-2 x 1•x 2=11,∴(2k+1)2-2(k 2-2)=11,解得k =1或-3;∵k >-49,故答案为k =1.21、解:由题意,知当x=2时,分式无意义,∴分母=x 2-5x +a =22-5×2+a =-6+a =0,∴a =6; 当x 2-5x +a =0时,△=52-4a =25-4a , ∵a <6,∴△>0,∴方程x 2-5x +a =0有两个不相等的实数根,即x 有两个不同的值使分式2-3-5+x x x a无意义.故当a <6时,使分式无意义的x 的值共有2个.故答案为6,2.22、解:∵x1、x2是一元二次方程x2+5x﹣3=0的两个实根,∴x1+x2=﹣5,x1x2=﹣3,x22+5x 2=3,又∵2x1(x 22+6x2﹣3)+a=2x1(x22+5x2+x2﹣3)+a=2x1(3+x2﹣3)+a=2x1x2+a=4,∴﹣10+a=4,解得:a=14.23、 24、 25、二、选择题:1、B2、D3、C4、B5、(5)6、B7、D8、解:∵x1和x2为方程的两根,∴(x1-a)(x1-b)=1且(x2-a)(x2-b)=1,∴(x1-a)和(x1-b)同号且(x2-a)和(x2-b)同号;∵x1<x2,∴(x1-a)和(x1-b)同为负号而(x2-a)和(x2-b)同为正号,可得:x1-a<0且x1-b<0,x1<a 且x1<b,∴x1<a,∴x2-a>0且x2-b>0,∴x2>a且x2>b,∴x2>b,∴综上可知a,b,x1,x2的大小关系为:x1<a<b<x2.故选C.9、A 10、 11、C 12、A 13、B 14、C三、计算题:1、∵m²-8m+17= m²-8m+16+1=(m-4)²+1∵(m-4)²≥0 ∴(m-4)²+1²>0即m²-8m+17>0∴不论m取何值,该方程都是一元二次方程。

相关文档
最新文档