高二 数学集体备课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课时间:8月15日 上课时间:8月24日
§3.1.1倾斜角与斜率
一、 教学目标:
(1)知识与技能:理解直线倾斜角和斜率的概,掌握过两点的直线的斜率公式及其应用.
(2)过程与方法:培养学生对数学知识的理解应用能力及转化能力;使学生初步了解数形结合分类讨论思想. (3)情感态度与价值观:从学习中体会到用代数方法解决几何问题的优点,能够从不同角度去分析问题,体会代数与几何结合的数学魅力。 二、教学重难点:
(1)教学重点:直线的倾斜角和斜率的概念,过两点的直线的斜率公式; (2)教学难点:斜率概念的学习,过两点的直线的斜率公式。 三:课时计划:1课时 四、教学过程: 学习目标:
1、 理解直线的倾斜角和斜率的概念,掌握它们之间的关系;
2、 掌握过两点的直线的斜率计算公式及其简单的应用。 (一)课题导入
前面,我们学习了两点确定一条直线。 问题1:一点能够确定一条直线?
问题2:了加多一个点外,在已知一个点的基础上能不能加上另外一个条件使到它能确定一条直线? 【老师板书】画坐标平面以及一条直线,点出直线上一点,过此点画多条直线。 问题3:这些直线有什么共同点(过同一点,倾斜程度不一样)
如何刻画直线的倾斜程度呢?这就是本节课我们要学习的内容……
(二)讲授新课
1、 直线倾斜角的定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫
做直线l 的倾斜角。
例题:最后在黑板上用尺子依照定义说法比画出倾斜角将直线倾斜角的可能情况显示出来(共四种情况:平行于x 轴,经过一、三象限,垂直于x 轴,经过二、四象限)
注意:(1)直线的向上方向;(2)x 轴的正方向;(3)倾斜角范围是)180,0[︒︒。 练习:下列三个图中所指的角是不是直线的倾斜角?
命制:王露
校对:高一数学组 审核:刘金琼
第三章 第1节 直线的倾斜角与斜率
(第1课时)
过渡:平面直角坐标系内每一条直线都有一个确定的倾斜角α,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等。因此,我们可用倾斜来刻画直线的倾斜程度。 ⒉ 斜率的概念:一条直线的倾斜角α的正切值叫做这条直线的斜率。 斜率的定义:αtan =k 说明:(1)当倾斜角是90°时,斜率不存在,并不是直线不存在;
(2)所有直线都有倾斜角,但不是所有直线都有斜率; 例:倾斜角︒=45α,求直线斜率。 解:145tan =︒=k
变式练习:书P86,练习第1题
过渡:我们知道两点也可用确定一条直线,任何用 两点坐标表示直线斜率了?
3.用两点的坐标表示斜率:经过两点),(),,(22211y x p y x p x 的直线斜率为1
21
2x x y y k --=
思考:当直线与坐标轴平行或重合时,上述结论还成立吗?(如图12)
说明:(1)两点式斜率公式中21x x ≠,当21x x =时,直线与x 轴垂直,斜率不存在 (2)当21y y =时,直线与x 轴平行,斜率为0.
例:知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角。 变式练习:书P86,练习第2,3题
例:直线的斜率为k ,倾斜角为α,若
<α<
,则k 的范围( )
A.(-1,1)
B.(-∞,-1)∪(1,+∞)
C.[-1,1]
D. (-∞,-1]∪[1,+∞) 变式练习:设直线的斜率为k ,倾斜角为α,若-1 A .(-,) B. C.(0,)∪(,) D. 例3.在平面直角坐标系中,画出经过原点且斜率分别为1,-1,和2的直线。 变式练习:书P86,练习第4题 4.课堂小结: (1)确定直线的条件:两点确定一条直线或一点加斜率确定一条直线; (2)直线的倾斜角(定义,范围); (3)直线的斜率(倾斜角与斜率,两点坐标表示斜率)。 5.课堂检测: 1.画出过点A(1,0) 倾斜角为︒30的直线L,将其绕A 点逆时针旋转︒80所得直线m 的倾斜角_____ 绕A 点顺时针旋转︒40所得直线n 的倾斜角_______绕A 点逆时针旋转︒160所得直线a 的倾斜角_______ 2.已知直线的倾斜角为α,若sin α=,求此直线的斜率。 3.在x 轴上有一点P 与Q (2, )倾斜角为150o ,求点P 坐标。 4.已知直线y =x sin θ-1,求该直线倾斜角范围。 6.课后作业: 必做题:书P89,A 组第1,2,3,4题 选做题:书P90,B 组第5,6题 备课时间:8月16日 上课时间:8月25日 §3.1.2 两条直线平行与垂直的判定 一、 教学目标: (1)知识与技能:掌握两条直线平行与垂直的条件,会运用条件判断两直线是否平行或垂直,能运用条件确定 两平行或垂直直线的方程; (2)过程与方法:通过对两直线平行或垂直的条件的讨论,培养学生探索能力和概括能力,让学生了解分类讨论 数形结合等数学思想; (3)情感态度与价值观:通过对两直线平行与垂直位置关系的研究,培养学生的成功意识,激发学生学习兴趣. 二、教学重难点: (1)教学重点:理解与掌握两条之直线平行和垂直的判定条件. (2)教学难点:两直线中有一条直线斜率不存在时,两直线平行与垂直情况的讨论. 三:课时计划:1课时 四、教学过程: 学习目标: 1、 能根据两条直线的斜率判定两条直线是否平行或垂直; 2、 能根据两条直线的平行或垂直关系确定两条直线斜率的关系. (一) 课题导入: 己知直线1l 过点A(0,0) 、B(2,-1),直线2l 过点C(4,2) 、D(2,-2),直线3l 过点M(3,-5) 、N(-5,-1), 你 能在同一个坐标系内画出这三条直线,并根据图形判断三直线之间的位置关系吗?它们的斜率之间又有什么关系? (1)31//l l ,12l l ⊥,32l l ⊥, (2)211-=k ,22=k ,2 13-=k (3)31k k =,13121-=•=•k k k k (二)讲授新课 1.两条直线平行: (1)当两直线的斜率都存在时:⎩⎨ ⎧⇔=重合与2 12 121//l l l l k k (2)当两直线的斜率都不存在时:⎩⎨⎧⇔⇔︒==重合 与都不存在和212 12121//90l l l l k k αα 书P87,例3(直线平行的判定) 变式练习: 判断下列直线1l 与2l 是否平行: (1)1l 经过点A (-1,-2),B (2,1),2l 经过点M (3,4),N (-1,-1); (2)1l 的斜率为1,2l 经过点A (1,1),B (2,2); (3)1l 经过点A (0,1),B (1,0),2l 经过点M (-1,3),N (2,0); (4)1l 经过点A (-3,2),B (-3,10),2l 经过点M (5,-2),N (5,5)。 例4(直线平行的应用) 变式练习:若A (-2,3),B (3,-2),),2 1 (m C - 三点共线,求m 的值。 命制:严春香 校对:高一数学组 审核:刘金琼 第三章 第1节 直线的倾斜角与斜率(第2课时)