勾股定理经典例题含答案.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理经典例题含答案11页

勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法

1、在Rt△ABC中,∠C=90°

(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.

思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=

(2) 在△ABC中,∠C=90°,a=40,b=9,c=

(3) 在△ABC中,∠C=90°,c=25,b=15,a=

举一反三

【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?

【答案】∵∠ACD=90°

AD=13, CD=12

∴AC2 =AD2-CD2

=132-122

=25

∴AC=5

又∵∠ABC=90°且BC=3

∴由勾股定理可得

AB2=AC2-BC2

=52-32

=16

∴AB= 4

∴AB的长是4.

类型二:勾股定理的构造应用

2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有

,,再由勾股定理计算出AD、DC的长,进而求出BC的

长.

解析:作于D,则因,

∴(的两个锐角互余)

∴(在中,如果一个锐角等于,

那么它所对的直角边等于斜边的一半).

根据勾股定理,在中,

.

根据勾股定理,在中,

.

∴.

举一反三【变式1】如图,已知:,,于P. 求证:.

解析:连结BM,根据勾股定理,在中,

.

而在中,则根据勾股定理有

.

又∵(已知),

∴.

在中,根据勾股定理有

∴.

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,

∴BE2=AE2-AB2=82-42=48,BE==。

∵DE2= CE2-CD2=42-22=12,∴DE==。

∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=

类型三:勾股定理的实际应用

(一)用勾股定理求两点之间的距离问题

3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了

到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

解析:(1)过B点作BE//AD

∴∠DAB=∠ABE=60°

∵30°+∠CBA+∠ABE=180°

∴∠CBA=90°

即△ABC为直角三角形

由已知可得:BC=500m,AB=

由勾股定理可得:

所以

(2)在Rt△ABC中,

∵BC=500m,AC=1000m

∴∠CAB=30°

∵∠DAB=60°

∴∠DAC=30°

即点C在点A的北偏东30°的方向

举一反三

【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.

解:OC=1米(大门宽度一半),

OD=0.8米(卡车宽度一半)

在Rt△OCD中,由勾股定理得:

CD===0.6米,

CH=0.6+2.3=2.9(米)>2.5(米).

因此高度上有0.4米的余量,所以卡车能通过厂门.

(二)用勾股定理求最短问题

4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地

有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,

他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.

解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为

AB+BC+CD=3,AB+BC+CD=3

图(3)中,在Rt△ABC中

同理

∴图(3)中的路线长为

图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH=及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

3>2.828>2.732

∴图(4)的连接线路最短,即图(4)的架设方案最省电线.

举一反三

【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

解:

如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定

理得

相关文档
最新文档