【衡水金卷先享题 调研卷】2019高考模拟试题 理科数学(三)(含答案)
河北省衡水市2019届高三第三次模拟考试数学试卷及参考答案
河北省衡水市2019届高三第三次模拟考试数学试卷(理)第Ⅰ卷 选择题(共60分)选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只 有一项符合题目要求.1.已知集合{}{}1|,1|<=<=xe x B x x A ,则( )A. {}1|<=x x B AB. {}e x x B A <=|C. R B C A R =)(D.{}10|)(<<=x x B A C R2. 已知i 为虚数单位,若1i(,)1+ia b a b =+∈R ,则b a = ( ) A. 1 B.2 C.22D.2 3.向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c 共线,则实数λ=( )A.2-B.1-C.1D.24.函数)6cos()3sin(51)(ππ-++=x x x f 的最大值为( ) A. 51 B. 1 C. 53 D. 565.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为 ( )A . 932B .516C .38D . 7166.已知0>a ,)6(log )(ax x f a -=,则“31<<a ”“是)(x f 在)2,1(上单调递减”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.一给定函数)(x f y =的图象在下列四个选项中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列{}n a 满足n n a a <+1.则该函数的图象可能是( )A. B.C. D.8.某几何体的三视图如图所示,其中主视图,左视图均是由高为2三角形构成,俯视图由半径为3的圆与其内接正三角形构成,则该几何体的体积为( )A. B. C. D. .9.设双曲线的左、右焦点分别为, ,过作轴的垂线与双曲线在第一象限的交点为,已知, ,点是双曲线右支上的动点,且恒成立,则双曲线的离心率的取值范围是( ) A. B.C. D.2222:1(0,0)x y C a b a b-=>>12,F F 122F F c =2F x A 3,2a Q c ⎛⎫⎪⎝⎭22F Q F A >P C 11232PF PQ F F +>2⎛⎫+∞ ⎪ ⎪⎝⎭71,6⎛⎫⎪⎝⎭7,62⎛ ⎝⎭1,2⎛⎫⎪ ⎪⎝⎭10.已知实数、满足⎪⎩⎪⎨⎧≤--≥+-+≥+--033042242421y x y x y x y x ,若1)1(-+≥x k y 恒成立,那么k 的取值范围是( )A .]3,21[ B .]34,(-∞ C .),3[+∞ D .]21,(-∞11.已知三棱锥中,, 直线与底面所成角为,则此时三棱锥外接球的表面积为 ( ) A. B.π6 C. π9 D. π512.已知函数是定义在R 上的奇函数,当时,⎪⎩⎪⎨⎧>-≤<=--,2),2(21,202)(,1|1|x x f x x f x 则函数1)()(-=x xf x g 在),7[+∞-上的所有零点之和为( ) A .7 B .8 C .9 D .10第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.曲线x y =与直线x y =所围成的封闭图形的面积为__________.14.522)1)(111(x xx +++展开式中2x 的系数为 15.过抛物线C :x 2=4y 的焦点F 的直线l 交C 于A ,B ,点A 处的切线与x ,y 轴分别交于点M ,N ,若△MON的面积为,则|AF |=________.16..已知锐角111C B A ∆的三个内角的余弦值分别等于钝角222C B A ∆的三个内角的正弦值,其中22π>A ,若1||22=C B ,则||3||222222C A B A +的最大值为 .三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{}n a 前5项和为50,227=a ,数列{}n b 的前n 项和为n S ,13,111+==+n n S b b .(Ⅰ)求数列{}n a ,{}n b 的通项公式;A BCD -2,2AB AC BD CD BC AD =====AD BCD π8(Ⅱ)若数列{}n c 满足*+∈=+++N n a b c b c b c n nn ,12211 ,求201721c c c +++ 的值18.(本小题满分12分)如图,在平行四边形ABCD 中2,3,300===∠AB AD A ,沿BD 将ABD ∆翻折到BD A '∆的位置,使平面⊥BC A '平面BD A '.(1)求证:⊥D A '平面BCD ;(2)在线段C A '上有一点M 满足C A M A ''λ=,且二面角C BD M --的大小060,求λ的值.19. (本小题满分12分)某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的. (1)求甲、乙两位同学总共正确作答3个题目的概率;(2)若甲、乙两位同学答对题目个数分别是,,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.20.(本小题满分12分)在平面直角坐标系xoy 中,已知定点)0,1(F ,点P 在y 轴上运动,点M 在x 轴上运动,点N 为坐标平面内的动点,且满足0=∙,=+.(1)求动点N 的轨迹C 的方程;(2)过曲线C 第一象限上一点),(00y x R (其中10>x )作切线交直线1-=x 于点1S ,连结RF 并延长交直线1-=x 于点2S ,求当21S RS ∆面积取最小值时切点R 的横坐标.21.(本小题满分12分)已知函数)(ln 1)(22R a ax x a x x f ∈-+-=. (1)若0>a ,求函数)(x f 的单调性;(2)若0=a 且)1,0(∈x ,求证:11)(2<-+xx e x f x 请考生在22、23、两题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选4-4 坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程是4sin ρθ=,曲线2C 的极坐标方程为sin 26πρθ⎛⎫+= ⎪⎝⎭.(1)求曲线12,C C 的直角坐标方程;(2)设曲线12,C C 交于点,A B ,曲线2C 与x 轴交于点E ,求线段AB 的中点到点E 的距离.23.(本小题满分10分)选修4-5 不等式选讲 已知函数()f x x a a=--+,()2124g x x x =-++.(1)解不等式()6g x <;(2)若对任意的1x ∈R,存在2x ∈R,使得()()12g x f x -=成立,求实数a 的取值范围.【参考答案】1-12.CBDDC,AAABD,AB13. 14. 15 15. 2 16. 1017.解:(Ⅰ)设等差数列的公差为.依题意得解得,,所以. 当时,,当时,,,以上两式相减得,则,又,所以,.所以为首项为1,公比为4的等比数列,所以.(Ⅱ)因为,当时,,以上两式相减得,所以,.当时,,所以,不符合上式,所以.18.解:(1)中,由余弦定理,可得.∴,∴,∴.作于点,∵平面平面,平面平面,∴平面.∵平面,∴. 又∵,,∴平面.又∵平面,∴.又,,∴平面.(2)由(1)知两两垂直,以为原点,以方向为轴正方向建立如图所示空间直角坐标系,则,,.设,则由.设平面的一个法向量为,则由,取.平面的一个法向量可取,∴.∵,∴.19.解:(1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.故所求的概率.(2)的所有取值有1,2,3.,,,故.由题意可知,故.而,所以.20.解:(1)设,,.因为,,所以,,,所以.(2)切线:,将代入得,直线:,将代入得,,因为在抛物线上且在第一象限,所以,所以,设,,,,.21.解:解法一:(1)函数的定义域为,,若时,当时,;当时,;当时,.故在上,单调递减;在上,单调递増;(2)若且,欲证,只需证,即证.设函数,则.当时,.故函数在上单调递增.所以.设函数,则.设函数,则.当时,,故存在,使得,从而函数在上单调递增;在上单调递减. 当时,,当时,P (x 0)·P (1)<-2<0,故存在,使得,即当时,,当时,从而函数在上单调递增;在上单调递减. 因为,故当时,所以,即.解法二:(1)同解法一.(2)若且,欲证,只需证,即证.设函数,则.当时, .故函数在上单调递增.所以.设函数,因为,所以,所以,又,所以,所以,即原不等式成立.解法三:(1)同解法一.(2)若且,欲证,只需证,由于,则只需证明,只需证明,令,则222211121'()20x x x g x x x x x x---=--=<<, 则函数在上单调递减,则,所以成立,即原不等式成立.22.解:(1)曲线1C 的极坐标方程可以化为:24sin 0ρρθ-=, 所以曲线1C 的直角坐标方程为:2240x y y +-=,曲线2C的极坐标方程可以化为:1sin cos 22ρθρθ+⋅=, 所以曲线2C的直角坐标方程为:40x +-=;(2)因为点E 的坐标为()4,0,2C 的倾斜角为56π, 所以2C的参数方程为:412x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 将2C 的参数方程代入曲线1C的直角坐标方程得到:2242024t t ⎛⎫-+-= ⎪ ⎪⎝⎭,整理得:()22160t t -+=,判别式0∆>,中点对应的参数为1,所以线段AB 中点到E点距离为123.解:(1)由21246x x -++<①当2x ≤-时,21246x x -+--<,得94x >-,即924x -<≤-; ②当122x -<<时,21246x x -+++<,得56<,即122x -<<; ③当12x ≥时,21246x x -++<,得34x <,即1324x ≤<;综上,不等式()6g x <解集是93,44⎛⎫- ⎪⎝⎭.(2)对任意的1x ∈R ,存在2x ∈R ,使得()()12g x f x -=成立, 即()f x 的值域包含()g x -的值域,由()f x x a a =--+,知()(],f x a ∈-∞, 由()2124g x x x =-++≥()()21245x x --+=,且等号能成立, 所以()(],5g x -∈-∞-,所以5a ≥-,即a 的取值范围为[)5,-+∞.。
【衡水金卷先享题信息卷】2019届高三理科数学普通高校招生全国统考模拟试题(三)及答案(扫描版,全国I卷A)
由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。 由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。
由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。 由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。 由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。
由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。 由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。
由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。 由免费初高中、大学网课等资源微信公众号:博物青年 整理,请勿用于任何商业用途 ,请在下载后24小时后删除,侵删。
2019年衡水中学高三三调理科数学试题及答案
2018〜2019学年度上学期高三年级三调考试数学(理)试卷命题人2tanAtanB A, z、则皿伽奸燮)的值頫)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.共150分,时间120分钟.一、选择题畠本题共12个小题,每小题均只有一个正确选项,每小题5分,共60分.1、集合M = { X|2X2-X-1<0},N= { xpx + a>O}t U = R,若网。
(:剥=巾,贝血的取值范围是()A. a>lB. a > 1C. a < 1D. a 12 22、若直线尸虹与双曲线寻一f=l相交,则A的取值范围是()A.(0, |B. 2 2、孑3D.-8, -|)峭,-I—)3、在△4BC 中,AB = 3t AC = 2, BD = -BC,则AD-BD=( )2C.--4丄'14、已知数列{%}的前项和S…=n2-n ,正项等比数列也}中,b2=a3 r如+3札T = 4矿(〃 2 2顼E N+ ),则log2如=(A. n-1B. 2n-lC. n-2D- n5、已知直线ax-by-l = O与圆c:(x-l)2^(y + a)2^l相交于A, B,且△ ABC为等腰直角三角形,则实数a的值为() 1A. -或"B. -17C. D. 1或-16、在△ ABC中,a, b, c分别是角A, B, C的对边,若a^^=20U c2A. 2013B. 1 D. 20147、已知点旳,牧泌夭0)是圆C*『V瑚内一点,直线1是以M为中点的弦所在的直线,直线盼的方程为bxra^r2^那么C I丄淞且in与圆C相离B "加且/W与圆C相切D 〃/说且w与圆C相离8、若圆工2 +y 2 一邳+2* +1=0和圆工2 +歹2 =1关于直线y =工一1对称,过点C (一外。
)的圆P与y轴相切,则圆心P的轨迹方程是A.C.9、A.y 2 - 4x +4* + 8 = 0y2+4x-4j^ 4-8 = 0B. J/ ? +及一2» + 2 = 0D. y 2—2x —y +1 = 0平行四边形A8CD中,AB = 2,AD = 1,AB ' AD = 点M在边CD上,则Sv新8的最大值为()C・D.10、已知椭圆「+%■ = 1 (a > 0,方> 0)上一点A关于原点的对称点为点B, F为其右焦点,若a bAF1BF,设ZABF = a,且a e 则该椭圆的离心率e的取值范围是(6 4A.,1] B.成屈1] C. D.IK已知点A是抛物线xMy的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|曲PB|,当m取最大值时,点P恰好在以A, B为焦点的双曲线上,则双曲线的离心率为A.),曲T2~C.姬+1髙三年级、数学(理)试题、第1页共3页12、已知在R 上的函数F(x)满足如下条件:①函数,(工)的图象关于y 轴对称;②对于任意 xe J R,/(2 + x)-/(2-x) = 0 ;③ 当 XG [0,2]时,/ (x) = x ;④函数 f^x)^f(r-x-x),n&N\若过点(-1,0)的直线,与函数扁⑴ 的图象在工司0,2]上恰有 8个交点,在直线/斜率左的取值范围是( ) A- (°,号) B. (0,?) C. (0,~) D. (0,?)H 卷二、填空题:本题共4个小题,每小題5分,共20分.13、在A48C 中,M&c 分别是角&.&C 的对边,已知sin(2n + S )= !,b = \,山因。
2019届四省高三第三次大联考【衡水金卷】数学(理)试题(解析版)
2019届四省高三第三次大联考【衡水金卷】数学(理)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、单选题1.复数满足为虚数单位),则的虚部为()A. B. C. D.【答案】B【解析】分析:由题意结合复数的运算法则进行计算,然后确定其虚部即可.详解:由复数的运算法则可得:,据此可知,复数的虚部为.本题选择B选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.2.某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为,则()A. B. C. D.【答案】C【解析】分析:首先确定几何体的空间结构,然后结合体积公式得到关于d的方程,解方程即可求得最终结果.详解:由题意可知,该几何体是一个三棱锥,其底面为直角三角形,且直角三角形的直角边长度分别为dcm,9cm,其高为8cm,结合三棱锥体积公式可得:,解得:,即.本题选择C选项.点睛:本题主要考查三视图还原几何体,三棱锥的体积公式等知识,意在考查学生的转化能力和计算求解能力.3.设集合则()A. B. C. D.【答案】B【解析】分析:首先确定集合N,然后考查两个集合的关系即可.详解:求解二次不等式可得:,则,则集合M是集合N的真子集.据此可知.本题选择B选项.点睛:本题主要考查集合的表示方法,集合之间的关系等知识,意在考查学生的转化能力和计算求解能力.4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包量成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为()A. B. C. D.【答案】A【解析】分析:首先将问题转化为数列的问题,然后求解数列中对应的项即可.详解:原问题等价于:已知等差数列中:,且:,,求的值.不妨设数列的公差为,则:,即,①则,②联立①②可得:,.即最小的一份为.本题选择A选项.点睛:本题主要考查等差数列及其应用,等差数列的前n项和等知识,意在考查学生的转化能力和计算求解能力.5.对任意实数有若则()A. B. C. D.【答案】B【解析】分析:由题意分别求得的值,然后两者作差得到关于a的方程,求解方程即可求得最终结果.详解:令可得:,即,展开式的通项公式为:,令可得:,令可得:,则,结合题意有:,解得:.本题选择B选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.6.双曲线的一条渐近线截圆为弧长之比是的两部分,则双曲线的离心率等于()A. B. C. D.【答案】C【解析】分析:结合圆的方程首先确定渐近线方程,然后结合双曲线的方程求得b的值,之后求解离心率即可.详解:圆的方程的标准方程为:,圆的圆心坐标为,且经过坐标原点,双曲线的渐近线经过坐标原点,若双曲线的一条渐近线截圆为弧长之比是的两部分,则双曲线的一条渐近线的倾斜角为,其斜率,据此可得:,双曲线的离心率为.本题选择C选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).7.阅读如图所示的程序,若运行结果为35,则程序中的取值范围是()A. B. C. D.【答案】A【解析】分析:首先确定程序的功能,然后结合题意确定a的取值范围即可.详解:由程序语句可知程序运行程序过程中数据变化如下:S=11,i=9;S=20,i=8;S=28,i=7;S=35,i=6,此时结束循环,故6<a≤7.即程序中的取值范围是.本题选择A选项.点睛:本题主要考查程序语句是识别与应用,当型循环与直到型循环的区别于联系等知识,意在考查学生的转化能力和计算求解能力.8.设,则()A. B. C. D.【答案】C【解析】分析:由求出的表达式,先比较的大小和范围,再求出的范围,根据它们不同的范围,得出它们的大小。
河北省衡水中学2019届高三第三次模拟考试(理)试题
河北省衡水中学2019届高三第三次模拟考试数学(理)试题本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2210M x x x =--<,{}20N x x a =+>,U R =,若U M C N φ⋂=,则a 的取值范围是( ) A.1a >B.1a ≥C.1a <D.1a ≤2.若直线y kx =与双曲线22194x y -=相交,则k 的取值范围是( )A.20,3⎛⎫ ⎪⎝⎭B.2,03⎛⎫- ⎪⎝⎭C.22,33⎛⎫- ⎪⎝⎭D.22,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭3.在ABC △中,3AB =,2AC =,12BD BC =,则AD BD ⋅=( ) A.52-B.52C.54-D.544.已知数列{}n a 的前n 项和为2n S n n =-,正项等比数列{}n b 中,23b a = ,()23142,n n n b b b n n N +-+=≥∈,则2log n b =( )A.1n -B.21n -C.2n -D.n5.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B ,且ABC △为等腰直角三角形,则实数a 的值为( ) A.17或1- B.1- C.1 D.1或1-6.在ABC 中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则()2tan tan tan tan tan A BC A B ⋅+的值为( ) A.2013B.1C.0D.20147.已知点()(),0M a b ab ≠是圆222:C x y r +=内一点,直线l 是以M 为中点的弦所在的直线,直线m 的方程为2bx ay r -=,那么( ) A.l m ⊥且m 与圆C 相切 B.l m ∥且m 与圆C 相切 C.l m ⊥且m 与圆C 相离D.l m ∥且m 与圆C 相离8.若圆22210x y ax y +-++=和圆221x y +=关于直线1y x =-对称,过点(),C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程是( )A.24480y x y -++=B.22220y x y +-+=C.24480y x y +-+=D.2210y x y --+=9.平行四边形ABCD 中,2AB =,1AD AD ⋅=-,点M 在边CD 上,则MA MB ⋅的最大值为( )11C.0D.210.已知椭圆()222210,0x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α=∠,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是( )A.⎤⎥⎣⎦B.1⎤⎥⎣⎦C.⎣⎦D.⎣⎦11.已知点A 是抛物线24x y =的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足PA m PB =,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( )1 112.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x R ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,则直线l 斜率k 的取值范围是( ) A.80,11⎛⎫⎪⎝⎭B.110,8⎛⎫ ⎪⎝⎭C.80,19⎛⎫ ⎪⎝⎭D.190,8⎛⎫ ⎪⎝⎭二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC △中,,,a b c 分别是角,,A B C 的对边,已知1sin 262A π⎛⎫+= ⎪⎝⎭,1b =,ABC △的面,则sin sin b cB C++的值为_______________. 14.已知平面上有四点,,,O A B C ,向量OA ,OB ,OC 满足:0OA OB OC ++=,1OA OB OB OC OC OA ⋅=⋅=⋅=-,则ABC △的周长是_______________.15.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π=∠,则椭圆和双曲线的离心率的倒数之和的最大值为_______________.16.已知数列{}n a 的前n 项和122n n n S a +=-,若不等式()2235n n n a λ--<-对*n N ∀∈恒成立,则整数λ的最大值为________________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC △中,角,,A B C 的对边分别是,,a b c ,已知向量33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,且满足3m n +=.(1)求角A 的大小;(2)若b c +,试判断ABC △的形状.18.已知圆C 经过原点()0,0O 且与直线28y x =-相切于点()4,0P . (1)求圆C 的方程;(2)在圆C 上是否存在两个点M ,N 关于直线1y kx =-对称,且以线段MN 为直径的圆经过原点?若存在,写出直线MN 的方程;若不存在,请说明理由.19.各项均为正数的数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,对任意*n N ∈,有()222n n n S pa pa p p R =+-∈.(1)求常数p 的值;(2)求数列{}n a 的通项公式; (3)记423nn n S b n =⋅+,求数列{}n b 的前n 项和n T .20.已知椭圆()2222:10x y C a b a b+=>>的离心率e =,原点到过点(),0A a ,()0,B b -的直线.(1)求椭圆C 的方程;(2)如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,E F 都在以B 为圆心的圆上,求k 的值.21.已知定点()0,1F ,定直线:1m y =-,动圆M 过点F ,且与直线m 相切. (1)求动圆M 的圆心轨迹C 的方程;(2)过点F 的直线与曲线C 相交于,A B 两点,分别过点,A B 作曲线C 的切线1l ,2l ,两条切线相交于点P ,求PAB △外接圆面积的最小值.22.设函数()21ln 2f x x ax bx =--.(1)当12a b ==时,求函数()f x 的最大值; (2)令()()212a F x f x ax bx x =++-,()03x <≤其图象上任意一点()00,P x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围;(3)当0a =,1b =-,方程()22mf x x =有唯一实数解,求正数m 的值.数学(理)试卷答案一、选择题1-5:BCCDD 6-10:ACCDB 11、12:CA二、填空题13.2 14. 16.4 三、解答题17. 解:(1)∵()()2223m n m n ++⋅=,代入33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,有33112cos cos sin sin 32222A A A A ⎛⎫+++= ⎪⎝⎭,∴331cos cos sin sin 22222A A A A ⎛⎫+= ⎪⎝⎭,即31cos 222A A ⎛⎫-= ⎪⎝⎭,∴1cos 2A =,60A =°. (2)法一:∵1cos 2A =,∴222122b c a bc --=①又∵b c +=②联立①②有,222bc b c =+-,即222520b bc c --=,解得2b c =或2c b =,又∵b c -,若2b c =,则a =,∴)2222224a c c c b +=-==,ABC △为直角三角形,同理,若2c b =,则ABC △也为直角三角形.18.(1)由已知,得圆心在经过点()4,0P 且与28y x =-垂直的直线122y x =-+上,它又在线段OP 的中垂线2x =上,所以求得圆心()2,1C .所以圆C 的方程为:()()22215x y -+-=.(2)假设存在两点,M N 关于直线1y kx =-对称,则1y kx =-通过圆心()2,1C ,求得1k =, 所以设直线MN 为y x b =-+,代入圆的方程得()2222220x b x b b -++-=, 设()11,M x x b -+,()22,N x x b -+,则()121222230OM ON x x b x x b b b ⋅=-++=-=, 解得0b =或3b =,这时0∆>,符合题意,所以存在直线MN 为y x =-或3y x =-+符合条件.19.解:(1)由11a =及()2*22n n n S pa pa p n N =+-∈,得:22p p p =+-,∴1p =.(2)由2221n nn S a a =+-①,得2111221n n n S a a +++=+-② 由②-①,得()()2211122n n n n n a a a a a +++=-+-,即:()()()11120n n n n n n a a a a a a ++++--+=, ∴()()112210n n n n a a a a +++--=,由于数列{}n a 各项均为正数,∴1221n n a a +-=,即112n n a a +-=, ∴数列{}n a 是首项为1,公差为12的等差数列, ∴数列{}n a 的通项公式是()111122n n a n +=+-⨯=. (3)由12n n a +=,得:()34n n n S +=,∴4223n n n n S b n n =⋅=⋅+,∴231222322n n T n =⨯+⨯+⨯++⋅…()23121222122n n n T n n +=⨯+⨯++-⨯+⨯…,()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⨯=--⋅--…()1122n n T n +=-⋅+. 20.解:(1)因为c a =,222a b c -=,所以2a b =, 因为原点到直线:1x yAB a b -=的距离d ==,解得4a =,2b =, 故所求椭圆C 的方程为221164x y +=.(2)由题意2211164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()22148120k x kx ++-=,可知0∆>,设()22,E x y ,()33,F x y ,EF 的中点是(),M M M x y ,则2324214M x x kx k +-==+,21114M M y kx k =+=+, 所以21M BM M y k x k +==-,所以20M M x ky k ++=,即224201414k k k k k -++=++,又因为0k ≠,所以218k =,所以k =21.解:(1)设点M 到直线l 的距离为d ,依题意2M d =,设(),M x y ,则有1y +,化简得24x y =.所以点M 的轨迹C 的方程为24x y =.(2)设:1AB l y kx =+,代入24x y =中,得2440x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,124x x ⋅=-,所以()21241AB x x k -=+,因为2:4C x y =,即24x y =,所以2xy =,所以直线1l 的斜率为112x k =,直线2l 的斜率为222x k =,因为121214x x k k ==-,所以PA PB ⊥,即PAB △为直角三角形.所以PAB △的外接圆的圆心为线段AB 中点,线段AB 是直径,因为()241AB k =+, 所以当0k =时线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π. 22.解:(1)依题意,知()f x 的定义域为()0,+∞, 当12a b ==时,()211ln 42f x x x x =--, ()()()21111'222x x f x x x x-+-=--=, 令()'0f x =,解得1x =.(∵0x >)因为 ()0g x =有唯一解,所以()20g x =,当01x <<时,()'0f x >,此时()f x 单调递增; 当1x >时,()'0f x <,此时()f x 单调递减,所以()f x 的极大值为()314f =-,此即为最大值.(2)()ln aF x x x =+,(]0,3x ∈,则有()00201'2x a k F x x -==≤,在(]00,3x ∈上恒成立,所以200max12a x x ⎛⎫≥-+ ⎪⎝⎭,(]00,3x ∈. 当01x =时,20012x x -+取得最大值12,所以12a ≥.(3)因为方程()22mf x x =有唯一实数解, 所以22ln 20x m x mx --=有唯一实数解, 设()22ln 2g x x m x mx =--,则()2222'x mx mg x x--=,令()'0g x =,20x mx m --=,因为0m >,0x >,所以10x =<(舍去),2x =当()20,x x ∈时,()'0g x <,()g x 在()20,x 上单调递减;当()2,x x ∈+∞时,()'0g x >,()g x 在()2,x +∞上单调递增; 当2x x =时,()2'0g x =,()g x 取最小值()2g x .则()()220'0g x g x ⎧=⎪⎨=⎪⎩,即22222222ln 200x m x mx x mx m ⎧--=⎪⎨--=⎪⎩,所以222ln 0m x mx m +-=,因为0m >,所以222ln 10x x +-=(*) 设函数()2ln 1h x x x =+-,因为当0x >时, ()h x 是增函数,所以()0h x =至多有一解,因为()10h =,所以方程(*)的解为21x =1=,解得12m =.。
河北省衡水中学2019届高三上学期三调考试数学(理)试题 Word版含答案
2018~2019学年度上学期高三年级三调考试数学(理)试卷Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2210M x x x =--<,{}20N x x a =+>,U R =,若U M C N φ⋂=,则a 的取值范围是( ) A.1a >B.1a ≥C.1a <D.1a ≤2.若直线y kx =与双曲线22194x y -=相交,则k 的取值范围是( )A.20,3⎛⎫ ⎪⎝⎭B.2,03⎛⎫- ⎪⎝⎭C.22,33⎛⎫- ⎪⎝⎭D.22,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭3.在ABC △中,3AB =,2AC =,12BD BC =,则AD BD ⋅=( ) A.52-B.52C.54-D.544.已知数列{}n a 的前n 项和为2n S n n =-,正项等比数列{}n b 中,23b a = ,()23142,n n n b b b n n N +-+=≥∈,则2log n b =( )A.1n -B.21n -C.2n -D.n5.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B ,且ABC △为等腰直角三角形,则实数a 的值为( ) A.17或1- B.1- C.1 D.1或1-6.在ABC 中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则()2tan tan tan tan tan A BC A B ⋅+的值为( ) A.2013B.1C.0D.20147.已知点()(),0M a b ab ≠是圆222:C x y r +=内一点,直线l 是以M 为中点的弦所在的直线,直线m 的方程为2bx ay r -=,那么( ) A.l m ⊥且m 与圆C 相切 B.l m ∥且m 与圆C 相切 C.l m ⊥且m 与圆C 相离D.l m ∥且m 与圆C 相离8.若圆22210x y ax y +-++=和圆221x y +=关于直线1y x =-对称,过点(),C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程是( )A.24480y x y -++=B.22220y x y +-+=C.24480y x y +-+=D.2210y x y --+=9.平行四边形ABCD 中,2AB =,1AD AD ⋅=-,点M 在边CD 上,则MA MB ⋅的最大值为( )11C.0D.210.已知椭圆()222210,0x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α=∠,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是( )A.⎤⎥⎣⎦B.1⎤⎥⎣⎦C.⎣⎦D.⎣⎦11.已知点A 是抛物线24x y =的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足PA m PB =,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( )1 112.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x R ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,则直线l 斜率k 的取值范围是( ) A.80,11⎛⎫⎪⎝⎭B.110,8⎛⎫ ⎪⎝⎭C.80,19⎛⎫ ⎪⎝⎭D.190,8⎛⎫ ⎪⎝⎭二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC △中,,,a b c 分别是角,,A B C 的对边,已知1sin 262A π⎛⎫+= ⎪⎝⎭,1b =,ABC △的面,则sin sin b cB C++的值为_______________. 14.已知平面上有四点,,,O A B C ,向量OA ,OB ,OC 满足:0OA OB OC ++=,1OA OB OB OC OC OA ⋅=⋅=⋅=-,则ABC △的周长是_______________.15.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π=∠,则椭圆和双曲线的离心率的倒数之和的最大值为_______________.16.已知数列{}n a 的前n 项和122n n n S a +=-,若不等式()2235n n n a λ--<-对*n N ∀∈恒成立,则整数λ的最大值为________________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC △中,角,,A B C 的对边分别是,,a b c ,已知向量33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,且满足3m n +=.(1)求角A 的大小;(2)若b c +,试判断ABC △的形状.18.已知圆C 经过原点()0,0O 且与直线28y x =-相切于点()4,0P . (1)求圆C 的方程;(2)在圆C 上是否存在两个点M ,N 关于直线1y kx =-对称,且以线段MN 为直径的圆经过原点?若存在,写出直线MN 的方程;若不存在,请说明理由.19.各项均为正数的数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,对任意*n N ∈,有()222n n n S pa pa p p R =+-∈.(1)求常数p 的值;(2)求数列{}n a 的通项公式; (3)记423nn n S b n =⋅+,求数列{}n b 的前n 项和n T .20.已知椭圆()2222:10x y C a b a b+=>>的离心率e =,原点到过点(),0A a ,()0,B b -的直线.(1)求椭圆C 的方程;(2)如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,E F 都在以B 为圆心的圆上,求k 的值.21.已知定点()0,1F ,定直线:1m y =-,动圆M 过点F ,且与直线m 相切.(1)求动圆M 的圆心轨迹C 的方程;(2)过点F 的直线与曲线C 相交于,A B 两点,分别过点,A B 作曲线C 的切线1l ,2l ,两条切线相交于点P ,求PAB △外接圆面积的最小值.22.设函数()21ln 2f x x ax bx =--.(1)当12a b ==时,求函数()f x 的最大值; (2)令()()212a F x f x ax bx x =++-,()03x <≤其图象上任意一点()00,P x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围;(3)当0a =,1b =-,方程()22mf x x =有唯一实数解,求正数m 的值.2018~2019学年度上学期高三年级三调考试数学(理)试卷答案一、选择题1-5:BCCDD 6-10:ACCDB 11、12:CA 二、填空题13.2 14. 16.4 三、解答题17. 解:(1)∵()()2223m n m n ++⋅=,代入33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,有33112cos cos sin sin 32222A A A A ⎛⎫+++= ⎪⎝⎭,∴331cos cos sin sin 22222A A A A ⎛⎫+= ⎪⎝⎭,即31cos 222A A ⎛⎫-= ⎪⎝⎭,∴1cos 2A =,60A =°. (2)法一:∵1cos 2A =,∴222122b c a bc --=①又∵b c +=②联立①②有,222bc b c =+-,即222520b bc c --=,解得2b c =或2c b =,又∵b c -,若2b c =,则a =,∴)2222224a c c c b +=-==,ABC △为直角三角形,同理,若2c b =,则ABC △也为直角三角形.18.(1)由已知,得圆心在经过点()4,0P 且与28y x =-垂直的直线122y x =-+上,它又在线段OP 的中垂线2x =上,所以求得圆心()2,1C .所以圆C 的方程为:()()22215x y -+-=.(2)假设存在两点,M N 关于直线1y kx =-对称,则1y kx =-通过圆心()2,1C ,求得1k =, 所以设直线MN 为y x b =-+,代入圆的方程得()2222220x b x b b -++-=, 设()11,M x x b -+,()22,N x x b -+,则()121222230OM ON x x b x x b b b ⋅=-++=-=, 解得0b =或3b =,这时0∆>,符合题意,所以存在直线MN 为y x =-或3y x =-+符合条件.19.解:(1)由11a =及()2*22n n n S pa pa p n N =+-∈,得:22p p p =+-,∴1p =.(2)由2221n n n S a a =+-①,得2111221n n n S a a +++=+-②由②-①,得()()2211122n n n n n a a a a a +++=-+-,即:()()()11120n n n n n n a a a a a a ++++--+=, ∴()()112210n n n n a a a a +++--=,由于数列{}n a 各项均为正数,∴1221n n a a +-=,即112n n a a +-=, ∴数列{}n a 是首项为1,公差为12的等差数列, ∴数列{}n a 的通项公式是()111122n n a n +=+-⨯=. (3)由12n n a +=,得:()34n n n S +=,∴4223n n n n S b n n =⋅=⋅+,∴231222322n n T n =⨯+⨯+⨯++⋅…()23121222122n n n T n n +=⨯+⨯++-⨯+⨯…,()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⨯=--⋅--…()1122n n T n +=-⋅+.20.解:(1)因为c a =,222a b c -=,所以2a b =,因为原点到直线:1x yAB a b -=的距离d ==,解得4a =,2b =, 故所求椭圆C 的方程为221164x y +=.(2)由题意2211164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()22148120k x kx ++-=,可知0∆>,设()22,E x y ,()33,F x y ,EF 的中点是(),M M M x y ,则2324214M x x kx k +-==+,21114M M y kx k =+=+,所以21M BM M y k x k +==-,所以20M M x ky k ++=,即224201414k k k k k -++=++,又因为0k ≠,所以218k =,所以k =21.解:(1)设点M 到直线l 的距离为d ,依题意2M d =,设(),M x y ,则有1y +,化简得24x y =.所以点M 的轨迹C 的方程为24x y =.(2)设:1AB l y kx =+,代入24x y =中,得2440x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,124x x ⋅=-,所以()21241AB x x k -=+,因为2:4C x y =,即24x y =,所以2xy =,所以直线1l 的斜率为112x k =,直线2l 的斜率为222x k =,因为121214x x k k ==-,所以PA PB ⊥,即PAB △为直角三角形.所以PAB △的外接圆的圆心为线段AB 中点,线段AB 是直径,因为()241AB k =+, 所以当0k =时线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π. 22.解:(1)依题意,知()f x 的定义域为()0,+∞, 当12a b ==时,()211ln 42f x x x x =--, ()()()21111'222x x f x x x x-+-=--=, 令()'0f x =,解得1x =.(∵0x >)因为 ()0g x =有唯一解,所以()20g x =,当01x <<时,()'0f x >,此时()f x 单调递增; 当1x >时,()'0f x <,此时()f x 单调递减,所以()f x 的极大值为()314f =-,此即为最大值.(2)()ln aF x x x =+,(]0,3x ∈,则有()00201'2x a k F x x -==≤,在(]00,3x ∈上恒成立,所以200max12a x x ⎛⎫≥-+ ⎪⎝⎭,(]00,3x ∈. 当01x =时,20012x x -+取得最大值12,所以12a ≥.(3)因为方程()22mf x x =有唯一实数解, 所以22ln 20x m x mx --=有唯一实数解, 设()22ln 2g x x m x mx =--,则()2222'x mx mg x x--=,令()'0g x =,20x mx m --=,因为0m >,0x >,所以10x =<(舍去),2x =当()20,x x ∈时,()'0g x <,()g x 在()20,x 上单调递减; 当()2,x x ∈+∞时,()'0g x >,()g x 在()2,x +∞上单调递增; 当2x x =时,()2'0g x =,()g x 取最小值()2g x .则()()220'0g x g x ⎧=⎪⎨=⎪⎩,即22222222ln 200x m x mx x mx m ⎧--=⎪⎨--=⎪⎩,所以222ln 0m x mx m +-=,因为0m >,所以222ln 10x x +-=(*) 设函数()2ln 1h x x x =+-,因为当0x >时, ()h x 是增函数,所以()0h x =至多有一解,因为()10h =,所以方程(*)的解为21x =1=,解得12m =.。