2013年九年级数学中考模拟试题及答案

合集下载

2013年九年级中考模拟数学试卷(2)及答案

2013年九年级中考模拟数学试卷(2)及答案

2013年九年级中考模拟数学试卷(2)及答案姓名 得分 一、选择题(共15小题,每小题3分,满分45分)1.π+-3的绝对值是( )A .π+-3B .π--3C .π-3D .31--π 2.如图,直线a ∥b ,直线c 与a ,b 相交,∠1+∠2=66°,则∠3=( ) A .67° B .57° C .47° D .52° 3.南海是中国领土的最南端,面积为3 500 000平方公里,3 500 000用科学记数法表示为( ) A .3.5×105 B .35×105 C .3.5×106 D .0.35×106 4.下列事件中不可能事件的是( )A .在地球上,太阳从东边升起B .正常情况下,将水加热到100℃时水会沸腾C .三角形的内角和是360°D .打开电视机,正在播动画片 5.下列各式计算正确的是( )A .a 2·a 3=a 6B .a 2+a 2=2 a 2C .a 5÷a 5=aD .a 3•a 2=a 56.如图,一个几何体由5个大小相同、棱长为1的小正方形搭成,下列关于这个几何体的说法正确的是( )A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是4 7.化简2x ·3x+x(1-x)结果为( )A .5x 2+xB .7xC .6x 2D .7x-x 28.四张完全相同的卡片上分别画有平行四边形、等腰三角形、正方形、等腰梯形,将有图形的一面朝下放在桌面上,从中随机抽取两张,抽到的两张卡片上图形一张中心对称一张是轴对称的概率为( ) A .43 B .32 C .16 D .65 9.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠CAB 的值为( )A .13 B .12 C .2D .3第11题图10.下列命题是真命题的是( )A .一组对角与一组对边分别相等的四边形是平行四边形B .对角线相等的梯形是等腰梯形C . 对角线相等且互相垂直的四边形的矩形D .四个角是直角的四边形是正方形 11.一次函数y 1=k 1x+b 和反比例函数y 2=xk 2错误!未找到引用源。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年历年湖北省初三数学中考模拟试题及答案

2013年历年湖北省初三数学中考模拟试题及答案

数学试卷一、选择题(每小题3分,共30分) 1、 -2的倒数的是( )A. 2B.21 C. -21D. -0.2 2、在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为A .9.63×10-5B .96.3×10-6C .0.963×10-5D .963×10-43、某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位)12211A .92分B .93分C .94分D .95分 4、下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C.5、如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数ky x=(0x >)的图像经过点A ,则k 的值为(A) -6. (B) -3. (C) 3. (D) 6.6、右图是一个台阶形的零件,两个台阶的高度和宽度都相等,则它的三视图是A. B. C. D.7、如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C 则在旋转过程中这个三角板扫过的图形的面积是( )A .πB .3C .2343+π D .431211+π 8、已知关于x,y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中﹣3≤a ≤1.给出下列结论:①⎩⎨⎧-==15y x ,是方程组的解; ②当a=﹣2时,x,y 的值是互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解; ④若x ≤1,则1≤y ≤4. 其中正确的是( )A. ①②B. ②③C. ②③④D. ①③④9、如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x=>和2(0)k y x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( ) A .∠POQ 不可能等于90°B .12k PM QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是()2121k k + 10、如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,AC=2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上的一点,且∠CDE=30º.设AD=x ,BE=y,则下列图象中,能表示y 与x 的函数关系的图象大致是二、 填空题(3×6=18)11、分解因式:=-339ab b a ______ ________。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年九年级数学中考全真模拟试题(武汉市附答案)

2013年九年级数学中考全真模拟试题(武汉市附答案)

2013年九年级数学中考全真模拟试题(武汉市附答案)2013年九年级数学中考全真模拟试题考试时间:120分钟试卷满分:120分祝考试顺利!一、选择题(共10小题,每小题3分,共30分)1.检测4袋食盐,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,下列检测结果中,最接近标准质量的是().A.+0.7B.+2.1C.-0.8D.-3.22.若二次根式在实数范围内有意义,则x的取值范围为().A.x≥2B.x≤2C.x≥-2D.x≤-23.等式组的解集表示在数轴上正确的是().A.B.C.D.4.“抛一枚均匀硬币,落地后正面朝上”这一事件是().A.必然事件B.随机事件C.确定事件D.不可能事件5.已知x1、x2是方程x2-3x-5=0的两根,则x1•x2的值是().A.-3B.3C.5D.-56.如图是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是().A.B.C.D.7.观察下列图形,它们是按一定规律排列的,依照此规律,第20个图形共有★().A.63个B.57个C.68个D.60个8.如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP 沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为().A.20°B.30°C.32°D.36°9.为了减轻学生的作业负担,我市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.利用课余时间,洪涛同学对本班每位同学晚上完成作业的时间进行了一次统计,并根据收集的数据绘制了下面两幅不完整的统计图如图所示,请根据图中提供的信息,该班同学每天完成作业的平均时间为().A.0.75小时B.1小时C.1.05小时D.1.15小时10.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为().A.6B.5C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:cos45°=.12.2013年第八届原创新春祝福短信微博大赛作品充满了对蛇年浓浓的祝福,主办方共收到原创祝福短信作品414000条,将414000用科学记数法表示应为.13.我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的中位数是.14.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量(件)与工作时间(时)的函数图象.图②分别表示甲完成的工作量(件)、乙完成的工作量(件)与工作时间(时)的函数图象,则甲每小时完成件,乙提高工作效率后,再工作个小时与甲完成的工作量相等.15.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D 为对角线OB的中点,反比例函数()在第一象限内的图象经过点D,且与AB、BC分别交于E、F两点,若四边形BEDF的面积为1,则的值为.16.已知在矩形ABCD中,AB=3,BC=4,P为对角线AC上一点,过P 作BP的垂线交直线AD于点Q,若△APQ为等腰三角形,则AP的长度为或.三、解答题17.(本题满分6分)解方程:.18.(本题满分6分)在直角坐标系中,直线()经过(-2,1)和(2,3)两点,且与x轴、y轴分别交于A、B两点,求不等式的解集.19.(本题满分6分)如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.20.(本题满分7分)(1)如图1,一小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的,请通过列表法或画树形图求投一个小球落到A的概率.(2)如图2,有如下四个转盘实验:实验一:先转动转盘①,再转动转盘①;实验二:先转动转盘①,再转动转盘②;实验三:先转动转盘①,再转动转盘③;实验四:先转动转盘①,再转动转盘④其中,两次指针都落在红色区域的概率与(1)中小球落到A的概率相等的实验是.(只需填入实验的序号)21.(本题满分7分)如图,在△ABC中,A(-2,-3),B(-3,-1),C(-1,-2).(1)画图:①画出△ABC关于y轴对称的△A1B1C1;②画出将△ABC向上平移4个单位长度后的△A2B2C2;③画出将△ABC绕原点O旋转180°后的△A3B3C3.(2)填空:①B1的坐标为,B2的坐标为,B3的坐标为;②在△A1B1C1,△A2B2C2,△A3B3C3中:△与△成轴对称,对称轴是.22.(本题满分10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P 为边AC上一个点(可以包括点C但不包括点A),以P为圆心PA为半径作⊙P交AB于点D,过点D作⊙P的切线交边BC于点E.(1)求证:BE=DE;(2)若PA=1,求BE的长;(3)在P点的运动过程中,请直接写出线段BE长度的取值范围为23.(本题满分10分)如图1是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B,C之间的距离为2米,顶点O离水面的高度为米,人握的鱼杆底端D离水面米,离拐点C的水平距离1米,且仰角为45°,建立如图2所示的平面直角坐标系.(1)试根据上述信息确定抛物线BOC和CD所在直线的函数表达式;(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15°,直线部分的长度变成了1米(即ED长为1米),顶点向上增高米,且右移米(即顶点变为F,E点为C点向右平移米得到的),假设钓鱼线与人手(点D)的水平距离为米,那么钓鱼线的长度为多少米?24.(本题满分10分)如图1,在长方形纸片ABCD中,,其中≥1,将它沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设,其中0<n≤1.(1)如图2,当(即M点与D点重合),=2时,则=;(2)如图3,当(M为AD的中点),的值发生变化时,求证:EP=AE+DP;(3)如图1,当(AB=2AD),的值发生变化时,的值是否发生变化?说明理由.25.(本题满分12分)如图1,抛物线:与直线AB:交于x轴上的一点A,和另一点B(3,n).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(点P在A,B两点之间,但不包括A,B两点),PM⊥AB于点M,PN∥y轴交AB于点N,在点P的运动过程中,存在某一位置,使得△PMN的周长最大,求此时P点的坐标,并求△PMN周长的最大值;(3)如图2,将抛物线绕顶点旋转180°后,再作适当平移得到抛物线,已知抛物线的顶点E在第四象限的抛物线上,且抛物线与抛物线交于点D,过D点作轴的平行线交抛物线于点F,过E点作轴的平行线交抛物线于点G,是否存在这样的抛物线,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在请说明理由.2013年中考数学模拟试题参考答案一.选择题(共10小题,每小题3分,共30分)1-5AABBD6-10CDDBD二、填空题(共6小题,每小题3分,共18分)11、12、4.14×10513、2914、15、16、3.6或1三、解答下列各题(共9小题,共72分)17、x=1018、x≥-419、选①DF//BC.证明略20、⑴P(A)=(树形图略)⑵实验四21、⑴略,⑵①(3,-1)(-3,3)(3,1)②△A1B1C1..△A3B3C3x轴22、⑴证:连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠BDE+∠PDA=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PA.∴∠PDA=∠A.∴∠B=∠BDE.∴BE=DE⑵连PE,设DE=BE=X,则EC=4-X.∵PA=PD=1,AC=3.∴PC=2.∵∠PDE=∠C=90°∴ED+PD=EC+CP=PE.∴x+1=(4-x)+2.解得x=.∴BE=⑶≤BC23、⑴由题得:B(-1,-)、C(1,-)、D(2,-1).∴抛物线BOC的解析式为y=-x直线CD的解析式为y=-x+⑵由题意得:E(,-)、F(,).设此时抛物线解析式为y=a(x-)+.将E(,-)代入,得-=a+.∴a=-1.∴此时抛物线解析式为y=-(x-)+.令x=-则y=-+=,∴钓鱼线长为:2+=2(米).24、⑴⑵延长PM交EA延长线于G,则△PDM≌△GAM,△EMP≌△EMG.∴EP=EG=EA+AG=EA+DP.⑶设AD=1,AB=2,过E作EH⊥CD于H,∵∠EFP=∠FPN=∠MPD=∠EMA.∴△EFH∽ΔEMA∴∵AE的长度发生变化,∴的值将发生变化.25、⑴由题意得:A(-1,0)、B(3,2)∴解得:∴抛物线的解析式为y=-x+x+2⑵设AB交y轴于D,则D(0,),∴OA=1,OD=,AD=,∴=,∵PN∥y轴,∴∠PNM=∠CDN=∠ADO,∴Rt△ADO∽Rt△PNM.∴.∴=×PN=PN.∴当PN取最大值时,取最大值.设P(m,-m+m+2)N(m,m+).则PN=-m+m+2-(m+)=-m+m+.∵-1﹤m﹤3.∴当m=1时,PN取最大值.∴△PNM周长的最大值为×2=.此时P(1,3).⑶设E(n,t),由题意得:抛物线为:y=-(x-)+,为:y=(x-n)+t.∵E在抛物线上,∴t=-(n-)+.∵四边形DFEG为菱形.∴DF=FE=EG=DG连ED,由抛物线的对称性可知,ED=EF.∴△DEG与△DEF均为正三角形.∴D为抛物线的顶点.∴D(,).∵DF∥x轴,且D、F关于直线x=n对称.∴DF=2(n-).∵DEF为正三角形.∴-=×2(n-).解得:n=.∴t=-.∴存在点E,坐标为E(,-).。

2013年九年级数学中考模拟试卷

2013年九年级数学中考模拟试卷

初三年级下学期第一次模拟考试数学试题答案一.选择题:1—6:CDDDCC 7—12:DACDBC第12题的解题思路:二.填空题:13、 0 14、23()y x y + 15、 7016、 3 17、2n三.解答题:18、解:原式=()()()()x+1x 1x+23x 1x+21==x+2x+2x+2x+1x 1x+1---÷⋅-。

解不等式组x 202x+18><-⎧⎨⎩得2<x <72, ∵x 是整数,∴x =3.当x =3时,原式=14. 19、解:(1)A (-3,0);B (0,2);(2)由(1)得,OA=3,OB=2.∵OB 是△ACD 的中位线,∴OD=OA=3,CD=2OB=6.∴C 点坐标为(2,6). ∴k=xy=2×6=12,即反比例函数是y=x 12. 20、(1)∵∠BDC=900,∴∠BDE+∠CDE=900,∠B+∠C=900,又∵∠BDE=∠DBC ,∴∠CDE=∠C ,∴DE=EC .(2)∵∠BDE=∠DBC ,∴BE=DE ,∴BE=EC ,又∵AD=12BC ,∴AD=BE ,又∵AD ∥BC ,∴四边形ABED 是平行四边形,又∵BE=DE ,∴四边形ABED 是菱形.21、解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,∵AB ∥CD ,∴∠AEF =∠EFB =∠ABF =90°。

∴四边形ABFE 为矩形。

∴AB =EF ,AE =BF 。

由题意可知:AE =BF =100,CD =500。

在Rt △AEC 中,∠C =60°,AE =100,∴0AE 100100CE ==33tan 603=。

在Rt △BFD 中,∠BDF =45°,BF =100, ∴0BF 100DF ==1001tan 45=。

∴AB =EF =CD +DF ﹣CE =500+100﹣10033≈600﹣1003×1.73≈600﹣57.67≈542.3(米)。

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年中考数学模拟试题和答案

2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。

2013年九年级数学中考模拟试题及答案

2013年九年级数学中考模拟试题及答案

二O 一三年九年级中考模拟试题数学试题注意事项:1、本试题分第Ⅰ卷和第二卷两部分。

第一卷为选择题,24分;第Ⅱ卷为非选择题,96分;满分120分,考试时间120分钟。

2、答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目写在答题卡上,考试结束,试题和答题卡一并收回。

3、第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑。

如需改动,先用橡皮擦干净,再涂改其他答案。

一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,选错、不选或选出的答案超过一个均计零分。

1.下列说法正确的是 ( ) A .一个游戏的中奖概率是101则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S 2= 0.01 ,乙组数据的方差 s 2= 0 .1 ,则乙组数据比甲组数据稳定 2.如图2,直线y =x +2与双曲线y =xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )3.小明为今年将要参加中考的好友小李制作了一个(如图3)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是 ( )4.下列图形4中,∠1一定大于∠2的是 ( )5.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是 ( )6.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是 ( )7.如图7,边长都是1的正方形和正三角形,其一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形.设穿过的时间为t ,正方形与三角形重合部分的面积为S (空白部分),那么S 关于t 的函数大致图象应为 ( )(D)(C)(B)(A)-2-1432-2-1432-2-1432-2-1432011010102题图3题图 DC B A1221214题图6题图 5题图8.如图8,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE. 下列结论中:① CE=BD; ② △ADC 是等腰直角三角形;③ ∠ADB=∠AEB; ④ CD·AE=EF·CG;一定正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个8题图7题图第Ⅱ卷二、填空题(本大题共有8小题,每小题4分,共32分.不需写出解答过程,请把最后答案直接填写在答题线相应位置.......上) 9.若x y 、为实数,且10x +,则2012⎪⎪⎭⎫ ⎝⎛y x 的值是________________.10.对于非零的两个实数a 、b,规定11a b b a⊗=-.若1(1)1x ⊗+=,则x 的值为 _______. 11.等腰三角形的两条边长分别为3,6,那么它的周长为 __________________.12. 化简:22222369x y x y yx y x xy y x y--÷-++++=_________. 13.菱形OABC 在平面直角坐标系中的位置如图13所示,45AOC OC ∠==°,则点B的坐标为_____________.14.如图14,在直角梯形ABCD 中,AD∥BC,∠ABC=90°,∠C=60°,E 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为 __ . 15.如图15,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC 的解析式为112y x =-,则tanA 的值是 . 16.如图16,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x 轴平行,它们的顶点依次用A 1、A2、A 3、A 4、A 5、A 6、A 7、A 8、A 9、A 10、A 11、A 12……表示,那么顶点A 62的坐标是 .三、解答题时应写出必要的文字说明、证明过程或演算步骤) 17. (本题满分6分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?13题图 14题图15题图 16题图 17题图18. (本题满分8分)在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为()()()A 12B 34C 29.---,,,,, (1)画出△ABC,并求出AC 所在直线的解析式。

2013年历年初三数学中考模拟题及答案

2013年历年初三数学中考模拟题及答案

2013届中考模拟试题数 学一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0C.210x += D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为() A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )_1_ A _1_ A(第13题图)A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ( )二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12、方程2(34)34x x -=-的根是 .A .B. C.D .(第8题图)13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=o,D 为BC 上一点,30DAC ∠=o ,2BD =,AB =AC 的长是.三、(第15题每小题6分,第16题6分,共18分) 15、解答下列各题:(1)计算:323+—2)(-+2cos30°—23—(2)解方程:2430x x +-=.17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

九年级数学中考模拟试题(含答案)

九年级数学中考模拟试题(含答案)

绝密★启用前 试卷类型:A2013年初中学业水平模拟考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷3页,为选择题,36分;第Ⅱ卷7页,为非选择题,84分;共120分.考试时间为120分钟. 2.第Ⅰ卷每题选出答案后,请把答案标号填写在题后小括号内。

第Ⅰ卷 选择题(共36分)一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.) 1.下列计算正确的是( ).A .-|-3|=-3B .30=0 C .3-1=-3 D .39±=2.据潍坊新闻网报道,为期四天的中国(潍坊)第三届文化艺术展示交易会,到场观众与客商累计21.4万人次,交易额共计3.2亿元.其中21.4万用科学计数法表示为( ).A .51014.2⨯ B .4104.21⨯ C .61014.2⨯ D .41014.2⨯3.在平面直角坐标系中,将点P (-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( ). A .(-2,6)B .(-2,0)C .(-5,3)D .(1,3)4.已知关于x 的一元二次方程0122=--x mx 有两个不相等的实数根,则m 的取值范围是( ).A .1->mB . 01-≠m m 且>C .1<m D . 01≠m m 且< 5.如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( ). A .AB =BEB .AD =DCC .AD =DE D .AD =EC 6.某市五月份连续五天的日最高气温分别为 23、20、20、21、26(单位:°C ),这组数据 的中位数和众数分别是( ).A . 22°C ,26°CB . 22°C ,20°C C . 21°C ,26°CD . 21°C ,20°C 7.不等式组⎩⎨⎧≤-+12223x xx > 的解集在数轴上表示正确的是( ).8.如图,菱形ABCD 中,∠B =60°,AB =2cm , E 、F 分别是BC 、CD 的中点,连结AE 、EF 、AF , 则△AEF 的周长为( ). A .32cmB .33cmC .34cmD .3 cmABCD EF第8题图E (A )ABC第5题图9.如图,将放置于平面直角坐标系中的三角板 AOB 绕O 点顺时针旋转90°得到△B O A ''. 已知∠AOB =30°,∠B =90°,AB =1,则B ' 点的坐标为( ). A .)23,23(B . )23,23(C . )23,21( D . )21,23( 10.如图,△ABC 内接于⊙O ,D 为线段AB 的中点, 延长OD 交⊙O 于点E ,连接AE ,BE ,则下列 五个结论①AB ⊥DE ;②AE =BE ,;③OD =DE ;④∠AEO =∠C ;⑤⌒AE=21⌒AEB .正确结论的个数 是( ).A .2B .3C .4D .511.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( ).A .38B .52C .66D .7412.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( ).0 28 4 24 622 46 8449题图第10题图2013年初中学业水平模拟考试数 学 试 题第Ⅱ卷 非选择题(共84分)注意事项:1.第Ⅱ卷共7页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13.如图,已知AC =FE ,BC =DE ,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需要添加一个条件,这个条件可以是 . 14.已知ab =1,a +b =-2,则式子=+baa b . 15.因式分解:y x y x 3322---= . 16.如图,四边形ABCD 中,∠ABC =120°,AB ⊥AD , BC ⊥CD ,AB =4,CD =35,则该四边形的面积 是.17.在课外活动跳绳时,相同时间内小林跳了90下, 小群跳了120下.已知小群每分钟比小林多跳20 下,设小林每分钟跳x 下,则可列关于x 的方程为 .18.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .阴影部分面积为 (结果保留π).ADE第18题图CE第13题图DCB第16题图三、解答题(本题共6个小题,共计66分.解答应写出必要的文字说明、证明过程或演算步骤.)19.(本题满分10分)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F.(1)证明:△AGE≌△ECF;(2)求△AEF的面积.20.(本题满分10分)为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:(1) 将该条形统计图补充完整.(2)求该校平均每班有多少名留守儿童?(3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.21.(本题满分11分)如图,一次函数的图象与反比例函数xy 31-=(x <0)的图象相交于A 点,与y 轴、x 轴分别相交于B 、C 两点,且C (2,0),A 点的横坐标为-1.(1)求一次函数的解析式; (2)设函数2a y x =(x >0)的图象与13y x=-(x <0)的图象关于y 轴对称,在2ay x=(x >0)的图象上取一点P (P 点的横坐标大于2),过P 点作PQ ⊥x 轴,垂足是Q ,若四边形BCQP 的面积等于2,求P 点的坐标.22.(本题满分11分)如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:12BC AB =; (3)点M 是弧AB 的中点,CM 交AB 于点N , 若4AB =,求MC MN ⋅的值.O N B PC AM23.(本题满分12分)某商店经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品600件和乙商品400件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?24.(本题满分12分)如图,在平面直角坐标系x O y 中,AB 在x 轴上,AB =10,以AB 为直径的⊙1O 与y 轴正半轴交于点C ,连接BC 、AC ,CD 是⊙1O 的切线,AD ⊥CD 于点D ,tan ∠CAD =21,抛物线c bx ax y ++=2过A 、B 、C 三点.(1)求证:∠CAD =∠CAB ; (2)求抛物线的解析式;(3)判断抛物线的顶点E 是否在直线CD 上,并说明理由.九年级数学试题参考答案二、填空题(每小题3分,共18分)13.∠C=∠E(答案不唯一,也可以是AB=DF 或AD=FB) 14.2 15.)3)((--+y x y x 16.2359 17.2012090+=x x 18. -6π 三、解答题(本题共6个小题,共66分)19. (1)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180°-45°=135°. 又∵CF 是∠DCH 的平分线,∠ECF =90°+45°=135°.………………………………………3分在△AGE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠=FEC GAE ECF AGE EC AG o,135, ∴△AGE ≌△ECF ; ………………6分 (2)解:由△AGE ≌△ECF ,得AE=EF .又∵∠AEF =90°,∴△AEF 是等腰直角三角形.…………………8分由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2.……………………10分 20. 解:(1)该校班级个数为:4÷20﹪=20(个), 只有2名留守儿童的个数为: 20-2-3-4-5-4=2(个).补充图如下:…………………………2分(2)(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(名).A 1A 2B 1(B 2,A 1)(B 2,A 2)(B 2,B 1)A 1A 2B 2(B 1,A 1)(B 1,A 2)(B 1,B 2)A 1B 1B 2(A 2,A 1)(A 2,B 1)(A 2,B 2)(A 1,B 2)(A 1,B 1)A 1,A 2)B 2B 1A 2A 1答:该校平均每班有4名留守儿童.………………………………………4分 (3)有(1)知只有2名留守儿童的班级有2个,共4名学生, 设1A 、2A 来自一个班,1B 、2B 来自另一个班,画树状图如下:由树状图列表可知:共有12种等可能情况,其中来自同一班级的有4种,所以,所选两名留守儿童来自同一个班级的概率p =31124=. 答:所选两名留守儿童来自同一个班级的概率为13. (10)分21.解:⑴∵A 点的横坐标是-1,∴A(-1,3). …………………………………1分 设一次函数解析式为b kx y +=,因直线过点A 、点C.∴⎩⎨⎧=+=+-023b k b k ,解得⎩⎨⎧=-=21b k .∴一次函数的解析式为2+-=x y .………………………………………4分 ⑵∵)0(2>=x x a y 的图象与)0(31<-=x xy 的图象关于y 轴对称, ∴)0(32>=x x y .………………………………………5分 ∵B 点是直线2+-=x y 与y 轴的交点,∴B (0,2). ∵C (2,0),∴2=∆OCBS △.…………………………………7分∵O Q P O PB CQ PB O CB O Q PB S S S S S ∆∆∆+=+=四边形四边形, ∴O Q P O PB S S ∆∆+=4.设P (x ,y ),则x S OPB 221⨯=∆,2332121=⨯==∆xy S OQP . ∴423221=+⨯x ∴25=x ∴P (25,56) (11)分22. 解:(1)OA OC A ACO =∴∠=∠ ,, 又22COB A COB PCB ∠=∠∠=∠ ,, A ACO PCB ∴∠=∠=∠. 又AB 是O ⊙的直径, 90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥.∴PC 是O ⊙的切线. ····························································································· (3分) (2)AC PC A P =∴∠=∠ ,, A ACO PCB P ∴∠=∠=∠=∠,又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠ ,,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. ··············································· (6分) (3)连接MA MB ,,点M 是弧AB 的中点,∴弧AM=弧BM ,ACM BCM ∴∠=∠, 而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM∴=,∴MC MN BM ⋅=2, 又AB 是O ⊙的直径,弧AM=弧BM , 90AMB AM BM ∴∠==°,.4AB BM =∴= ,82==⋅BM MC MN . (11分)23.解:(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元.根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3答:甲商品的进货单价是2元,乙商品的进货单价是3元.…………………5分O N B PC AM(2)设商店每天销售甲、乙两种商品获取的利润为s 元,则s =(1-m )(600+100×m 0.1)+(5-3-m )(400+100×m0.1) …………………………8分即 s =-2000m 2+2000m +1400 =-2000(m -0.5)2+1900.∴当m =0.5时,s 有最大值,最大值为1900. ………………………………11分答:当m 定为0.5时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元. ………………………………………12分 24.证明:(1)证明:连接1O C ,∵CD 是⊙1O 的切线,∴1O C ⊥CD ,∵AD ⊥CD ,∴1O C ∥AD ,∴∠1O CA=∠CAD ,∵1O A=1O C ,∴∠CAB=∠1O CA ,∴∠CAD=∠CAB ;……4分(2)解:①∵AB 是⊙1O 的直径, ∴∠ACB=90°,∵OC ⊥AB ,∴∠CAB=∠OCB ,∴△CAO ∽△BCO ∴OCOBOA OC =,即OC 2=OA•OB , ∵tan ∠CAO=tan ∠CAD=21,∴AO=2CO , 又∵AB=10,∴OC 2=2CO (10-2CO ), ∵CO >0,∴CO=4,AO=8,BO=2,∴A (8,0),B (-2,0),C (0,4),………………………………………7分∵抛物线y=ax 2+bx+c 过点A ,B ,C 三点,∴c=4,由题意得:⎩⎨⎧=++=+-048640424b a b a ,解得:⎪⎩⎪⎨⎧=-=2341b a , F∴抛物线的解析式为:423412++-=x x y ;………………………………………9分(3)直线DC 交x 轴于点F ,∴△AOC ≌△ADC ,∴AD=AO=8, ∵1O C ∥AD ,∴△F 1O C ∽△FAD ,∴ADCO AF F O 11=,∴8(BF+5)=5(BF+10), ∴BF=310,F (0,316-);………………………………………11分 设直线DC 的解析式为y=kx+m ,则⎪⎩⎪⎨⎧=+-=03164m k m ,解得:⎪⎩⎪⎨⎧==434k m ,∴直线DC 的解析式为y=43x+4,由423412++-=x x y =425)3(412+--=x y 得顶点E 的坐标为(3,425),将E (3,425)代入直线DC 的解析式y=43x+4中,右边=43×3+4=425=左边,∴抛物线顶点E 在直线CD 上;………………………………………12分。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年九年级数学中考模拟试题(苏科版附答案)-数学试题

2013年九年级数学中考模拟试题(苏科版附答案)-数学试题

2013年九年级数学中考模拟试题(苏科版附答案)-数学试题兴化市楚水初级中学2012—2013年第二学期九年级数学模拟试题(时间:120分钟分值:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表相应位置上)1.正整数9的算术平方根为( ▲ )A.3B.±3C.-3D.812.下列运算结果正确的是( ▲ )A. B. C. D.3.如图所示几何体的左视图是( ▲ )第3题 A B C D4.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图所示的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分) ( ▲ )A. B. C. D.5.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若▲EFB=65°,则▲AED′等于( ▲ )A.50°B.55°C.60°D.65°6.抛物线的部分图象如图所示,若,则的取值范围是( ▲ )A. B. C. 或D. 或7.如图,在平面直角坐标系中,▲P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被▲P的弦AB的长为,则a的值是( ▲ )A. B. C. D.8.如图,一次函数的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0&lt;a&lt;4且a≠2),过点A、B分别作x轴的垂线,垂足为C、D,▲AOC、▲BOD的面积分别为S1、S2,试判断S1与S2的大小关系是( ▲ )A.S1=S2B.S1&gt;S2C.S1&lt;S2D.无法判断二.填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在相应位置上)9.计算:2×6-3=▲10.使式子有意义的的取值范围是▲11.如图, 的弦CD与直线径AB相交,若,则= ▲ °12.如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是▲ 人.13.如图,y轴为等腰梯形ABCD的对称轴,AD‖BC,且D(a-1,a+4),C(a,a+1), 则经过点A、B的反比例函数的解析式是▲ .14.如图,在由边长为1的小正方形构成的格点图中,格点线段AB交线段CD于点E,EF▲BC,则EF=▲15.将绕点逆时针旋转到使在同一直线上,若,,则图中阴影部分图形的周长为▲ .16.已知&lt;0,且b=a-2则b的取值范围是▲17.萌萌在最近的一次数学测试中考了93分,从而使本学期之前所有的数学测试平均分由73分提高到78分,她要想在下次考试中把本学期平均分提高到80分以上(包含80分),下次考试她至少要考▲ 分.18.已知x为整数,且分式的值为整数,则x可取的值个数是▲三、解答题(本大题共96分)19.( 8分)(1)计算:(3+6)(2-1)-3tan30°-2cos45°.(2) 解不等式组:并把它的解集在数轴上表示出来.20. ( 8分)已知关于x的方程kx2=2(1-k)x-k有两个实数根,求k的取值范围.21. (8分) 请你先化简,再从0,-2,2,1中选择一个合适的数代入,求出这个代数式的值.22.(8分)已知:如图,锐角▲ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:▲ABC是等腰三角形;(2)判断点O是否在▲BAC的角平分线上,并说明理由.23. (10分)甲、乙两名射击运动员在相同情况下各打靶10次,成绩如表(一)所示:(单位:环)次数1 2 3 4 5 6 7 8 9 10甲9 5 7 8 7 6 8 6 7 7乙2 4 6 8 7 7 8 9 9 10平均数中位数方差甲7乙7(1)在表(二)中填写甲、乙两名运动员10次比赛成绩的中位数和方差.(2)请从不同角度评价这两名运动员的成绩.(3)现要从甲、乙两人中挑选一人参加运动会比赛,如果从射击成绩的趋势看,你认为应选择谁参加比赛?24. (10分)兴化市体育局准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸从中摸出一个球,如果摸出的是红球.妹妹去听讲座,如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因.(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,问摸球的结果是对小明有利还是对妹妹有利.说明理由.25. (10分)已知在Rt▲ABC中,▲C=90°,AD是▲BAC的角平分线,以AB上一点O为圆心,AD为弦作▲O.(1)在图中作出▲O(不写作法,保留作图痕迹),判断直线BC与▲O的位置关系,并说明理由;(2)若AC=3,tanB= ,求▲O的半径长.26. (10分)随着兴化近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示:种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元).(l)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?27. (12分)已知如图,矩形ABCD的对角线BD的中垂线分别交AD、BC边于点E、F,连结EB、DF.AB=,AD=3.(1)求DE的长.(2)求证:四边形BEDF是菱形.(3)过线段BE上一点M作MN//BC,交DF于N,取BG=BM,连结EG、EN,试求▲GEN的度数.28. (12分)已知:如图,二次函数图象的顶点为B(2,0),且与x轴只有一个公共点,与y轴的交点为A(0,1),P为图象上的一点,以线段PB为直径的圆交x轴于另一个点C.(1)求这个二次函数关系式;(2)若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)的条件下,过点C作CM▲BP,分别交直线PB的于Q,交抛物线于点M,试求点Q的坐标,并判断点M与点C是否关于直线BP对称,说明判断的理由.请将所有答案写在答题纸上参考答案:(仅供参考)一.1.A2.D3.B4.D5.A6.B7.B8.B二9. 3 10. x≥1且x≠2 11. 40 12.5 13.14. 15. 16.-2≤b&lt;1 17.86 18.6三19.(1)原式=3-3×33 -2×22=3-3-1 =-1.(2)解①得x<1,解②得x≤-2,原不等式组的解为x≤-220.原方程可化为kx2-2(1-k)x+k=0,b2-4ac=4-8k, X K b1. C om▲方程有两个实数根,▲b2- 4ac≥0,即4-8k≥0,▲k≤1/2.▲k≠0,▲k的取值范围是k≤1/2,且k≠0.21.当或22.(1)易得▲ABD=▲ACE,由OB=OC得▲OBC=▲OCB,则有▲ABC=▲ACB,从而AB=AC.(2)易证▲EBO▲▲CDO,则OE=OD,从而可得点O在▲BAC的角平分线上,23(1)平均数中位数方差甲7 7 1.2乙7 7.5 5.4(2)略(3)选乙24.(1)根据题意得:妹妹去听讲座的概率为:;小明去听讲座的概率为:,▲ ,即P(小明胜)≠P(妹妹胜)▲这个办法不公平(2) 此时:妹妹去听讲座的概率为:小明去听讲座的概率为:,▲当2x=3x﹣3,即x=3时,他们的机会均等;当2x>3x﹣3,即x<3时,对妹妹有利;当2x<3x﹣3,即x>3时,对小明有利.25.(1) (2)r= .2627.(1)DE=2.(2) 证明略,(3)易得▲EBF是等边三角形. 证: ▲EBG▲▲EFN,则得▲BEG=▲FEN, 可推得▲GEN =60°28.解:(1)设二次函数的解析式为.而图象过点A(0,1)则1= ,▲函数的解析式为:y=14 x2-x+1(2)▲以PB为直径的圆与直线AB相切于点B,▲PB▲AB.则▲PBC=▲BAO▲Rt▲PCB▲Rt▲BOA,▲ ,故PC=2BC.设P点的坐标为(x,y),▲▲ABO是锐角,▲PBA是直角,▲▲PBO是钝角,▲x&gt;2▲BC=x-2,PC=2x-4,即y=2x-4, P点的坐标为(x,2x-4)▲点P在二次函数y= 14 x2-x+1的图象上,▲2x-4= 14 x2-x+1.解之得:x1=2,x2=10.▲x&gt;2, ▲x=10, ▲P点的坐标为:(10,16).(3)连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM▲PB,且CQ=MQ .▲QE▲MD,QE=12 MD,QE▲CE.▲CM▲PB,QE▲CE,PC▲x 轴,▲▲QCE=▲EQB=▲CPB▲tan▲QCE= tan▲EQB= tan▲CPB =12CE=2QE=2×2BE=4BE,又CB=8,故BE=85 ,QE=165 ▲Q点的坐标为(185 ,165 )若N与Q关于直线PB对称,可求得N点的坐标为(-145 ,325 )▲14(145)2+(145)+1 =14425 ≠325 ▲C点关于直线PB的对称点N不在抛物线y=ax2+x+1 上.故,点M不与点C是否关于直线BP对称.。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A.1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D. 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A .B .C. D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0B. a <0,b <0,c >0C. a <0,b >0,c <0D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图是( ) A .61 B .31 C .21 D .326题图 7题图题图8中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D 在AB 上,E 在使△ABE ≌△12题图13.如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 。

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案 (总分150分,时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分)1.51-的相反数是( ) A . 51 B . 51- C . 5 D .5-2.有理数a 、b 在数轴上的位置如图所示,则b a +的值 ( )A .大于0B .小于0C .小于aD .大于b 3.下列运算中正确的是 ( ) A .2325a a a += B .22(2)(2)4a b a b a b +-=- C .23622a a a ⋅= D .222(2)4a b a b +=+4. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是 ( )A .9:16B . 3:4C .9:4D .3:165.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°6.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是 ( ) A .32 cm B .3cm C .332 cm D .1cm7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .πab 21 B .πac 21C .πabD .πac 8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是 ( )A .38B .52C .66D .74 二、填空题(本大题共有10小题,每小题3分,共30分) 0 2 8 4 2 4 6 22 4 6 844 m 6 b主视图 c 左视图 俯视图 a a 0 b10.使2-x 有意义的x 的取值范围是 .11.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 . 12.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元.下列所列方程中正确的是13.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .14.若22=-b a ,则b a 486-+= .15.从1-9这九年自然数中任取一个,是2的倍数的概率是 . 16.如图,AB 是⊙O 的直径,CD 是弦,DAB ∠=48︒,则ACD ∠= ︒. 17.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.18.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)计算:(1)计算:(-1)2012-| -7 |+ 9 ×( 5 -π)0+( 1 5)-160°30°DC B A(2)化简:aa a a a -+-÷--2244)111(20.(本题满分8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间 1小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.21.(本题满分8分)有三张背面完全相同的卡片,它们的正面分别写上2、3、12,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下..的卡片中再抽取一张.(1)直接写出小丽取出的卡片恰好是3的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.22.(本题满分8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.D CB AO E 23.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.24.(本题满分10分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)第25题 F EC B AB'C'25.(本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.26.(本题满分10分)如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.27.(本题满分12分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)28.(本题满分12分)已知⊙O 1的半径为R ,周长为C .(1)在⊙O 1内任意作三条弦,其长分别是1l 、2l 、3l .求证:1l +2l +3l < C ; (2)如图,在直角坐标系x O y 中,设⊙O 1的圆心为O 1)(R R ,.①当直线l :)0(>+=b b x y 与⊙O 1相切时,求b 的值; ②当反比例函数)0(>=k xky参考答案一、选择题1. D 2.A 3. B 4. B 5. C 6. A 7. B 8.D 二、填空题9.-8 10.x ≥2 11.71049.1⨯. 12.128)% 1(1682=-a 13.小张 14.14 15.9416.42 17.10 18.32 三、解答题19.(1)原式=1-7+3+5=2.(2).解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 20.(1)调查人数=10÷ 20%=50(人);(2)户外活动时间为1.5小时的人数=50⨯24%=12(人); (3)表示户外活动时间1小时的扇形圆心角的度数=5020⨯360 o =144 o ; (4)户外活动的平均时间=18.150285.1121205.010=⨯+⨯+⨯+⨯(小时). ∵1.18>1 ,∴平均活动时间符合上级要求; 户外活动时间的众数和中位数均为1.21.(1)小丽取出的卡片恰好是3的概率为31(2)画树状图:∴共有6种等可能结果,其中积是有理数的有2种、不是有理数的有4种∴3162(==小丽获胜)P ,3264==(小明获胜)P ∴这个游戏不公平,对小明有利22.(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意,得 1605101100.x y x y +=⎧⎨+= 解得:10060.x y =⎧⎨=答:甲种商品购进100件,乙种商品购进60件. (2)设甲种商品购进a 件,则乙种商品购进(160-a )件.根据题意,得1535(160)4300510(160)1260.a a a a +-<⎧⎨+->⎩解不等式组,得 65<a <68 . ∵a 为非负整数,∴a 取66,67. ∴ 160-a 相应取94,93.答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.23.解:(1)四边形OCED 是菱形.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形. (2)连结OE .由菱形OCED 得:CD ⊥OE , ∴OE ∥BC 又 CE ∥BD ∴四边形BCEO 是平行四边形 ∴OE =BC =8∴S 四边形OCED =11862422OE CD ⋅=⨯⨯= 24.解:设CD = x .在Rt △ACD 中,tan37AD CD ︒=,则34AD x =,∴34AD x =. 在Rt △BCD 中,tan 48° =BD CD ,则1110BD x =,∴1110BD x =.∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. 25.⑴设抛物线的解析式为y =ax 2+bx +c ,则有:⎪⎪⎩⎪⎪⎨⎧=--==+-1230ab c c b a 解得:⎪⎩⎪⎨⎧-=-==321c b a ,所以抛物线的解析式为y =x 2-2x -3. ⑵令x 2-2x -3=0,解得x 1=-1,x 2=3,所以B 点坐标为(3,0). 设直线BC 的解析式为y =kx +b, 则⎩⎨⎧-==+303b b k ,解得⎩⎨⎧-==31b k ,所以直线解析式是y =x -3.当x =1时,y =-2.所以M 点的坐标为(1,-2). ⑶方法一:要使∠PBC =90°,则直线PC 过点C ,且与BC 垂直, 又直线BC 的解析式为y =x -3,所以直线PC 的解析式为y =-x -3,当x =1时,y =-4, 所以P 点坐标为(1,-4). 方法二:设P 点坐标为(1,y ),则PC 2=12+(-3-y )2,BC 2=32+32;PB 2=22+y 2 由∠PBC =90°可知△PBC 是直角三角形,且PB 为斜边,则有PC 2+BC 2=PB 2.所以P 点坐标为(1,-4).26.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' 又∠AEC =∠FEB ∴△ACE ∽△FBE(2)解:当2βα=时,△ACE ≌△FBE . 在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- 在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒,∴∠BCE =α ∵∠ABC =α, ∴∠ABC =∠BCE ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE . 27.(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩,y ∴与x 的函数关系式为60120y x =-.(2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240), ∴两车在途中第二次相遇时,距出发地的路程为240千米.(3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得 222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩,∴y 与x 的函数关系式为120480y x =-.∴当 4.5x =时,120 4.548060y =⨯-=.∴点B 的纵坐标为60, AB Q 表示因故停车检修,∴交点P 的纵坐标为60.把60y =代入60120y x =-中,有6060120x =-,解得3x =, ∴交点P 的坐标为(3,60).Q 交点P 表示第一次相遇,∴乙车出发321-=小时,两车在途中第一次相遇.28.(1)证明:R l 21≤Θ,R l 22≤,R l 23≤.1l ∴+2l +3l C R R =⨯<⨯≤223π,因此,1l +2l +3l < C .(2)①如图,根据题意可知⊙O 1与与x 轴、y 轴分别相切,设直线l 与⊙O 1相切于点M ,则O 1M ⊥l ,过点O 1作直线NH ⊥x 轴,与l 交于点N ,与x 轴交于点H ,又∵直线l 与x 轴、y 轴分别交于点E (b -,0)、F (0,b∴OE =OF =b ,∴∠NEO =45o ,∴∠ENO 1=45o , 在Rt △O 1MN 中,O 1N =O 1M ÷sin 45o =R 2,∴点N 的坐标为N (R ,R R +2),把点N 坐标代入b x y +=得:b R R R +=+2,解得:R b 2=,②如图,设经过点O 、O 1的直线交⊙O 1于点A 、D ,则由已知,直线OO 1:x y =是圆与反比例函数图象的对称轴,当反比例函数xk y =的图象与⊙O 1直径AD 相交时(点A 、D 除外), 则反比例函数xk y =的图象与⊙O 1有两个交点. 过点A 作AB ⊥x 轴交x 轴于点B ,过O 1作O 1C ⊥x 轴于点C ,OO 1=O 1C ÷sin 45o =R 2,OA =R R +2,所以OB =AB =⋅OA sin 45o ==⋅+22)2(R R R R 22+, 因此点A 的坐标是A )22,22(R R R R ++,将点A 的坐标 代入k y =,解得:2)223(R k +=. 同理可求得点D 的坐标为D )22,22(R R R R --, 将点D 的坐标代入xk y =,解得: 2)223(R k -= 所以当反比例函数)0(>=k xk y 的图象与⊙O 1有两个交点时,k 的取值范围是:22)223()223(R k R +<<-。

2013届中考模拟考试数学试题(1)及答案

2013届中考模拟考试数学试题(1)及答案

中考数学模拟试卷一、选择题本大题共8小题,每小题3分,共24分.1.一元二次方程x(x-2)=2-x的根是( )A.-1 B.2 C.1和2 D.-1和22.下列各式中,正确的是( )A.(-3)2=-3B. -32=-3C.(±3)2=±3D. 32=±3 3.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( ) A.2 B.2 3 C.4 D.4 34.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( ) A.8B. 4C.10D.56.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定 D.无法确定谁的成绩更稳定7.已知二次函数的图象(-0.7≤x≤2)如右图所示.关于该函数在所给自变量x的取值范围内,下列说法正确的是( )A.有最小值1,有最大值2B.有最小值-1,有最大值1C.有最小值-1,有最大值2D.有最小值-1,无最大值8.如右图,正五边形ABCDE中,对角线AC、AD与BE分别相交于点N 、M.下列结论错误..的是( )A.四边形NCDE是菱形 B.四边形MNCD是等腰梯形C.△AEM与△CBN相似 D.△AEN与△EDM全等二、填空题本大题共10小题,每小题3分,共30分.9.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是 .10.如图,□ABCD中,∠A=120°,则∠11.如图,河堤横断面迎水坡ABA= °.12.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA= °.13.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为 .14.如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE= .15.如图,梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=30°,则sin∠BAD= .16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面积之和为 cm2(结果保留π).17.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你所确定的b的值是(写出一个值即可).18.边长为2的两种正方形卡片如上图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B 两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为(结果保留π).三、解答题19.(1)计算: (3+6)(2-1)-3tan30°-2cos45°.(2)已知关于x的方程kx2=2(1-k)x-k有两个实数根,求k的取值范围.N MEDCBF ED C BA 46%20%D CBA 20.(本题满分8分)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF .(1) 求证:四边形AECF 是平行四边形;(2) 若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长. 21.(本题满分8分)某校初三所有学生参加2011年初中毕业英语口语、听力自动化考试,现从中随机抽取了部分学生的考试成绩,进行统计后分为A 、B 、C 、D 四个等级,并将统计结果绘制成如下的统计图. 请你结合图中所提供的信息,解答下列问题:(说明:A 级:25分~30分;B 级:20分~24分;C 级:15分~19分;D 级:15分以下) (1)请把条形统计图补充完整;(2)扇形统计图中D 级所占的百分比是 ;(3)扇形统计图中A 级所在的扇形的圆心角度数是 ;(4)若该校初三共有850名学生,试估计该年级A 级和B 级的学生共约为多少人.22.在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字12,2,4,- 13. 小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.(1)用列表法或画树状图,表示所有这些点的坐标;(2)小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y =x 图象上方时小明获胜,否则小华获胜. 你认为这个游戏公平吗?请说明理由.23.(本题满分10分)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm )24.(本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于点A (-2,0)和点B ,与y 轴相交于点C ,顶点D (1,- 92).(1)求抛物线对应的函数关系式; (2)求四边形ACDB 的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴...仅有两个交点,请直接写出一个平移后的抛物线的关系式.25.(本题满分10分)如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E ,且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长.26.(本题满分10分)某专买店购进一批新型计算器,每只进价12元,售价20元.多买优惠:凡一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元. 例如:某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.设一次性购买计算器为x 只,所获利润为y 元.(1)若该专卖店在确保不亏本的前提下进行优惠销售,试求y 与x (x >10)之间的函数关系式,并写出自变量x 的取值范围;(2)若该专买店想获得200元的销售利润,又想让消费者多获得实惠,应将每只售价定为多少元?(3)某天,顾客甲买了42只新型计算器,顾客乙买了52只新型计算器,店主却发现卖42只赚的钱反而比卖52只赚的钱多,你能用数学知识解释这一现象吗? 28.(本题满分12分)如图a ,在平面直角坐标系中,A (0,6),B (4,0).(1)按要求画图:在图a 中,以原点O 为位似中心,按比例尺1:2,将△AOB 缩小,得到△DOC ,使△AOB 与△DOC 在原点O 的两侧;并写出点A 的对应点D 的坐标为 ,点B 的对应点C 的坐标为 ;(2)已知某抛物线经过B 、C 、D 三点,求该抛物线的函数关系式,并画出大致图象;P BA备用图图a A BOxy 6446yxOBA (3)连接DB ,若点P 在CB 上,从点C 向点B 以每秒1个单位运动,点Q 在BD 上,从点B向点D 以每秒1个单位运动,若P 、Q 两点同时分别从点C 、点B 点出发,经过t 秒,t BPQ 三角形?九年级数学参考答案及评分说明一、选择题1~4 D B C D 5~8 D B C C三、解答题19.(1)原式=3-3×33 -2×22 ……3分 =3-3-1=-1. ……4分 (2)原方程可化为kx 2-2(1-k)x+k=0, b 2-4ac=4-8k , ……2分∵方程有两个实数根,∴b 2-4ac ≥0,即4-8k ≥0,∴k ≤1/2. ……3分∵k ≠0,∴k 的取值范围是k ≤1/2,且k ≠0. ……4分20.证:(1)由□ABCD ,得AD=BC,AD ∥BC. ……2分由BE=DF,得AF=CE, ∴AF=CE,AF ∥CE. ……3分 ∴四边形AECF 是平行四边形; ……4分(2)由菱形AECF,得AE=EC ,∴∠EAC=∠ACE. ……5分由∠BAC=90°,得∠BAE=∠B ∴BE=AE=EC , BE=5. ……8分 21.(1)右图所示; ……2分(2)10%; ……4分 (3)72°; ……6分 (4)561. ……8分22.(1) 1/2 2 4 -1/3 1/2 (1/2,2) (1/2,4) (1/2,-1/3) 2 (2,1/2) (2,4) (2,-1/3) 4 (4,1/2) (4,2) (4,-1/3)-1/3 (-1/3,1/2) (-1/3,2) (-1/3,4)(1/2,2)、(1/2,4)、(2,4)、(-1/3,1/2)、(-1/3,2)、(-1/3,4). ……6分 ∴P(小明获胜)=1/2,P(小华获胜)=1/2. ∴这个游戏是公平的. ……8分 23.解:作BE ⊥l 于点E ,DF ⊥l 于点F . ……2分 ∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠AD F+∠DAF=90°, ∴∠ADF=∠α=36°.根据题意,得BE=24mm, DF=48mm . ……4分 在Rt △ABE 中,sin α=BE/AB ,∴AB=BE/sin36°=40(mm).……6分 在Rt △ADF 中,cos ∠ADF=DF/AD ,∴AD=DF/COS36°=60(mm ).8分 ∴矩形ABCD 的周长=2(40+60)=200(mm). ……10分24.(1)设二次函数为y=a(x-1)2-9/2, ……1分求得,a=1/2, ……3分 ∴y=1/2(x-1)2-9/2. ……4分 (2)令y=0,得x 1=-2,x 2=4,∴B(4,0), ……6分令x=0, 得y=-4,∴C(0,-4), ……7分 S 四边形ACDB =15.∴四边形ACDB 的面积为15. ……8分(3)如:向上平移9/2个单位,y=1/2(x-1)2; 向上平移4个单位,y=1/2(x-1)2-1/2; 向右平移2个单位,y=1/2(x-3)2-9/2;向左平移4个单位y=1/2(x+3)2-9/2.(写出一种情况即可).……10分 25.(1)直线BP 和⊙O 相切. ……1分理由:连接BC,∵AB 是⊙O 直径,∴∠A CB=90°. ……2分 ∵PF ∥AC,∴BC ⊥PF, 则∠PBH+∠BPF=90°. ……3分∵∠BPF=∠ADC,∠ADC=∠ABC,得AB ⊥BP, ……4分所以直线BP 和⊙O 相切. ……5分 (2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4. ……6分 ∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP, ……8分∴AC BE =BCBP,解得BP=2.即BP 的长为2. ……10分当x=50时,20-(50—10)×0.1=16(元),当x=40时,20-(40—10)×0.1=17(元). ……6分 ∵16<17,∴应将每只售价定为16元. ……7分(3)y=-0.1x 2+9x=-0.1(x-45)2+202.5.① 当10<x ≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大. ② 当45<x ≤90时,y 随x 的增大而减小,即当卖的只数越多时,利润变小. 且当x=42时,y 1=201.6元, 当x=52时,y 2=197.6元. ……9分 ∴ y 1>y 2.即出现了卖46只赚的钱比卖50只嫌的钱多的现象.……10分27.(1)由∠BAD=∠ABC=∠ADC=90°,得矩形ABCD, ……2分由AB=AD ,得四边形AB CD 是正方形. ……3分FE DCB Ayx OD C B A H DAF E 523人数302520151051210ABC D EO(2)MN2=ND2+DH2. ……4分理由:连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°, ∴∠NDH=90°, ……6分再证△AMN≌△AHN,得MN=NH,……7分∴MN2=ND2+DH2. ……8分(3)设AG=x,则EC=x-4,CF=x-6,由Rt△ECF,得(x-4)2+(x-6)2=100,x1=12,x2=-2(舍去) ∴AG=12.……10分由AG=AB=A D=12,得BD=122,∴MD=92,设NH=y,由Rt△NHD,得y2=(92-y)2+(32)2,y=52,即MN=5 2. ……12分28.(1)画图1分; C(-2,0),D(0,-3). ……3分(2)∵C(-2,0),B(4,0).设抛物线y=a(x+2)(x-4),将D(0,-3)代入,得a=3/8. ……5分∴y=3/8(x+2)(x-4),即y=3/8x2-3/4x-3. ……6分大致图象如图所示. ……7分(3)设经过ts,△BPQ为等腰三角形,此时CP=t,BQ=t,∴BP=6-t.∵OD=3,OB=4,∴BD=5.①若PQ=PB,过P作PH⊥BD于H,则BH=1/2BQ=1/2t,由△BHP∽△BOD,得BH:BO=BP:BD,∴t=48/13s. ……9分②若QP=QB,过Q作QG⊥BC于G,BG=1/2(6-t).由△BGQ∽△BOD,得BG:BO=BQ:BD,∴t=30/13s. ……10分③若BP=BQ,则6-t=t,t=3s. ……11分∴当t=48/13s或30/13s或3s时,△BPQ为等腰三角形.……12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二O 一三年九年级中考模拟试数学试题注意事项:1、本试题分第Ⅰ卷和第二卷两部分。

第一卷为选择题,24分;第Ⅱ卷为非选择题,96分;满分120分,考试时间120分钟。

2、答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目写在答题卡上,考试结束,试题和答题卡一并收回。

3、第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑。

如需改动,先用橡皮擦干净,再涂改其他答案。

一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,选错、不选或选出的答案超过一个均计零分。

1.下列说法正确的是 ( ) A .一个游戏的中奖概率是101则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S 2= 0.01 ,乙组数据的方差 s 2= 0 .1 ,则乙组数据比甲组数据稳定 2.如图2,直线y =x +2与双曲线y =xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )3.小明为今年将要参加中考的好友小李制作了一个(如图3)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是 ( )4.下列图形4中,∠1一定大于∠2的是 ( )5.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是 ( )6.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是 ( )7.如图7,边长都是1的正方形和正三角形,其一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形.设穿过的时间为t ,正方形与三角形重合部分的面积为S (空白部分),那么S 关于t 的函数大致图象应为 ( )(D)(C)(B)(A)-2-1432-2-1432-2-1432-2-1432011010102题图3题图7题图DC B A1221214题图6题图 5题图8.如图8,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE. 下列结论中:① CE=BD; ② △ADC 是等腰直角三角形;③ ∠ADB=∠AEB; ④ CD·AE=EF·CG;一定正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个第Ⅱ卷8题图二、填空题(本大题共有8小题,每小题4分,共32分.不需写出解答过程,请把最后答案直接填写在答题线相应位置.......上) 9.若x y 、为实数,且10x +,则2012⎪⎪⎭⎫⎝⎛y x 的值是________________.10.对于非零的两个实数a 、b ,规定11a b b a⊗=-.若1(1)1x ⊗+=,则x 的值为 _______. 11.等腰三角形的两条边长分别为3,6,那么它的周长为 __________________.12. 化简:22222369x y x y yx y x xy y x y--÷-++++=_________. 13.菱形OABC 在平面直角坐标系中的位置如图13所示,45AOC OC ∠==°,,则点B的坐标为_____________.14.如图14,在直角梯形ABCD 中,AD∥BC,∠ABC=90°,∠C=60°,,点E 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为 __ . 15.如图15,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC的解析式为112y x =-,则tanA 的值是 . 16.如图16,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x 轴平行,它们的顶点依次用A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8、A 9、A 10、A 11、A 12……表示,那么顶点A 62的坐标是 .三、解答题时应写出必要的文字说明、证明过程或演算步骤) 17. (本题满分6分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ;(2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?18. (本题满分8分)在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为()()()A 12B 34C 29.---,,,,, (1)画出△ABC,并求出AC 所在直线的解析式。

13题图14题图15题图 16题图17题图(2)画出△ABC绕点A顺时针旋转90 后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积。

19.(本题满分8分)如图19,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.锐角∠DAB 的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.(1)求证:AC平分∠DAB;(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);(3)若CD=4,AC=45,求垂线段OE的长.20.(本题满分10分)如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.19题图18题图(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.(本题满分10分)(1)背景:在图1中,已知线段AB,CD。

其中点分别是E,F。

①若A(-1,0),B(3,0),则E点的坐标为________;②若C(-2,2),D(-2,-1),则F点的坐标为_________;(2)探究:在图2中,已知线段AB的端点坐标A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;归纳:无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=_________(不必证明)。

运用:在图3中,一次函数y=x-2与反比例函数xy3=的图像交点为A,B。

①求出交点A,B的坐标;②若以A22.(本题满分10分)如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是20题图边AB 上的—个动点(不与点A 、N 重合),过点E 的反比例函数(0)ky x x=>的图象与边BC 交于点F 。

(1)若△OAE 、△OCF 的而积分别为S 1、S 2.且S 1+S 2=2,求k 的值:(2)若OA=2.0C=4.问当点E 运动到什么位置时,四边形OAEF 的面积最大.其最大值为多少?23. (本题满分12分)如图23,已知抛物线249y x bx c =-++与x 轴相交于A 、B 两点,其对称轴为直线2x =,且与x轴交于点D ,AO=1.(1) 填空:b =_______。

c =_______,点B 的坐标为(_______,_______): (2) 若线段BC 的垂直平分线EF 交BC 于点E ,交x 轴于点F .求FC 的长;(3) 探究:在抛物线的对称轴上是否存在点P ,使⊙P 与x 轴、直线BC 都相切?若存在,请求出点P 的坐标;若不存在,请说明理由。

参考答案一、选择题(每题3分。

共计24分。

)22题图23题图9. 1 10. 21- 11. 15 12. 1 13.()1,12+ 14. 33+ 15. 31- 16. ()311,11--三、解答题时应写出必要的文字说明、证明过程或演算步骤) 17. (本题满分6分) 解:(1)C 选项的频数为69÷23%﹣60﹣69﹣36﹣45=90(人),据此补全条形统计图:m%=60÷(69÷23%)=20%.所以m=20。

……………………2分 (2)支持选项B 的人数大约为:5000×23%=1150。

………4分 (3)小李被选中的概率是:P=1002115023=。

………………6分 18. (本题满分8分) 解:(1)如图所示,△ABC 即为所求。

设AC 所在直线的解析式为()0y kx b k =+≠∵()()A 12C 29--,,,, ∴229k b k b-+=⎧⎨-+=⎩ 解得 75k b =-⎧⎨=-⎩,∴75y x =--。

………………………………………………4分 (2)如图所示,△A 1B 1C 1即为所求 。

由图根据勾股定理可知,AC =。

由图知ABC 111S 722271516222=⨯-⨯⨯-⨯⨯-⨯⨯=△(12ACC 9025S 3602ππ⋅⋅==扇形∴△ABC 在上述旋转过程中扫过的面积为1ABC ACC 25S S S 62π=+=+△扇形 。

……8分 19. (本题满分8分)解:(1)连接OC ,∵CD 切⊙O 于点C ,∴OC⊥CD。

又∵AD⊥CD,∴OC∥AD。

∴∠OCA=∠DAC。

∵OC=OA ,∴∠OCA=∠OAC。

∴∠OAC=∠DAC。

∴AC 平分∠DAB。

………………………3分 (2)过点O 作线段AC 的垂线OE ,如图所示:…………4分(3)在Rt△ACD 中,CD =4,AC =45,∴AD=AC 2-CD2=(45)2-42=8 。

∵OE⊥AC,∴AE=12AC =2 5 。

∵∠OAE=∠CAD ,∠AEO=∠ADC,∴△AEO∽△ADC。

∴OE CD =AE AD 。

∴OE=AE AD ×CD=258×4=5。

即垂线段OE 的长为 5 。

…………8分20. (本题满分10分)解:(1)∵在△OAB 中,∠OAB=90º,∠AOB=30º,OB =8,∴OA=AB =4。

相关文档
最新文档