中考数学压轴题提高练习题详解答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年中考数学压轴题提高练习题

1、(安徽)按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:

(Ⅰ)新数据都在60~100(含60和100)之间;

(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。

(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =1

2

时,这种变换满足上述两个要求;

(2)若按关系式y=a(x -h)2

+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

【解】(1)当P=

12时,y=x +()11002x -,即y=1

502

x +。 ∴y 随着x 的增大而增大,即P=

1

2

时,满足条件(Ⅱ)……3分 又当x=20时,y=

1

100502

⨯+=100。

而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=1

2

时,这种变换满足要求;……6分

(2)本题是开放性问题,答案不唯一。若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。

如取h=20,y=()2

20a x k -+,……8分

∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ①

令x=100,y=100,得a ×802

+k=100 ②

由①②解得116060

a k ⎧

=

⎪⎨⎪=⎩, ∴()212060160y x =

-+。………14分 2、(常州)已知(1)A m -,

与(2B m +,是反比例函数

k

y x

=

图象上的两个点. (1)求k 的值;

(2)若点(10)C -,,则在反比例函数k

y x

=图象上是否存在点

D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,

求出点D 的坐标;若不存在,请说明理由.

解:(1

)由(1)2(m m -=+g g

,得m =-

k = ····· 2分 (2)如图1,作BE x ⊥轴,E 为垂足,则3CE =

,BE =

BC =30BCE =o ∠.

由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =o

∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ····························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .

由于30DAF =o

∠,设11(0)DF m m =>

,则1AF =,12AD m =,

由点(1A --,

,得点11(1)D m --,.

因此11(1)()m --=g

解之得1m =

10m =舍去)

,因此点63D ⎛⎫

⎪ ⎪⎝⎭

,.

5分

如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =o

∠,从而150ACD =o

∠.作DH x ⊥轴,H 为垂足,

则60DCH =o

∠,设22(0)CH m m =>,则2DH =,22CD m =

由点(10)C -,,得点22(1)D m -+, 因此22(1)m -+=.

解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,

同理可得,点(2D -,,四边形ABCD 是梯形. ·············· 9分

图1

图2

综上所述,函数y =

图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:63D ⎛⎫

⎪ ⎪⎝⎭,

或(1D

或(2D -,. ······ 10分

3、(福建龙岩)如图,抛物线2

54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.

(1)求抛物线的对称轴;

(2)写出A B C ,,三点的坐标并求抛物线的解析式;

(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.

解:(1)抛物线的对称轴5522a x a -=-=………2分

(2)(30)A -,

(54)B ,(04)C ,…………5分 把点A 坐标代入2

54y ax ax =-+中,解得1

6

a =-

………6分 215

466

y x x ∴=-++…………………………………………7分

图3

相关文档
最新文档