中考数学压轴题提高练习题详解答案

合集下载

中考数学28道压轴题含答案解析

中考数学28道压轴题含答案解析

中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。

中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)

中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)

中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,在Rt△ABC中∠C=90°,AC=BC=5,等腰直角三角形BDE的顶点点D是边BC上的一点,且α(0°≤α<360°).的值为________,直线AE,CD相交形成的较小角的度数为________;(1)【问题发现】当α=0°时,AECD(2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明;(3)【问题解决】当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.2.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,判断线段AP与BQ的数量关系,并说明理由;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于√3,请直接4写出线段AP的长度.3.在中Rt△ABC中∠ABC=90°,AB=BC点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动;①当BE=2,BC=2√3时,则∠EAB=_________°;②猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E在射线CB上运动BC=√3,设BE=x,以A,E,C,F为顶点的四边形面积为y,请直接写出y与x之间的函数关系式(不用写出x的取值范围).4.如图1,在矩形ABCD中AB=6,AD=8把AB绕点B顺时针旋转α(0<α<180°)得到,连接,过B点作BE⊥AA′于E点,交矩形ABCD边于F点.(1)求DA′的最小值;(2)若A点所经过的路径长为2π,求点A′到直线AD的距离;(3)如图2,若CF=4,求tan∠ECB的值;(4)当∠A′CB的度数取最大值时,直接写出CF的长.5.【问题探究】(1)如图1锐角△ABC中分别以AB AC为边向外作等腰直角△ABE和等腰直角△ACD 使AE=AB AD=AC∠BAE=∠CAD=90°连接BD CE试猜想BD与CE的大小关系不需要证明.【深入探究】(2)如图2四边形ABCD中AB=5BC=2∠ABC=∠ACD=∠ADC=45°求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形将BD进行转化再计算请你准确的叙述辅助线的作法再计算;【变式思考】(3)如图3四边形ABCD中AB=BC∠ABC=60°∠ADC=30°AD=6BD =10则CD=.6.如图1所示在菱形ABCD和菱形AEFG中点A B E在同一条直线上P是线段CF的中点连接PD PG.(1)若∠BAD=∠AEF=120°请直接写出∠DPG的度数及PG的值______.PD(2)若∠BAD=∠AEF=120°将菱形ABCD绕点A顺时针旋转使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上如图2 此时(1)中的两个结论是否发生改变?写出你的猜想并加以说明.(3)若∠BAD=∠AEF=180°−2α(0°<α<90°)将菱形ABCD绕点A顺时针旋转到图3的位置求出PGPD 的值.7.如图1 在平面直角坐标系中抛物线y=ax2+bx+4与x轴交于A(﹣2 0)B两点与y轴交于点C OB=OC.连接BC点D是BC的中点.(1)求抛物线的表达式;(2)点M在x轴上连接MD将△BDM沿DM翻折得到△DMG当点G落在AC上时求点G的坐标;(3)如图2 E在第二象限的抛物线上连接DE交y轴于点N将线段DE绕点D逆时针旋转45°交ABOM直接写出点E的坐标.与点M若ON=438.[证明体验](1)如图1 在△ABC和△BDE中点A B D在同一直线上△A=△CBE=△D=90° 求证:△ABC△△DEB.(2)如图2 图3 AD=20 点B是线段AD上的点AC△AD AC=4 连结BC M为BC中点将线段BM绕点B顺时针旋转90°至BE连结DE.ME时求AB的长.[思考探究](1)如图2 当DE=√22[拓展延伸](2)如图3 点G过CA延长线上一点且AG=8 连结GE△G=△D求ED的长.9.新定义:如图1(图2图3)在△ABC中把AB边绕点A顺时针旋转把AC边绕点A逆时针旋转得到△AB′C′若∠BAC+∠BA′C′=180°我们称△AB′C′是△ABC的“旋补三角形” △AB′C′的中线AD叫做△ABC的“旋补中线” 点A叫做“旋补中心”(1)【特例感知】①若△ABC是等边三角形(如图2)BC=4则AD=________;②若∠BAC=90°(如图3)BC=6AD=_______;(2)【猜想论证】在图1中当△ABC是任意三角形时猜想AD与BC的数量关系并证明你的猜想;(提示:过点B′作B′E∥AC′且B′E=AC′连接C′E则四边形AB′EC是平行四边形.)(3)【拓展应用】如图4点A B C D都在半径为5的圆P上且AB与CD不平行AD=6△APD是△BPC的“旋补三角形” 点P是“旋补中心” 求BC的长.10.如图① 抛物线y=﹣x2+bx+c与x轴交于点A(x10) 点C(x20) 且x1x2满足x1+x2=2x1•x2=﹣3 与y轴交于点B E(m0)是x轴上一动点过点E作EP△x轴于点E交抛物线于点P.(1)求抛物线解析式.(2)如图② 直线EP交直线AB于点D连接PB.①点E在线段OA上运动若△PBD是等腰三角形时求点E的坐标;②点E在x轴的正半轴上运动若△PBD+△CBO=45° 请求出m的值.(3)如图③ 点Q是直线EP上的一动点连接CQ将线段CQ绕点Q逆时针旋转90° 得到线段QF 当m=1时请直接写出PF的最小值.11.如图△ABC与△DEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O连接BF CD.(1)如图① 当FE△AB时易证BF=CD(不需证明);(2)当△DEF绕点O旋转到如图②位置时猜想BF与CD之间的数量关系并证明;(3)当△ABC与△DEF均为等边三角形时其他条件不变如图③ 猜想BF与CD之间的数量关系直接写出你的猜想不需证明.12.已知Rt△ABC中AC=BC△C=90° D为AB边的中点△EDF=90° △EDF绕D点旋转它的两边分别交AC CB(或它们的延长线)于E F.(1)如图1 当△EDF绕D点旋转到DE△AC于E时易证S△DEF+S△CEF与S△ABC的数量关系为__________;(2)如图2 当△EDF绕D点旋转到DE和AC不垂直时上述结论是否成立?若成立请给予证明;(3)如图3 这种情况下请猜想S△DEF S△CEF S△ABC的数量关系不需证明.13.如图① 将一个直角三角形纸片ABC放置在平面直角坐标系中点A(−2,0)点B(6,0)点C在第一象限∠ACB=90°∠CAB=30°.(1)求点C的坐标;(2)以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E.①如图② 当DE∥AB时BD与y轴交于点F求点F的坐标;②如图③ 在(1)的条件下点F不变继续旋转三角形BDE当点D落在射线BC上时求证四边形FDEB为矩形;(3)点F不变记P为线段FD的中点Q为线段ED的中点求PQ的取值范围(直接写出结果即可).14.如图在Rt△ABC中∠ACB=90∘∠A=30∘点O为AB中点点P为直线BC上的动点(不与点B C重合)连接OC OP将线段OP绕点P逆时针旋转60∘得到线段P Q连接BQ.(1)如图1 当点P在线段BC上时请直接写出线段BQ与CP的数量关系;(2)如图2 当点P在CB长线上时(1)中结论是否成立?若成立请加以证明;若不成立请说明理由;(3)如图3 当点P在BC延长线上时若∠BPO=45∘AC=√6请直接写出BQ的长.15.如图在RtΔABC中∠BAC=90°AB=AC点P是AB边上一动点作PD⊥BC于点D连接AD把AD绕点A逆时针旋转90°得到AE连接CE DE PE.(1)求证:四边形PDCE是矩形;(2)如图2所示当点P运动BA的延长线上时DE与AC交于点F其他条件不变已知BD=2CD的值;求APAF(3)点P在AB边上运动的过程中线段AD上存在一点Q使QA+QB+QC的值最小当QA+QB+QC的值取得最小值时若AQ的长为2 求PD的长.16.感知:如图① △ABC和△ADE都是等腰直角三角形∠BAC=∠DAE=90°点B在线段AD上点C在线段AE上我们很容易得到BD=CE不需要证明;(1)探究:如图② 将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE此时BD=CE是否依然成立?若成立写出证明过程;若不成立说明理由;(2)应用:如图③ 当△ADE绕点A逆时针旋转使得点D落在BC的延长线上连接CE;①探究线段BC CD CE之间的数量关系.②若AB=AC=√2CD=1求线段DE的长.17.如图抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点(点A在点B的左侧)已知点B的横坐标是2 抛物线C的顶点为D.(1)求a的值及顶点D的坐标;(2)点P是x轴正半轴上一点将抛物线C绕点P旋转180°后得到的抛物线C1记抛物线C1的顶点为E抛物线C1与x轴的交点为F G(点F在点G的右侧).当点P与点B重合时(如图1)求抛物线C1的表达式;(3)如图2 在(2)的条件下从A B D中任取一点E F G中任取两点若以取出的三点为顶点能构成直角三角形我们就称抛物线C1为抛物线C的“勾股伴随同类函数”.当抛物线C1是抛物线C的勾股伴随同类函数时求点P的坐标.18.如图点B坐标为(5 2)过点B作BA△y轴于点A作BC△x轴于点C点D在第一象限内.(1)如图1 反比例函数y1=mx (x>0)的图象经过点B点D且直线OD的表达式为y=52x求线段OD的长;(2)将线段OD从(1)中位置绕点O逆时针旋转得到OD′(如图2)反比例函数y2=nx(x>0)的图象过点D' 交AB于点E交BC于点F连接OE OF EF.①若AE+CF=EF求n的值;②若△OEF=90°时设D′的坐标为(a b)求(a+b)2的值.19.已知正方形ABCD和等腰直角三角形BEF BE=EF△BEF=90° 按图1放置使点F在BC上取DF的中点G连接EG CG.(1)探索EG CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45° 再连接DF取DF中点G(见图2)(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间)再连接DF取DF中点G(见图3)(1)中的结论是否仍然成立?证明你的结论.20.如图1 已知正方形BEFG点C在BE的延长线上点A在GB的延长线上且AB=BC过点C作AB的平行线过点A作BC的平行线两条平行线相交于点D.(1)证明:四边形ABCD是正方形;(2)当正方形BEFG绕点B顺时针(或逆时针)旋转一定角度得到图2 使得点G在射线DB上连接BD和DF点Q是线段DF的中点连接CQ和QE猜想线段CQ和线段QE的关系并说明理由;(3)将正方形BEFG绕点B旋转一周时当△CGB等于45°时直线AE交CG于点H探究线段CH EG AH的长度关系.参考答案1.(1)解:Rt△ABC中∵∠C=90°,AC=BC=5∴AB=√AC2+BC2=√52+52=5√2∵ED⊥BC BD=ED=√2∴EB=√DB2+DE2=2,∠B=45°∴AE=AB-EB=5√2−2,CD=BC−DB=5−√2∴AECD =5√2−25−√2=√2故答案为:√2,45°;(2)解:(1)中的两个结论不发生变化理由如下:如图延长AE CD交于F由旋转可得∠CBD=∠ABE∵AB=5√2,BC=5,BE=2,DB=√2∴ABBC =5√25=√2EBDB=2√2=√2∴ABBC=EBDB∴ΔAEB∽ΔCDB∴AECD =ABCB=√2∠EAB=∠DCB∵∠BAC+∠ACB=90°+45°=135°∴∠BAC+∠ACD+∠DCB=∠BAC+∠ACD+∠EAB=135°即∠FAC+∠ACD=135°∴∠F=180°−(∠FAC+∠ACD)=45°∴(1)中的两个结论不发生变化.(3)解:分情况讨论:如图当点D在线段AE上时过点C作CF⊥AD于点F在RtΔABD中AB=5√2,BD=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3由(2)知ΔEAB∽ΔDCB∠ADC=45°AE=AD+DE=4√3+√2∴CDAE=CBAB∴CD4√3+√2=55√2∴CD=2√6+1在Rt△CDF中CF=CD·sin∠ADC=(2√6+1)·sin45°=2√3+√22∴S△ADC=12AD·CF=12×4√3×(2√3+√22)=12+√6;当点E在线段AD上时如图过点C作CF⊥AD于点F在RtΔADB中AB=5√2,DB=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3∴AE=AD−DE=4√3−2由(2)知△CDB∽△AEB∴CDAE=BCAB∴CD4√3−2=55√2∴CD=2√6−1由(2)知∠ADC=45°∴CF=CD·sin45°=(2√6−1)×√22=2√3−√22∴SΔACD=12AD·CF=12×4√3×(2√3−√22)=12−√6综上△ADC的面积为12+√6或12−√6.2.(1)解:AP=BQ.理由如下:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ;(2)证明:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ△CBQ=△CAP=90°;△BQ=AP=AC=BC.△AP=AC△CAP=90°△△BAP=30° △ABP=△APB=75°△△CBP=△ABC+△ABP=135°△△CBD=45°△△QBD=45°△△CBD=△QBD即BD平分△CBQ△BD△CQ且点D是CQ的中点即直线PB垂直平分线段CQ;(3)解:AP 的长为:√3或√33或2√3+√212. 理由如下:①当点Q 在直线l 上方时 如图所示 延长BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△AB =AC =4△AE =BE =4√33△△BEF =60°设AP =t 则BQ =t△EQ =4√23−t在Rt △EFQ 中 QF =√32EQ =√32(4√23−t ) △S △APQ =12AP •QF =√34 即12•t √32(4√23−t )=√34 解得t =√3或t =√33.即AP 的长为√3或√33.②当点Q 在直线l 下方时 如图所示 设BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△△BEF =120° △QEF =60°△AB =AC =4△AE =BE =4√33设AP =m 则BQ =m△EQ =m −4√33在Rt △EFQ 中 QF =√32EQ =√32(m −4√33) △S △APQ =12AP •QF =√34 即12•m •√32(m −4√33)=√34 解得m =2√3+√213(m =2√3-√213 负值舍去).综上可得 AP 的长为:√3或√33或2√3+√213. 3.(1)解:①△AB =BC =2√3 BE =2 △ABC =90°△tan∠EAB =BE AB =22√3=√33△△EAB =30°故答案为:30;②过点F 作FD △BC 于D 如图3△△BAE + △AEB = 90° △DEF +△AEB =90°△△BAE = △DEF△AE = EF △ABE =△EDF = 90°△△АВЕ △△ЕDF△AB = ED = BC△FD = DC△CF =√2CD AC =√2AB =√2ED△AC + CF=√2CD +√2ED=√2 (CD + ED )=√2CE ;故答案为:AC +CF =√2CE ;(2)过F 作FH △BC 交BC 的延长线于H 如图4△△AEF =90° AE =EF易证△ABE △△EHF△FH =BE EH =AB =BC△△FHC 是等腰直角三角形△CH =BE =√22FC△EC =BC -BE =√22AC -√22FC 即CA -CF =√2CE ;(3)如图3 当点E在点B左侧运动时y=12×CE×(AB+FD)=12×(√3+x)×(√3+x)=1 2x2+√3x+32;如图4 当点E在点B右侧运动时连接AF 根据勾股定理得AE=√AB2+BE2=√3+x2由旋转得AE=EF△EC=EH-CH=BC-BE=√3−x△y=12×AE×EF+12×EC×FH=1 2x2+32+12(√3−x)x=√3 2x+32综上当点E在点B左侧运动时y=12x2+√3x+32;当点E在点B右侧运动时y=√32x+32.4.(1)解:连接BD DA′ 如图△四边形ABCD是矩形△△BAD=90°△AB=6 AD=8△BD=10由旋转可得BA′=BA=6△BA′+DA′≥BD△当点A′落在BD上时DA′最小最小值为10-6=4△DA′最小值为4;(2)解:由题意得απ×6180=2π解得:α=60°△AB=A′B△△ABA′是等边三角形△△BAA′=60° AB=A′B=AA′=6△△DAA′=30°过点A′作A′M△AD于M点△A′M=12AA′=3△点A′到直线AD的距离为3(3)解:△BC=8 CF=4△BF=4√5△△BAE+△ABE=90° △CBF+△ABE=90°△△BAE=△CBF△△AEB=△BCF=90°△△ABE△△BFC△BE CF =ABBF△BE=6√55过E作EH△BC于H点△EH∥CD△△BEH△△BFC△BE BF =EHCF=BHBC△EH=65BH=125△CH=285△tan∠ECB=EHCH =314;(4)解:当A′C与以B为圆心AB为半径的圆相切时△A′CB最大此时△BA′C=90°分两种情况:当A′在BC的上方时如图1△AB=A′B AE△AA′于E△△ABF=△A′BF△BF=BF△△ABF△△A′BF△△BA′F=△BAF=90°△C A′ F在一条直线上△S△BCF=12BC×AB=12A′B×CF△CF =BC =8如图2当A ′在BC 的下方时连接AF A ′F 则AF =A ′F△A ′B =6 BC =8△A′C =2√7过A ′作A ′P △CD 垂足落在DC 的延长线上△△BCA ′+△A ′CP =90° △A ′CP +△CA ′P =90°△△BCA ′=△CA ′P△△BA ′C =△A ′PC△△A ′BC △△PCA ′△A ′B PC =BC CA ′=A ′CPA ′△A′P =72 PC =32√7△AD 2+DF 2=A ′P 2+PF 2△82+(6−CF )2=(72)2+(32√7+CF)2△CF =83(4−√7).综上 CF 的长为8或83(4−√7).5.解:(1)BD =CE .理由是:△△BAE =△CAD△△BAE +△BAC =△CAD +△BAC 即△EAC =△BAD在△EAC 和△BAD 中{AE =AB∠EAC =∠BAD AC =AD△△EAC △△BAD△BD =CE ;(2)如图2 在△ABC 的外部 以A 为直角顶点作等腰直角△BAE使△BAE =90° AE =AB 连接EAEB EC .△△ACD=△ADC=45°△AC=AD△CAD=90°△△BAE+△BAC=△CAD+△BAC即△EAC=△BAD 在△EAC和△BAD中{AE=AB ∠EAC=∠BAD AC=AD△△EAC△△BAD△BD=CE.△AE=AB=5△BE=√52+52=5√2△ABE=△AEB=45°又△△ABC=45°△△ABC+△ABE=45°+45°=90°△EC2=BE2+BC2=(5√2)2+22=54△BD2=CE2=54.(3)如图△AB=BC△ABC=60°△△ABC是等边三角形把△ACD绕点C逆时针旋转60°得到△BCE连接DE 则BE=AD△CDE是等边三角形△DE=CD△CED=60°△△ADC=30°△△BED=30°+60°=90°在Rt△BDE中DE=√BD2−BE2=√102−62=8△CD=DE=8.6.解:(1)延长GP交CD于H如图1所示:∵在菱形ABCD和菱形AEFG中AB=CD=AD BE//CD AG=FG FG//BE∴FG//CD∴∠PFG=∠PCH ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠PFG=∠PCHPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∴AG=CH∴DG=DH∴DP⊥GH(三线合一)∴∠DPG=90°;∵∠BAD=120°∴∠ADC=60°∴∠PDG=∠PDH=12∠ADC=30°∴PGPD =tan∠PDG=tan30°=√33;(2)(1)中的两个结论不发生改变;理由如下:延长GP交CE于H连接DH DG如图2所示:∵四边形AEFG为菱形∴FG//EC∴∠GFP=∠HCP ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠GFP=∠HCPPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∵FG=AG∴AG=CH∵四边形ABCD是菱形∴AC=CD∵∠BAD=∠AEF=120°∴∠ACD=60°∴△ACD是等边三角形∴AD=CD∴∠EAG=∠ADC=60°∠DAC=∠DCA=60°∴∠GAD=180°−∠EAG−∠DAC=60°在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴DG=DH∠ADG=∠CDH∴DP⊥GH∴∠DPG=90°∠GDH=∠ADC=60°∴∠GDP=30°∴PGPD =tan30°=√33;(3)延长GP到H使得PH=GP连接CH DG DH延长DC交EA的延长线于点M如图3所示:同(2)可证△PFG≅△PCH∴∠GFC=∠HCF FG=CH∴FG//CH∵FG//AE∴CH//EM∴∠DCH=∠M∵CD//AB∴∠M=∠MAB∴∠DCH=∠MAB∵∠BAD=∠AEF=180°−2α∴∠EAG=∠ADC=2α∴∠GAM=180°−2α∴∠GAD=∠BAM∴∠GAD=∠DCH∵AG=FG∴AG=CH在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴∠ADG=∠CDH DG=DH∴∠GDH=∠ADC=2α∴∠DPG =90° ∠GDP =12∠GDH =α∴ PGPD =tanα.7.(1)解:△抛物线y =ax 2+bx +4与y 轴交于点C△点C 的坐标为(0 4)△OC =4△OB=OC =4△B (4 0)将A (-2 0)和B (4 0)的坐标分别代入y =ax 2+bx +4中得:{4a −2b +4=016a +4b +4=0解得:{a =−12b =1△y =−12x 2+x +4(2)解:△A (-2 0) C (0 4)设直线AC 的解析式为y =kx +4将点A (-2 0)代入y =kx +4中 得:−2k +4=0 解得:k =2△直线AC 的解析式为y =2x +4设G (x 2x +4)△点D 是BC 的中点△D(2 2)△翻折△△MDB△△MDG△DB=DG△(x−2)2+(2x+4−2)2=(2−4)2+(2−0)2△5x2+4x=0△x1=0,x2=−45△y1=4,y2=125△G(0 4)G(−45125)(3)解:E(2−2√13314−2√139)如图过点D作DP△OC于点P DQ△OB于点Q点D作DH△DN交OB于点H∵∠PDQ=∠NDM=90°∴∠PDQ−∠NDQ=∠NDM−∠NDQ∴∠PDN=∠QDH在ΔDPN和ΔDQH中{DP=DQ∠DON=∠DQH=90°∠PDN=∠QDH∴ΔDPN≅ΔDQH(ASA)∴DN=DH∠NDM=90°−∠PDN−∠QDM=90°−∠QDH−∠QDM=∠HDM 在ΔDMN和ΔDMH中{DN=DH∠NDM=∠HDMDM=DM∴△DMN≌△DMH(SAS)∴MN=MQ+PN△ON =43OM 设OM =x 则ON =43x QM =2-x PN =2-43x △MN =MQ +PN =4-73x在Rt △OMN 中 △MON=90°MN 2=ON 2+OM 2即(4−73x)2=(43x)2+(2−x )2△2x 2−x +9=0△x =1 x =92(舍) △N (0 43) △D (2 2)设直线DN 的解析式为y =k 1x +b 1将点N (0 43)和点D (2 2)代入y =k 1x +b 1中 得:{b 1=432k 1+b 1=2 解得:{b 1=43k 1=13△直线DN 的解析式为y =13x +43△y =−12x 2+x +4 △−12x 2+x +4=13x +43△x =2−2√133 x =2+2√133(舍) △y =14−2√139 △E (2−2√133 14−2√139). 8.解:(1)证明 △△A =90° △CBE =90°△△C +△CBA =90° △CBA +△DBE =90°△△C =△DBE (同角的余角相等).又△△A =△D =90°△△ABC △△DEB ;(2)①△M绕点B顺时针旋转90°至点E M为BC中点△△BME为等腰直角三角形BEBC =BMBC=12△BE=√22ME又△DE=√22ME△BE=DE.如图过点E作EF△AD垂足为F则BF=DF △△A=△CBE=△BFE=90°△由(1)得:△ABC△△FEB△BF AC =BEBC=12△AC=4△BF=2△AB=AD-BF-FD=20-2-2=16;②如图过点M作AD的垂线交AD于点H过点E作AD的垂线交AD于点F过D作DP△AD过E作NP△DP交AC的延长线于N△M为BC中点MH△AC∴MHAC =BMBC=BHAB=12△MH=12AC=2BH=AH△△MHB=△MBE=△BFE=90°由(1)得:∠HBM=∠FEB△MB=EB△△MHB△△BFE△BF=MH=2 EF=BH设EF=x则DP=x BH=AH=x EP=FD=20-2-2x=18-2x GN=x+8 NE=AF=2x+2由(1)得△NGE△△PED△PE NG =PDNE即18−2xx+8=x2x+2解得x1=6x2=−65(舍去)△FD=18-2x=6△ED=√EF2+FD2=√62+62=6√2.9.(1)解:①△△ABC是等边三角形BC=4△AB=AC=4∠BAC=60°△AB′=AC′=4∠B′AC′=120°△AD为等腰△AB′C′'的中线△AD⊥B′C′∠C′=30°△∠ADC′=90°在Rt△ADC′'中∠ADC′=90°AC′=4∠C′=30°△AD=12AC′=2;②△∠BAC=90°△∠B′AC′=90°在△ABC和△AB′C′'中{AB=AB′∠BAC=∠B′AC′AC=AC′△△ABC≌△AB′C′(SAS)△B′C′=BC=6△AD=12B′C′=3;故答案为:①2;②3(2)AD=12BC理由如下:证明:在图1中过点B′作B′E∥AC′且B′E=AC′连接C′E DE则四边形AB′EC是平行四边形.△∠BAC+∠B′AC′=180°∠B′AC′+∠AB′E=180°△∠BAC=∠AB′E又△AC=AC′△CA=EB′在△BAC和△AB′E中{BA=AB′∠BAC=∠AB′E CA=EB′△△BAC≌△AB′E(SAS)△BC=AE又△AD=12AE△AD=12BC;(3)如图过点P作PF⊥BC则BF=CF△PB=PC PF⊥BC△PF为△BC的中线△PF=12AD=3.在Rt△BPF中∠BFP=90°PB=5PF=3△BF=√PB2−PF2=4△BC=2BF=8.10.(1)解:△x 1 x 2满足x 1+x 2=2 x 1•x 2=﹣3△b =2 c =3△抛物线的解析式为y =﹣x 2+2x +3(2)解:①抛物线y =﹣x 2+2x +3与x 轴交于点A (x 1 0) 点C (x 20) 与y 轴交于点B △当y =0时 ﹣x 2+2x +3=0解得x 1=3 x 2=-1当x =0时y =3△A (3 0) C (-1 0) B (0 3)△△AOB 为等腰直角三角形△△BAO =45°又EP △x 轴△△ADE 为等腰直角三角形△△ADE =45°又△△PDB =△ADE△△PDB =45°设直线AB 的解析式为y =kx +b则{3k +b =0b =3 解得{k =−1b =3△直线AB 的解析式为y =-x +3△E (m 0) 直线EP 交直线AB 于点D△设点D 为(m -m +3) 点P 为(m ﹣m 2+2m +3)点E 在线段OA 上运动 若△PBD 是等腰三角形 则0<m <3当PD =PB 时△PBD 是以P 为直角顶点的等腰直角三角形△﹣m 2+2m +3-(-m +3)=m解得m=2或m=0(舍去)△点E为(2 0)当BD=BP时△PBD是以B为直角顶点的等腰直角三角形△2 m =﹣m2+2m+3-(-m+3)解得m=1或m=0(舍去)△点E为(1 0)当DB=DP时△PBD是以D为顶点的等腰三角形△△OBD=45°△BD=√2OE=√2m△√2m=﹣m2+2m+3-(-m+3)解得m=3-√2或m=0(舍去)△点E为(3-√20)综上可知点E为(2 0)或(1 0)或(3-√20)②当P在x轴上方时连接BC延长BP交x轴于点F△△BAO=△ABO=45°又△PBD+△CBO=45°△△CBP=90°△△OBF+△CBO=90°又△BCO+△CBO=90°△△OBF=△BCO△△BOC△△FOB△BO FO =OC OB△C(-1 0) B(0 3)△3 FO =1 3△OF=9△点F为(9 0)设直线PB 的解析式为y =mx +n则{9m +n =0n =3解得{m =−13n =3△直线PB 的解析式为y =-13x +3△P B 都在抛物线上△{y =−13x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =73y =209△点P 为(73 209)△m =73当P 在x 轴下方时连接BC 设BP 与x 轴交于点H△△PBD +△CBO =45° △OBH +△PBD =45°△△CBO =△OBH又OB =OB △COB =△BOH∴△BOH △△BOC (ASA )△OC =OH =1△点H (1 0)设直线BH 解析式为:y =kx +b△{k +b =0b =3 解得{k =−3b =3△直线BH 解析式为:y =-3x +3△联立方程组{y =−3x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =5y =−12△点P 为(5 -12)△m =5综上可知 m 的值为73或5. (3)解:当m =1 得点E (1 0) P (1 4)过点F 作FH △PE又PE △x 轴 △CQF =90°△△CQH +△FQH =90° △CQH +△QCH =90°°△QEC =△QHF =90°△△FQH =△QCH△线段CQ 绕点Q 逆时针旋转90° 得到线段QF△CQ=QF△△QCE △△FQH (AAS )△CE=QH QE=FH又E (1 0) C (-1 0)△CE=QH =2令Q 为(1 a )QE=FH=a△点F 的坐标为(1+a a -2)△PF=√(1+a −1)2+(a −2−4)2=√2a 2−12a +36△2>0△当a =-−122×2=3时 PF 有最小值 且最小值为3√2.11.解:(1)证明:如图① 连接OC∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵FE⊥AB于O∴C F O三点共线在ΔBOF与ΔCOD中{∠OB=OC∠BOF=∠COD=90°OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(2)解:猜想BF=CD理由如下:如图② 连接OC OD∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF ∴∠BOF=∠COD.在ΔBOF与ΔCOD中{OB=OC∠BOF=∠COD OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(3)解:猜想BF=√33CD理由如下:如图③ 连接OC OD.∵ΔABC为等边三角形点O为边AB的中点∴∠BCO=∠ACO=30°∠BOC=90°∴tan∠BCO=OBOC=tan30°=√33∵ΔDEF为等边三角形点O为边EF的中点∴∠FDO=∠EDO=30°∠DOF=90°∴tan∠FDO=OFOD=tan30°=√33∴OBOC =OFOD=√33∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF∴∠BOF=∠COD∴ΔBOF∽ΔCOD∴BFCD =OBOC=√33∴BF=√33CD.12.解:(1)当△EDF 绕D 点旋转到DE △AC 时 四边形CEDF 是正方形.设△ABC 的边长AC =BC =a 则正方形CEDF 的边长为12a .△S △ABC =12a 2 S 正方形DECF =(12a )2=12a 2 即S △DEF +S △CEF =12S △ABC ;故答案为:S △DEF +S △CEF =12S △ABC ; (2)(1)中的结论成立;证明:过点D 作DM △AC DN △BC 则△DME =△DNF =△MDN =90°又△△C =90°△DM △BC DN △AC△D 为AB 边的中点由中位线定理可知:DN =12AC MD =12BC △AC =BC△MD =ND△△EDF =90°△△MDE +△EDN =90° △NDF +△EDN =90°△△MDE=△NDF在△DME 与△DNF 中{∠DME =∠DNFMD =ND ∠MDE =∠NDF△△DME △△DNF (ASA )△S △DME =S △DNF△S 四边形DMCN =S 四边形DECF =S △DEF +S △CEF由以上可知S 四边形DMCN =12S △ABC △S △DEF +S △CEF =12S △ABC .(3)连接DC证明:同(2)得:△DEC △△DBF △DCE =△DBF =135°△S △DEF =S 五边形DBFEC=S △CFE +S △DBC=S △CFE +S ΔABC2△S △DEF -S △CFE =S ΔABC2.故S △DEF S △CEF S △ABC 的关系是:S △DEF -S △CEF =12S △ABC .13.(1)解:如图 过点C 作C G ⊥x 轴∵点A(−2,0)点B(6,0)△AB=8 又∵∠ACB=90°∠CAB=30°△在Rt△ABC中BC=4 在Rt△GBC中BG=2 CG=2√3.又∵点C在第一象限△C(4,2√3);(2)①∵以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E 且DE//AB△∠FBA=∠EDB=∠CAB=30°.△在Rt△FOB中∵OB=6△OF=2√3.△F(0,2√3);②△点D落在射线BC上△∠ABD=60°.由①知∠FBA=30°△∠FBD=30°.△∠FBD=∠BDE△DE//FB.又DE=FB=4√3△四边形FDEB是平行四边形.又∠BED=90°△四边形FDEB是矩形.(3)如图连接PQ,FE∵P,Q分别为FD,DE的中点∴PQ=1EF2∵FB=4√3BE=4∵旋转则点E在以B为圆心BE为半径的圆上运动∴FB−BE≤EF≤FB+BE 即4√3−4≤EF≤4√3+4∴2√3−2≤PQ≤2√3+2 14.(1)解:CP=BQ理由:如图1 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS);(2)解:CP=BQ理由:如图2 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS)△CP=BQ;(3)解:BQ=√6−√22.在Rt△ABC中△A=30° AC=√6△BC=AC·tan A=√2如图③ 过点O作OH△BC于点H△△OHB=90°=△BCA△OH △AC△O 是AB 中点△CH =12BC =√22 OH =12AC =√62△△BPO =45° △OHP =90°△△BPO =△POH△PH =OH =√62△CP =PH -CH =√62-√22=√6−√22连接OQ 同(1)的方法得 BQ =CP =√6−√22. 15.(1)证明:△AB =AC △BAC =90°△△B =△ACB =45°△△DAE =△BAC =90° AD =AE△△BAD =△CAE在△BAD 和△CAE 中 {AB =AC∠BAD =∠CAE AD =AE△△BAD △△CAE (SAS )△△B =△ACE =45° BD =CE△△ECD =△ACE +△ACB =90°△PD △BC△△BDP =△ECD =90°△PD △CE△△B =△BPD =45°△PD =BD△PD =EC△四边形PDCE 是平行四边形△△PDC =90°△四边形PDCE 是矩形;(2)解△如图 过点A 作AM △BC 于点M 过点F 作FN △BC 于点N设CD =2m 则BD =2CD =4m BC =6m△AB =AC △BAC =90° AM △BC△BM =MC =3m△AM =BM =3m AB =AC =3√2m DM =CM -CD =m△BD =PD =4m△PB =4√2m△P A =√2m△△ABD △△ACE△BD =EC =4m设CN =FN =x△FN △CE△△DFN △△DEC△FN EC =DN DC△FNDN =EC DC=4m2m =2 △DN =12x△12x +x =2m△x =43m △CF =4√23 m△AF =AC -CF =3√2m -4√23m =5√23m △AP AF =√2m 5√23m=35;(3)即:如图 将△BQC 绕点B 顺时针旋转60°得到△BNM 连接QN△BQ=BN QC=NM△QBN=60°△△BQN是等边三角形△BQ=QN△QA+QB+QC=AQ+QN+MN△当点A点Q点N点M共线时QA+QB+QC值最小如图连接MC△将△BQC绕点B顺时针旋转60°得到△BNM△BQ=BN BC=BM△QBN=60°=△CBM△△BQN是等边三角形△CBM是等边三角形△△BQN=△BNQ=60° BM=CM又△AB=AC△AM垂直平分BC△AD△BC△BQD=60°△△DBQ=30°BQ△QD=12△BD=√3QD△AB=AC△BAC=90° AD△BC△AD=BD此时P与A重合设PD=x则DQ=x-2△x=√3(x-2)△x=3+√3△PD=3+√3.16.(1)解:成立理由是:△△ABC和△ADE都是等腰直角三角形△AB=AC AD=AE△将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE△∠BAD=∠CAE△△ABD≌△ACE(SAS)△BD=CE;(2)解:①△AB=AC∠BAD=∠CAE AD=AE△△ACE≌△ABD(SAS)△BD=CE△BC+CD=BD=CE.②△△ACE≌△ABD△∠ACE=∠ABD=45°又△∠ACB=45°△∠BCE=∠ACB+∠ACE=90°在Rt△BAC中△AB=AC=√2△BC=√AB2+AC2=2又△CD=1CE=BC+CD=3△在Rt△CDE中17.(1)解:△抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点点B的横坐标是2△B (2,0)△a ×22+6a ×2+9a −8=0解得a =825△抛物线C 的解析式为:y =825x 2+4825x −12825 对称轴:x =−48252×825=−3△当x =−3时 y =825×(−3)2+4825×(−3)−12825=−8 △顶点D 的坐标为(−3,−8).△a =825 D (−3,−8).(2)△抛物线C 与x 轴相交于A B 两点△当y =0时 得:825x 2+4825x −12825=0 即(x +8)(x −2)=0解得:x 1=−8 x 2=2△A (−8,0)△点P 与点B 重合△点P 的坐标为(2,0)当抛物线C 绕点P 旋转180°后得到的抛物线C 1 且点P 与点B 重合时△在抛物线C 1中 点B 的坐标仍为(2,0)△点F 与点A 关于点P 对称△点F 的坐标为(12,0)同理点E 与点D 关于点P 对称 设E (m,n ) 则△点P 的坐标为(m−32,n−82) △{m−32=2n−82=0△{m =7n =8△点E 的坐标为(7,8)设抛物线C 1的表达式为:y =a 1(x −12)(x −2)△(7−12)×(7−2)a 1=8△a 1=−825 △y =−825(x −12)(x −2)=−825x 2+11225x −19225 △抛物线C 1的表达式为:y =−825x 2+11225x −19225.(3)根据题意可知 在构成的直角三角形三个顶点中 有两个顶点是从点E F G 中选取 有一个点是从A B D 中任取.由图可知 当点为E G 或F G 时 与A B D 中任意一点构成的三角形是钝角三角形 故只有点E F 为直角三角形其中的两个顶点.设P (m,0)又△抛物线C 绕点P 旋转180°后得到的抛物线C 1 A (−8,0) B (2,0) D (−3,−8)△E (2m +3,8) F (2m +8,0)①当A 为顶点时△在抛物线C 1中 ∠EFO 是一个锐角 点A 在点P 的左侧△∠AEF =90°△AE 2+EF 2=AF 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(2m +16)2解得:m =910;②当B 为顶点时同理可得∠BEF =90°△BE 2+EF 2=BF 2△[√(2m +1)2+82)2+(√52+(−8)2)2=(2m +6)2 解得:m =5910;③当D 为顶点时分两种情况:第一种:∠DEF =90°△DE 2+EF 2=DF 2△(√(2m +6)2+(8+8)2)2+(√52+(−8)2)2=(√(2m +11)2+82)2解得:m =495第二种:∠DFE =90°△DF 2+EF 2=DE 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(√(2m +6)2+(8+8)2)2 解得:m =910.△点P 的坐标为(910,0)或(5910,0)或(495,0). 18.(1)解:∵D 在直线y =52x 上 ∴设D(t,52t)∵y 1=m x 经过点B (5,2). ∴m =10.∵D(t,52t)在反比例函数的图象上∴52t 2=10 ∴t =2(负值已舍去).∴由两点间的距离公式可知:OD =√22+52=√29.(2)解:①∵函数y 2=n x 的图象经过点E ∴OA ⋅AE =OC ⋅CF =n .∵OC =5 OA =2∴AE =52CF .∴可设:AE =52t∴EF =AE +CF =72t EB =5−52t在Rt △EBF 由勾股定理得:EF 2=BF 2+BE 2 ∴494t 2=(5−52t)2+(2−t)2. 解得t =7√29−2910∴n =5t =7√29−292. ②∵∠OEF =90°∴∠AEO +∠BEF =90°∵BA ⊥y 轴 BC ⊥x 轴∴∠ABC=90°∴∠BEF+∠BFE=90°∴∠AEE=∠BFE∴△AOE∽△BEF∴OA:AE=BE:BF∵CF=n5,AE=n2,BE=5−n2,BF=2−n5∴2:n2=(5−n2):(2−n5)解得:n=85或n=10(舍)∵D′(a,b)∴ab=8 5由(1)得OD=√29∴OD′=√29∴a2+b2=29∴(a+b)2=29+2×85=1615故(a+b)2的值为1615.19.解:(1)EG=CG且EG△CG.证明如下:如图① 连接BD.△正方形ABCD和等腰Rt△BEF△△EBF=△DBC=45°.△B E D三点共线.△△DEF=90° G为DF的中点△DCB=90°△EG=DG=GF=CG.△△EGF=2△EDG△CGF=2△CDG.△△EGF+△CGF=2△EDC=90°即△EGC=90°△EG△CG.(2)仍然成立证明如下:如图② 延长EG交CD于点H.。

中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)

中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)

中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线()20y ax bx c a =++≠过点()0,4C -,顶点为253,4M ⎛⎫- ⎪⎝⎭,与x 轴交于A 、B 两点. 以AB 为直径作圆,记作D .(1)求抛物线表达式及点D 的坐标;(2)试判定直线CM 与D 的位置关系,并说明理由;(3)抛物线对称轴上是否存在点P ,连接CP ,将线段CP 绕点P 旋转90︒,点C 的对应点为点C ',是否存在点C '恰好落在抛物线上?若能,请直接写出点P 的坐标;若不能,请说明理由.2.如图,抛物线2y x bx c =++与x 轴交于()1,0A ,B 两点,与y 轴交于点()0,3C .(1)求该抛物线的解析式;(2)如图(1),点P 是线段BC 上的一动点,过点P 作PQ y ∥轴交抛物线于点Q ,连接CQ ,若CQ 平分OCB ∠,求点P 的坐标;(3)如图(2),过A ,B ,C 三点作I ,直线()3y t t =>交I 于点M ,N ,交抛物线于点E ,F . 若EM FN MN +=,求t 的值3.如图,在平面直角坐标系中,M 交x 轴于点()()1,04,0A B -、,交y 轴负半轴于点C AB ,为M 的直径.(1)求图象经过点A 、B 、C 的二次函数的解析式;(2)设点D 为(1)中二次函数图象的顶点,求直线CD 的函数解析式; (3)判断直线CD 与M 的位置关系,并说明理由.4.如图1,平面直角坐标系xOy 中,抛物线()()1222y x x m =+-与x 轴交于()2,0A -、B (点A 在点B 左侧),与y 轴交于点C .(1)连接BC ,则OCB ∠=______︒;(2)如图2,若P 经过A 、B 、C 三点,连接PA 、PC ,若OBC △与PAC △的周长之比为3:5,求该抛物线的函数表达式;(3)如图3,在(2)的条件下,连接OP ,抛物线对称轴上是否存在一点Q ,使得以O 、P 、Q 为顶点的三角形与OAP △相似?若存在,求出点Q 的坐标;若不存在,说明理由.5.已知二次函数22y x ax c =+-的图象与y 轴交于点A ,与x 轴交于点B 、C .(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,求点D 的坐标;(3)如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与C 有怎样的位置关系,并给出证明.8.如图,已知抛物线()20y ax bx c a =++≠过点()0,4C -.顶点为253,4M ⎛⎫- ⎪⎝⎭,与x 轴交于A 、B 两点.以AB为直径作圆,记作D .(1)求抛物线解析式及点D 的坐标;(2)猜测直线CM 与D 的位置关系,并证明你的猜想;(3)抛物线对称轴上是否存在点P ,若将线段CP 绕点P 逆时针旋转90︒,使点C 的对应点C '恰好落在抛物线上?若能,求点P 的坐标;若不能,说明理由.为半径作圆,请判断P是不是二次函数轴于点C,则该二次函数的坐标圆的圆心为求POA周长最小值..如图,抛物线作C的切线切点为点11.如图,在平面直角坐标系中,已知抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于C 点,且4OB OC ==.(1)求抛物线的解析式;(2)在抛物线上是否存在点M ,使ABC BCM ∠=∠,如果存在,求M 点的坐标,如果不存在,说明理由; (3)若D 是抛物线第二象限上一动点,过点D 作DF x ⊥轴于点F ,过点A 、B 、D 的圆与DF 交于E 点,求ABE 的面积.12.如图,二次函数()20y x bx c a =-++≠的图像经过点()1,0A -和()3,0B ,交y 轴于点C ,点E 为该二次函数图象上第一象限内一动点.(1)b =__________,c =__________;PBEPACSS-的值最大时,求点交直线BC 于点F ,为直径的M 与BC 当EFR 周(1)如图1,若1OH =,求该抛物线的解析式; (2)如图1,若点P 是线段HD 上一点,当113AH AD AP+=时,求点P 的坐标(用含b 的代数式表示); (3)如图2,在(1)的条件下,设抛物线交y 轴于点C ,过A ,B ,C 三点作Q ,经过点Q 的直线y hx q =+交Q 于点F ,I ,交抛物线于点E ,G .当EI GI FI =+时,求22h 的值.15.二次函数2225y x mx m m =-++-.(1)当1m =时,函数图象与x 轴交于点A 、B ,与y 轴交于点C . ①写出函数的一个性质;①如图1,点P 是第四象限内函数图象上一动点,求出点P 坐标,使得BCP 的面积最大;①如图2,点Q 为第一象限内函数图象上一动点,过点Q 作QF x ⊥.轴,垂足为F ,ABQ 的外接圆与QF 交于点D ,求DF 的长度;(2)点()11,M x y 、()22,N x y 为函数图象上任意两点,且12x x <.若对于123x x +>时,都有12y y <,求m 的取值范围.参考答案是D 的切线152738t +=(3)直线CD 与M 相切()24-, 0a =;BN 32S ⎧-⎪⎪=⎨与D 相切(3))3-或45⎛- ⎝4)-(3)ABE S △的坐标315,⎛⎫与C 相切第 11 页 共 11 页 15.【答案】(1)①函数图象的顶点坐标为()1,4-;①278;①1DF =(2)32m <。

中考数学(圆与相似提高练习题)压轴题训练含详细答案

中考数学(圆与相似提高练习题)压轴题训练含详细答案

中考数学(圆与相似提高练习题)压轴题训练含详细答案一、相似1.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形.以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CF•EG.【答案】(1)证明:连接BD,∵四边形BCDE是正方形,∴∠DBA=45°,∠DCB=90°,即DC⊥AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠DBA=45°,∴∠ADB=90°,即BD⊥AD,∵BD为半径,∴AD是⊙B的切线(2)证明:∵BD=BG,∴∠BDG=∠G,∵CD∥BE,∴∠CDG=∠G,∴∠G=∠CDG=∠BDG= ∠BCD=22.5°,∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,∴∠ADQ=∠AQD,∴AD=AQ(3)证明:连接DF,在△BDF中,BD=BF,∴∠BFD=∠BDF,又∵∠DBF=45°,∴∠BFD=∠BDF=67.5°,∵∠GDB=22.5°,在Rt△DEF与Rt△GCD中,∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,∴Rt△DCF∽Rt△GED,∴ ,又∵CD=DE=BC,∴BC2=CF•EG.【解析】【分析】(1)连接BD,要证AD是圆B的切线,根据切线的判定可知,只须证明∠ADB=即可。

由正方形的性质易得BC=CD,∠DCB=∠DCA=,∠DBC=∠CDB=,根据点C为AB的中点可得BC=CD=AC,所以可得∠ADC=,则∠∠ADB=,问题得证;(2)要证AQ=AD,需证∠AQD=∠ADQ。

由题意易得∠AQD=-∠G,∠ADQ=-∠BDG,根据等边对等角可得∠G=∠BDG,由等角的余角相等可得∠AQD=∠ADQ,所以AQ=AD;(3)要证乘积式成立,需证这些线段所在的两个三角形相似,而由正方形的性质可得CD=DE=BC,所以可知BC、CF、EG分别在三角形DCF和三角形GED中,连接DF,用有两对角对应相等的两个三角形相似即可得证。

中考数学综合压轴题100题(附答案)

中考数学综合压轴题100题(附答案)

中考数学综合压轴题100题(附答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.3.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.4.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.5.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.6.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.7.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.8.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.9.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.10.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.11.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.13.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.14.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.15.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.16.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.17.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.18.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.19.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.20.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.22.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.23.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.。

中考数学总复习《二次函数综合压轴题》专项提升练习(附答案)

中考数学总复习《二次函数综合压轴题》专项提升练习(附答案)

中考数学总复习《二次函数综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,如图,抛物线y=ax2+bx−8与x轴交于A、B两点,与y轴交于点C,OA=6,OB=43点P为x轴下方的抛物线上一点.(1)求抛物线的函数表达式;(2)连接AP、CP,求四边形AOCP面积的最大值;(3)若点P到AB和AC两边的距离相等,求点P的坐标.2.在平面直角坐标系中,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C.过点D(−52,34),且顶点P的坐标为(−1,3).(1)求二次函数的解析式;(2)如图1,若点M是二次函数图象上的点,且在直线CD的上方.连接MC,MD求△MCD面积的最大值;(3)如图2,设点Q是抛物线对称轴上的一点,连接QC,将线段QC绕点Q逆时针旋转90°,点C的对应点为F,连接PF交抛物线于点E,请直接写出点E的坐标.3.在平面直角坐标系中,已知点A(3,3)、B(6,0),AC⊥x轴,垂足为点C,直线y=12x与抛物线y=−14x2+2x相交于点O、D过x轴正半轴上的任意一点P作y轴的平行线PE交射线OA于点E.(1)求点D的坐标;(2)设点P的横坐标为a a≠3求以点A、B、C、E为顶点的四边形的面积S与a的函数关系式;(3)设直线PE交射线OD于点F交抛物线于点Q以FQ为一边在FQ的右边作矩形FQMN若FN=32且矩形FQMN与△AOB重叠部分为轴对称图形求出a的取值范围.4.在平面直角坐标系中设直线l的解析式为:y=kx+m(k、m为常数且.k≠0) 当直线l与一条曲线有且只有一个公共点时我们称直线l与这条曲线“相切” 这个公共点叫做“切点”.(1)求直线l:y=−x+6与双曲线y=9x的切点坐标;(2)已知一次函数y1=2x二次函数y2=x2+1是否存在二次函数y3=ax2+bx+c其图象经过点(−3,2)使得直线y1=2x与y2=x2+1,y3=ax2+bx+c都相切于同一点? 若存在求出y3的解析式;若不存在请说明理由;(3)已知直线l1:y=k1x+m1(k1≠0)直线l2:y2=k2x+m2(k2≠0)是抛物线y=−x2+2x+2的两条切线当l1与l2的交点P的纵坐标为4时试判断k1⋅k2是否为定值并说明理由.5.如图在平面直角坐标系中点O为坐标原点抛物线y=512x2−136x−2与x轴的交点分别为点A B与y轴的交点为点C.(1)求直线BC解析式;(2)点P为第四象限的抛物线上一点连接PB、PC当PB=PC时求点P的坐标;(3)在(2)的条件下连接OP点M在y轴的负半轴上连接MP∠OMP=∠CBP N为OM的中点点Q 在OP上连接MQ、NQ,MQ交抛物线于点R当MQ=2NQ时求R点的横坐标.6.如图在平面直角坐标系中抛物线y=ax2+bx+c(a≠0)若抛物线与x轴交于B(4,0)C(−2,0)两点与y轴交于点A(0,−2).(1)求该抛物线的函数表达式;(2)如图1 若点E是直线CA下方的抛物线上一点过点E作EF∥AB交x轴于点F且EF=√5求点E的横坐标;(3)如图2 点M在点B的正下方连接CM交抛物线于点N直线BN交对称轴于点P作PQ∥CM交射线BM于点Q求BQ的大小.7.如图在平面直角坐标系xOy中已知直线y=−x−3与x轴交于点A与y轴交于点C过A C两点的抛物线y=ax2+bx+c与x轴交于另一点B(1,0)抛物线对称轴为直线l.(1)求抛物线的解析式;(2)点M为直线AC下方抛物线上一点当△MAC的面积最大时求点M的坐标;(3)点P是抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使得以P D E为顶点的三角形与△BOC全等请求出点P点E的坐标;8.如图抛物线y=−x2+bx+c与x轴相交于A B两点与y轴交于点C抛物线的对称轴交x轴于点D.已知A(−1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P使得|PB−PC|的值最大求此点P的坐标;(3)点M为该抛物线的顶点直线MD⊥x轴于点D在直线MD上是否存在点N使点N到直线MC的距离等于点N到点A的距离?若存在求出点N的坐标;若不存在请说明理由;9.在平面直角坐标系中点O为坐标原点抛物线y=ax2+x+6交x轴负半轴于A交正半轴于B交y 轴于C OB=OC.(1)求抛物线的解析式;(2)如图1 点P是第三象限抛物线上一点连接BP交y轴于点D设点P横坐标为t线段CD长为d求d与t的函数关系;(3)如图2 在(2)的条件下过点C作BP的垂线交x轴于点F垂足为点G E为CF上一点连接BE 若BE=BD∠BEG=2∠PBA求点P坐标.10.如图1 在平面直角坐标系中O为坐标原点AD为等腰直角△ABC底边BC上的高抛物线y=a(x−2)2+4的顶点为点A且经过B C两点B C两点在x轴上.(1)求该抛物线的解析式;(2)如图2 点E为抛物线上位于直线AC上方的一点过点E作EN⊥x轴交直线AC于点N求线段EN的长度最大值及此时点E的坐标;(3)如图2 点M(5,b)是抛物线上的一点点P为对称轴上一动点在(2)的条件下当线段EN的长度最大时求PE+PM的最小值.11.抛物线y=ax2−2ax−3a(a>0)与x轴交于A B两点(点A在点B的左边)与y轴交于点C.(1)求抛物线的对称轴;(2)求证:不论a取何值函数图象必过两个定点;(3)如图若OB=OC点P是直线BC(不与B C重合)上一动点过点P作x轴的垂线交抛物线于M点连接CM将△PCM沿CM对折如果点P的对应点N恰好落在y轴上求此时点P的坐标.12.已知抛物线y=a(x+6)(x−2)经过点(0,2)交x轴于点A和点B(点A在点B的左侧)抛物线的顶点为D对称轴DE交x轴于点E连接EC.(1)直接写出a的值点A的坐标;(2)若点M是抛物线对称轴DE上的点当△MCE是等腰三角形时求点M的坐标;(3)点P是抛物线上的动点连接PC、PE将△PCE沿CE所在的直线对折点P落在坐标平面内的点P′处.直接写出点P′恰好落在直线AD上时点P的横坐标.13.综合与探究如图1 抛物线y=ax2+bx+4与x轴交于A(−4,0)B(3,0)两点与y轴交于点C连接AC BC现将△ABC沿x轴向右平移至△A′B′C′线段A′C′与线段BC交于点E与抛物线交于点F.(1)求出抛物线和直线BC的函数表达式;(2)当线段FE的长度最大时求此时点F的坐标;(3)如图2 连接OC′将△OA′C′沿着A′C′翻折得到△O′A′C′是否存在某一时刻使得点O′恰好在抛物线上若存在请直接写出此时平移的距离;若不存在请说明理由.14.如图1 已知二次函数y=ax2+bx+c(a b c为常数且a≠0)的图像与x轴交于A B两点(A 点在B点左侧)与y轴交于点C(0,3)且其函数表达式可以变形为y=a(x+1)(x−3)的形式.已知点P为该抛物线在第一象限内的一动点设其横坐标为m.(1)求出点A点B的坐标和该二次函数的表达式;(2)连接BC过点P作PQ⊥x轴于点Q交BC于点N直线AP交y轴于点M连接MN.①求出直线AP的函数表达式(用含有m的代数式表示);②设四边形MNQO的面积为S求S关于m的函数关系式并求S的最大值;(3)如图2 若直线l为该二次函数图像的对称轴交x轴于点H直线AP BP分别交直线l于点E F.在点P运动的过程中HF+HE是否为定值?若是请求出该定值;若不是请说明理由.15.在平面直角坐标系中关于x的二次函数y=ax2+bx+c(a b c为常数且a<0)与x轴交于两个不同的点A(x1,0)B(x2,0)(x1<x2)与y轴交于点C抛物线的顶点为M.(1)如图1 已知a=−1b=2c=3.①求此二次函数图象的顶点M的坐标;②点E是x轴正半轴上的一个动点过点E作直线PE⊥x轴交抛物线于点P交直线BC于点F.当点E在线EF求此时点P的坐标.段OB上运动时(不与点O B重合)恰有线段PF=12(2)如图2 当c=0时点P是抛物线对称轴左侧图像上任意一点过点P作PE⊥x轴于点E连接MP交y轴于点Q连接EQ MB.则EQ MB有怎样的位置关系?说明理由.16.如图抛物线的顶点坐标为(2,−3)与y轴交于点C(0,1).(1)求抛物线的解析式;(2)求点A B的坐标及线段AB的长;(3)求△ABC的外接圆⊙D的半径;(4)若(3)中的⊙D交抛物线的对称轴于M N两点(点M在点N的上方)在对称轴右边的抛物线上有一动点P连接PM PN PC线段PC交弦MN于点G.若PC把图形PMCN(指圆弧MCN和线段PM PN组成的图形)分成两部分当这两部分面积之差等于4时求出点P的坐标.17.如图在平面直角坐标系中抛物线y=12x2−32x−2与x轴分别交于点A点B与y轴交于点C.(1)如图1 连接AC直接写出sin∠ACO的值;(2)如图2 连接BC.点G(1,a)在抛物线上连接CG、BG若异于点G的点H也在抛物线上且S△BCH= S△BCG求点H的坐标;(3)如图3 若直线y=mx+n与抛物线交于点P Q连接AP交y轴正半轴于点M连接AQ交y轴负半轴于点N若OM⋅ON=32求4m+n的值.18.如图1 已知二次函数图象与y轴交点为C(0,3)其顶点为D(1,2).(1)求二次函数的表达式;(2)直线CD与x轴交于M现将线段CM上下移动若线段CM与二次函数的图象有交点求CM向上和向下平移的最大距离;(3)若将(1)中二次函数图象平移使其顶点与原点重合然后将其图象绕O点顺时针旋转90°得到抛物线G如图2所示直线y=−x+2与G交于A B两点P为G上位于直线AB左侧一点求ΔABP面积最大值及此时点P的坐标.19.如图在平面直角坐标系中抛物线y=ax2+bx+4(a≠0)经过点(−1,6)与x轴交于点A(−4,0)B 两点与y轴交于点C.(1)求抛物线的解析式;(2)点P是直线AC上方抛物线上一动点过点P作PD∥y轴交AC于点D求PD的最大值及此时点P的坐标;个单位长度得到新抛物线y′新抛物线y′的对称轴交x轴于点M点N是直(3)将该抛物线沿x轴向右平移52线AC上一点在平面内确定一点K使得以C,M,N,K为顶点的四边形是以CN为边的菱形写出所有符合条件的点K的坐标并写出求解点K坐标的其中一种情况的过程.20.如图抛物线y=x2+bx+c与x轴交于A(1,0)B两点与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)如图(1)点P是线段BC上的一动点过点P作PQ∥y轴交抛物线于点Q连接CQ若CQ平分∠OCB求点P的坐标;(3)如图(2)过A B C三点作⊙I直线y=t(t>3)交⊙I于点M N交抛物线于点E F.若EM+FN=MN求t的值参考答案:1.(1)y =x 2+143x −8 (2)51(3)P (56,−4112)【分析】(1)利用待定系数法求解即可;(2)如图所示 连接AC 过点P 作PD ⊥x 轴交AC 于D 先求出直线AC 的解析式 设P (t,t 2+143t −8) 则D (t,−43t −8) 则PD =−t 2−6t 求出S △APC 的最大值 再由S 四边形AOCP =S △ACP +S △AOC 可知当S △APC最大时 S 四边形AOCP 最大 由此即可得到答案;(3)如图所示 取点E 使其坐标为(4,0) 连接AC 、CE 取CE 中点F 连接AF 先证明AE =AC 进而得到AF 平分∠CAE 则直线AF 上的点到AC AB 的距离相等 由此即可知点P 即为直线AF 与抛物线的交点 据此求解即可.【详解】(1)解:∵OA =6∵A (−6,0)∵可设抛物线解析式为y =a (x +6)(x −43)又∵当x =0时 y =−8 即C (0,−8)∵6×(−43)a =−8 ∵a =1∵抛物线解析式为y =(x +6)(x −43)=x 2+143x −8;(2)解:如图所示 连接AC 过点P 作PD ⊥x 轴交AC 于D 设直线AC 的解析式为y =kx +b 1∵{−6k +b 1=0b 1=−8∵{k =−43b 1=−8∵直线AC 的解析式为y =−43x −8设P(t,t2+143t−8)则D(t,−43t−8)∵PD=−43t−8−(t2+143t−8)=−t2−6t∵S△APC=S△APD+S△CPD=12PD⋅(x P−x A)+12PD⋅(x C−x P)=12PD⋅(x C−x A)=3PD=−3(t+3)2+27∵−3<0∵当t=−3时S△APC最大最大为27∵S四边形AOCP=S△ACP+S△AOC∵S四边形AOCP=S△ACP+24∵当S△APC最大时S四边形AOCP最大最大为27+24=51;(3)解:如图所示取点E使其坐标为(4,0)连接AC、CE取CE中点F连接AF∵A(−6,0)C(0,−8)∠AOC=90°∵AE=10,AC=√OA2+OC2=10∵AC=AE∵F是CE的中点∵AF平分∠CAE∵直线AF上的点到AC AB的距离相等设直线AF的解析式为y=k1x+b2∵{−6k1+b2=0 2k1+b2=−4∵{k1=−12 b2=−3∵直线AF的解析式为y=−12x−3联立{y=−12x−3y=x2+14x3−8得6x2+31x−30=0解得{x=56y=−4112或{x=−6y=0(舍去)∵点P的坐标为(56,−4112).【点睛】本题主要考查了二次函数的综合一次函数与几何综合角平分线的性质等腰三角形的性质与判定勾股定理等等正确作出辅助线是解题的关键.2.(1)y=−x2−2x+2(2)12564(3)(−2,2)或(−1,3)【分析】(1)用待定系数法即可求解;(2)由△MCD面积=S△MHD+S△MHC即可求解;(3)①当点Q在点C的下方时证明△QNF≌△CQH(AAS)得到CG=2−t=QN QH=1=FN则点F(t−3,t+1)求出直线PF的表达式进而求解;②当点Q在点C的上方时同理可得:点F′的坐标为(t−3,t−1)进而求解.【详解】(1)解:设抛物线的表达式为:y=a(x−ℎ)2+k则y=a(x+1)2+3将点C的坐标代入上式并得:34=a(−52+1)2+3解得:a=−1故抛物线的表达式为:y =−(x +1)2+3=−x 2−2x +2 即y =−x 2−2x +2;(2)解:由抛物线的表达式知 点C (0,2)如图1 过点M 作MH∥y 轴交CD 于点H设直线CD 的表达式为:y =sx +t则{34=−52s +t t =2解得{s =12t =2 故直线CD 的表达式为:y =12x +2 设点M(m,−m 2−2m +2) 点H(m,12m +2) 则△MCD 面积=S △MHD +S △MHC =12MH ×(x C −x D )=12×[(−m 2−2m +2)−(12m +2)]×52 =−54(m 2+52m) ∵ −54<0 故函数由最大值当m =−54时 △MCD 面积的最大值为12564;(3)设点Q(−1,t) 如图2①当点Q 在点C 的下方时过点Q 作x 轴的平行线交y 轴于点H 交过点F 与y 轴的平行线于点N∵∠FQN +∠QFN =90°∴∠QFF =∠CQH∵∠N =∠CHQ =90°∴△QNF ≌△CQH (AAS )∴CH =2−t =QN∴点F(t −3,t +1)设直线FP 的表达式为:y =px +q则{3=−p +q t +1=p(t −3)+q解得{p =1q =4 故直线PF 的表达式为:y =x +4②联立直线PE 与抛物线的:{y =x +4y =−x 2−2x +2解得:{x =−2y =2(不合题意的值已舍去) 即点E(−2,2);②当点Q 在点C 的上方时同理可得:点F′的坐标为(t −3,t +1)由点P F ′的坐标得:直线PF ′的表达式为y =x +4 同情况①故点E(−2,2);当点F 与点E 重合时 也符合题意综上 点E 的坐标为(−2,2)或(−1,3).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质和旋转的性质;会利用三角形全等的知识解决线段相等的问题;会解一元二次方程;理解坐标与图形性质.3.(1)D(6,3)(2)S ={9−32a (0<a <3)3a −92(a >3)(3)a =3−√3或a =94或3≤a <4【分析】(1)联立两个函数解析式解方程组即可;(2)先求解直线OA 的解析式为y =x 可得点E(a,a) 再分两种情况讨论即可;(3)分情况讨论:①如图 当a <3 且FQ =FN 时 矩形FQMN 与△AOB 重叠部分为轴对称图形 ②如图 当AC 为矩形FQMN 的对称轴时 矩形FQMN 与△AOB 重叠部分为轴对称图形 ③如图 当PQ 与AC 重合时 矩形FQMN 与△AOB 重叠部分为等腰直角三角形 是轴对称图形 ④如图 当点F 为直线OD 与AB 的交点时 可得当3≤a <4时 矩形FQMN 与△AOB 重叠部分为等腰直角三角形 是轴对称图形 从而可得答案.【详解】(1)解:联立y =12x 和y =−14x 2+2x 得{x =0,y =0 或{x =6y =3∵点D(6,3).(2)设直线OA 的解析式为y =kx∵点A(3,3)∴3k =3 解得k =1∴直线OA 的解析式为y =x .∵点P 的横坐标为a,PE ∥y 轴 且交射线OA 于点E∴点E(a,a).当0<a <3时 如图S =S △OAB −S △OCE =12×6×3−12×3a =9−32a . 当a >3时 如图S =S △OBE −S △OAC =12×6a −12×3×3=3a −92. 综上 S ={9−32a (0<a <3)3a −92(a >3); (3)①如图 当a <3 且FQ =FN 时 矩形FQMN 与△AOB 重叠部分为轴对称图形∵FQ=FN∴−14a2+2a−12a=32解得a=3±√3其中a=3+√3不满足a<3∴a=3−√3.②如图当AC为矩形FQMN的对称轴时矩形FQMN与△AOB重叠部分为轴对称图形此时∴32=2(3−a)解得a=94.③如图当PQ与AC重合时矩形FQMN与△AOB重叠部分为等腰直角三角形是轴对称图形此时a=3.④如图当点F为直线OD与AB的交点时∵点A(3,3),B(6,0)∵AB所在的直线方程为y=−x+6联立y=−x+6和y=12x解得x=4.∴当3≤a<4时矩形FQMN与△AOB重叠部分为等腰直角三角形是轴对称图形综上 a 的取值范围是a =3−√3或a =94或3≤a <4. 【点睛】本题考查的是利用二次函数的图象与性质 列二次函数关系式 矩形的性质 轴对称图形的性质 一元二次方程的解法 清晰的分类讨论 熟练的运用数形结合的方法解题是关键.4.(1)切点坐标为(3,3)(2)y 3=12x 2+x +12(3)k 1⋅k 2是定值【分析】(1)联立直线和双曲线解析式得到关于x 的一元二次方程 由相切的定义得出x 的值 解之可得;(2)联立{y =2x y =x 2+1可得切点为(1,2) 从而得出y 3=ax 2+bx +c 经过点(−3,2) (1,2) 利用待定系数法得出y 3=ax 2+2ax +2−3a 联立{y =ax 2+2ax +2−3a y =2x 得:ax 2+(2a −2)x +2−3a =0 利用Δ=0得出a =12 b =1 c =12 即可得解;(3)由l 1与l 2的交点P 的纵坐标为4 可令P(t ,4) 则直线l 1:y =k 1x −k 1t +4 直线 l 2:y 2=k 2x −k 2t +4 联立{y =k 1x −k 1t +4y =−x 2+2x +2得:x 2+(k 1−2)x −k 1t +2=0 由直线l 1:y =k 1x +m 1(k 1≠0)是抛物线y =−x 2+2x +2的切线 可得Δ=k 12+(4t −4)k 1−4=0 同理可得:k 22+(4t −4)k 2−4=0 从而得出k 1,k 2为x 2+(4t −4)x −4=0的两根 最后由一元二次方程根与系数的关系即可得出答案.【详解】(1)解:联立{y =−x +6y =9x得:x 2−6x +9=0 解得:x =3∴切点坐标为(3,3);(2)解:∵直线y 1=2x 与二次函数y 2=x 2+1相切∴联立{y =2x y =x 2+1得:x 2−2x +1=0 解得:x =1∴切点为(1,2)∵ y 1=2x 与y 2=x 2+1,y 3=ax 2+bx +c 都相切于同一点∴ y 3=ax 2+bx +c 经过点(−3,2)∴{a +b +c =29a −3b +c =2解得:{b =2a c =2−3a∴y 3=ax 2+2ax +2−3a联立{y =ax 2+2ax +2−3a y =2x得:ax 2+(2a −2)x +2−3a =0 ∴Δ=(2a −2)2−4×a ×(2−3a )=4a 2−8a +4−8a +12a 2=16a 2−16a +4=(4a −2)2=0 解得:a =12 ∴b =2a =1∴ y 3的解析式为:y 3=12x 2+x +12; (3)解:k 1⋅k 2是定值理由如下:∵ l 1与l 2的交点P 的纵坐标为4∴令P(t ,4)∴直线l 1:y =k 1x +m 1=k 1t +m 1=4 直线 l 2:y 2=k 2x +m 2=k 2t +m 2=4∴m 1=4−k 1t∴直线l 1:y =k 1x −k 1t +4 直线 l 2:y 2=k 2x −k 2t +4联立{y =k 1x −k 1t +4y =−x 2+2x +2得:x 2+(k 1−2)x −k 1t +2=0 ∵直线l 1:y =k 1x +m 1(k 1≠0)是抛物线y =−x 2+2x +2的切线∴Δ=(k 1−2)2−4×1×(2−k 1t )=k 12−4k 1+4−8+4k 1t =k 12+(4t −4)k 1−4=0同理可得:k 22+(4t −4)k 2−4=0∴ k 1,k 2为x 2+(4t −4)x −4=0的两根∴k 1⋅k 2=−4.【点睛】本题是二次函数综合题 考查了新定义 二次函数的性质 一元二次方程的根与系数的关系等知识 解题的关键是理解题意 学会构建方程组解决问题 属于中考压轴题.5.(1)y =13x −2(2)P (4,−4)(3)0或5−√2655【分析】(1)令抛物线y =0 x =0 求出点B C 的坐标 设直线BC 的解析式为y =kx +b (k ≠0) 代入点B C 的坐标 即可求解;(2)由题意得△PBC 是等腰三角形 即点P 在过点B C 的BC 中点且垂直于直线BC 的直线上 求出点B C的中点坐标 设点P (a,512a 2−136a −2) 利用勾股定理即可求出a 的值 求出符合点点P 特征的点即可;(3)过点P 作PF ⊥x 轴 垂足为点F 根据(2)的结论结合已知分别证明△PFO,△PBC,△OPM 是等腰直角三角形 利用等腰直角三角形的性质求出点M 的坐标 进而得到N 点的坐标 求出直线OP 的解析式 设点Q (b,−b ) 利用两点间距离公式结合MQ =2NQ 求出点Q 的坐标 再求出直线MQ 的解析式 联立抛物线即可求解.【详解】(1)解:在抛物线y =512x 2−136x −2中 令x =0 则y=−2∴C (0,−2)令y =0 则512x 2−136x −2=0 即5x 2−26x −24=0解得:x 1=6,x 2=−45 ∵点B 在x 轴的正半轴∴B (6,0)设直线BC 的解析式为y =kx +b (k ≠0) 代入点B C 的坐标 得{−2=b 0=6k +b解得:{b =−2k =13∴直线BC 的解析式为y =13x −2;(2)解:设点P (a,512a 2−136a −2) ∵ PB =PC ∴PB 2=PC 2 即(a −6)2+(512a 2−136a −2)2=a 2+(512a 2−136a −2+2)2整理得:a 2+2a −24=0解得:a =4或a =−6(舍去 不符合题意)当a =4时∴P (4,−4);(3)解:如图 过点P 作PF ⊥x 轴 垂足为点F由(2)知点P(4,−4)∴PF=OF=4∴△PFO是等腰直角三角形∴∠POF=∠POM=45°∵PC=√(4−0)2+[(−4)−(−2)]2=2√5,BC=√(0−6)2+(−2−0)2=2√10又PC2+PB2=BC2∴△PBC是等腰直角三角形∴∠BPC=90°,∠CBP=∠PCB=45°∵∠OMP=∠CBP∴∠OMP=45°∴△OPM是等腰直角三角形∴OP=MP∴OP=√42+(−4)2=4√2=MP∴OM=√OP2+MP2=8∵点M在y轴的负半轴上∴点M(0,−8)∵N为OM的中点∴N(0,−4)设直线OP的解析式为y=k′x(k′≠0)将P(4,−4)代入得−4=4k′解得k′=−1∴直线OP的解析式为y=−x设Q(b,−b)∵MQ=2NQ∴√b2+(−b+8)2=2√b2+(−b+4)2∴b=0或b=83当b=0时此时点Q与点O重合∴MQ与抛物线交点在y轴上∴点R的横坐标为0当b=83时设直线MQ的解析式为y=sx+t将点Q(83,−83)M(0,−8)代入得{−8=t−83=83s+t解得{s=2t=−8∵直线MQ的解析式为y=2x−8联立直线MQ与抛物线y=512x2−136x−2得{y=2x−8y=512x2−136x−2解得{x=5+√2655y=2√2655+2(舍去不符合题意)或{x=5−√2655y=2−2√2655∵此时MQ交抛物线于点R的横坐标为5−√2655综上点R的横坐标为0或5−√2655.【点睛】本题考查二次函数的图象及性质一次函数解析式熟练掌握二次函数的图象及性质等腰直角三角形的判定及性质直角三角形的性质用待定系数法求函数的解析式是解题的关键.6.(1)y=14x2−12x−2(2)点E的横坐标为1−√5(3)BQ=92【分析】(1)将B(4,0)C(−2,0)A(0,−2)代入抛物线解析式得到{16a+4b+c=04a−2b+c=0c=−2求出a、b、c的值即可得出答案;(2)先利用待定系数法求出直线AB 的解析式为:y =12x −2 设点E 的坐标为(e ,14e 2−12e −2)(−2<e <0) 从而求出直线EF 的解析式为:y =12x +14e 2−e −2 进而得出F (2e +4−12e 2,0) 表示出EF =√[e −(2e +4−12e 2)]2+(14e 2−12e −2)2=√5(14e 2−12e −2)2=√5 解方程即可得出答案;(3)设点M 的坐标为(4,m)(m <0) 待定系数法求出直线CM 的解析式为:y =m6x +m3 联立{y =m6x +m 3y =14x 2−12x −2得出N (12+2m 3,m2+9m9) 再利用待定系数法求出直线BN 的解析式为:y =m+96x −2m+183 从而得出P (1,−m−92) 利用待定系数法求出直线PQ 的解析式为y =m 6x −4m+276从而得出Q (4,−92) 即可得解. 【详解】(1)解:∵ 抛物线y =ax 2+bx +c (a ≠0)与x 轴交于B(4,0) C(−2,0)两点 与y 轴交于点A(0,−2)∴{16a +4b +c =04a −2b +c =0c =−2解得:{a =14b =−12c =−2∴抛物线的解析式为y =14x 2−12x −2; (2)解:设直线AB 的解析式为:y =k 1x +b 1 将A(0,−2) B(4,0)代入直线得:{0=4k 1+b 1b 1=−2解得:{k 1=12b 1=−2∴直线AB 的解析式为:y =12x −2 ∵点E 是直线CA 下方的抛物线上一点∴设点E 的坐标为(e ,14e 2−12e −2)(−2<e <0)∵EF ∥AB∴设直线EF 的解析式为:y =12x +b 2∴14e 2−12e −2=12e +b 2∴b 2=14e 2−e −2∴直线EF 的解析式为:y =12x +14e 2−e −2令y =0 则12x +14e 2−e −2=0 解得:x =2e +4−12e 2∴F (2e +4−12e 2,0)∴EF =√[e −(2e +4−12e 2)]2+(14e 2−12e −2)2=√(e −2e −4+12e 2)2+(14e 2−12e −2)2=√(12e 2−e −4)2+(14e 2−12e −2)2=√[2(14e 2−12e −2)]2+(14e 2−12e −2)2=√4(14e 2−12e −2)2+(14e 2−12e −2)2=√5(14e 2−12e −2)2∵EF =√5∴√5(14e 2−12e −2)2=√5∴(14e 2−12e −2)2=1 ∴14e 2−12e −2=1或14e 2−12e −2=−1 ∵点E 是直线CA 下方的抛物线上一点∴14e 2−12e −2<0 ∴14e 2−12e −2=−1 ∴e 2−2e −4=0解得:e =1+√5或e =1−√5∵−2<e <0 ∴e =1−√5∴点E 的横坐标为1−√5; (3)解:∵点M 在点B 的正下方 ∴设点M 的坐标为(4,m)(m <0) 设直线CM 的解析式为y =k 2x +b 2将C(−2,0) M(4,m)代入解析式得:{0=−2k 2+b 2m =4k 2+b 2解得:{k 2=m6b 2=m 3∴直线CM 的解析式为:y =m 6x +m3联立{y =m 6x +m 3y =14x 2−12x −2整理得:3x 2−(6+2m )x −(24+4m )=0∴(x +2)(3x −12−2m )=0解得:x 1=−2 ∴点N 的横坐标为12+2m 3纵坐标为y =12+2m36⋅m +m 3=12+2m 18⋅m +m 3=18m+2m 218=m 2+9m9∴N (12+2m 3,m 2+9m 9)设直线BN 的解析式为:y =k 3x +b 3 将B(4,0) N (12+2m 3,m 2+9m9)代入解析式得:{0=4k 3+b 3m 2+9m9=12+2m 3k 3+b 3解得:{k 3=m+96b 3=−2m+183∴直线BN 的解析式为:y =m+96x −2m+183∵抛物线的解析式为y =14x 2−12x −2 ∴对称轴为直线x =−−122×14=1∴点P 的横坐标为1 纵坐标为y =m+96×1−2m+183=−3m−276=−m−92∴P (1,−m −92) ∵PQ ∥CM∴设直线PQ 的解析式为y =m 6x +b 4∴−m −92=m6×1+b 4 解得:b 4=−4m−276∴直线PQ 的解析式为y =m6x −4m+276∵作PQ ∥CM 交射线BM 于点Q ∴点Q 的横坐标为4 纵坐标为y =m 6×4−4m+276=−92∴Q (4,−92)∴BQ =0−(−92)=92.【点睛】本题考查了二次函数综合题 待定系数法求二次函数解析式 一次函数解析式 二次函数综合—线段问题 勾股定理求两点之间的距离等知识点 熟练掌握以上知识点并灵活运用 采用数形结合的思想是解此题的关键. 7.(1)y =x 2+2x −3 (2)M (−32,−154)(3)P 点坐标为(−4,5)或(2,5)或(−2,−3)或(0,−3) E(−1,6)或(−1,4)或(−1,−6)或(−1,0)【分析】(1)先求出A,C 的坐标 进而利用待定系数法求出二次函数解析式即可;(2)过点M 作MF 垂直于x 轴交AC 于点F 设M (x,x 2+2x −3) F(x,−x −3) 则MF =(−x −3)−(x 2+2x −3)=−x 2−3x 由S △AMC =12MF ×|x C −x A |即可求解;(3)抛物线对称轴为直线x=−1.∠PDE =∠BOC OB =1 OC =3.设P (x,x 2+2x −3) 则D (−1,x 2+2x −3) 分两种情况当PD =OC DE =OB 时 △PDE ≌△COB 此时|−1−x |=3 当PD =OB DE =OC 时 △EDP ≌△COB 此时|−1−x |=1 求解即可. 【详解】(1)解:把x =0代入y =−x −3得y=−3; 把y =0代入y =−x −3得x =−3. ∴A(−3,0) C(0,−3).∵抛物线y =ax 2+bx +c 经过A,C,B 三点∴{9a −3b +c =0a +b +c =0c =−3解得{a =1b =2c =−3.∴抛物线的解析式为y =x 2+2x −3;(2)过点M 作MF 垂直于x 轴交AC 于点F 设M (x,x 2+2x −3) 则F(x,−x −3) 则MF =(−x −3)−(x 2+2x −3)=−x 2−3xS △AMC =12MF ×|x C −x A |= 12(−x 2−3x )×3=−32(x +32)2+278∴当x =−32时 S △AMC 最大 此时y =x 2+2x −3=−154. ∴当M 坐标为(−32,−154)时 S △AMC 取得最大值.(3)∵y =x 2+2x −3=(x +1)2−4 ∵抛物线对称轴为直线x=−1. ∵过点P 作l 的垂线 垂足为D ∵∠PDE =∠BOC =90° ∵C(0,−3),A (−3,0) ∵B (1,0)∵OB =1 OC =3.设P (x,x 2+2x −3) 则D (−1,x 2+2x −3) 当PD =OC DE =OB 时 此时|−1−x |=3 解得x =−4或x =2. ∵P 点坐标为(−4,5)或(2,5)∵DE =OB =1∴E(−1,6)或(−1,4). 当PD =OB DE =OC 时 此时|−1−x |=1 解得x =−2或x =0. ∵P 点坐标为(−2,−3)或(0,−3)∵DE =3∴E(−1,−6)或(−1,0).综上:P 点坐标为(−4,5)或(2,5)或(−2,−3)或(0,−3) E(−1,6)或(−1,4)或(−1,−6)或(−1,0).【点睛】本题考查了二次函数求解析式 二次函数的性质 三角形全等的性质 最值问题等 熟练掌握各知识点 能准确作出辅助线 并结合图形列出相应关系式是解题的关键. 8.(1)y =−x 2+2x +3 (2)P (1,6)(3)存在点N 满足要求 点N 坐标为(1,−4+2√6)或(1,−4−2√6)【分析】本题考查了待定系数法求二次函数表达式 二次函数的图像与性质及二次函数与一次函数综合 (1)用待定系数法求二次函数表达式;(2)根据抛物线特征得出当A,C,P 三点共线时 |PA −PC |最大 求出直线AC 的解析式为y =3x +3 即可求出结论;(3)设直线MC 与x 轴交于点E 过点N 作NQ ⊥MC 于Q 先求出直线MC 的解析式为y =x +3 证出MQ =NQ =√22MN 设点N (1,n ) 根据NQ 2=AN 2列方程并解方程即可解决.【详解】(1)解:∵抛物线y =−x 2+bx +c 经过A (−1,0),C (0,3)两点∴{−1−b +c =0c =3解得:{b =2c =3∴该抛物线的解析式为y =−x 2+2x +3;(2)解:由抛物线的对称性得 点B 关于抛物线对称轴的对称点是点A∴PA =PB∴|PB −PC |=|PA −PC |∴当A,C,P 三点共线时 |PA −PC |最大如图 连接AC 并延长AC 交抛物线的对称轴于点P设直线AC 的解析式为y =kx +d 把A (−1,0),C (0,3)代入得:{−k +d =0d =3解得:{k =3d =3∴直线AC 的解析式为y =3x +3 ∵抛物线的对称轴为直线x =−2−2=1当x =1时 ∴点P (1,6);(3)存在N 满足条件 理由如下:∵抛物线y =−x 2+2x +3与x 轴交于A 、B 两点 ∴点A (−1,0)∵y =−x 2+2x +3=−(x −1)2+4∴顶点M 为(1,4) ∵点M 为(1,4) 点C (0,3) ∴直线MC 的解析式为:y =x +3如图 设直线MC 与x 轴交于点E 过点N 作NQ ⊥MC 于Q∴点E (−3,0)∴DE =4=MD ∴∠NMQ =45°∵NQ⊥MC∴∠NMQ=∠MNQ=45°∴MQ=NQ∴MQ=NQ=√22MN设点N(1,n)∵点N到直线MC的距离等于点N到点A的距离∴NQ=AN∴NQ2=AN2∴(√22MN)2=AN2即(√22|4−n|)2=4+n2∴n2+8n−8=0∴n=−4±2√6∴存在点N满足要求点N坐标为(1,−4+2√6)或(1,−4−2√6).9.(1)y=−13x2+x+6(2)d=−2t(3)P(−4,−103)【分析】(1)先令x=0求出点C坐标再根据已知可得点B的坐标运用待定系数法即可求出抛物线解析式;(2)由(1)可得点B的坐标设P(t,−13t2+t+6)运用待定系数法求得直线PB的解析式为y=−13(t+3)x+2(t+3)进而求出D(0,2t+6)即可求得答案;(3)找点F关于原点的对称点F′连接CF′过点F′作F′K⊥GE于K根据已知先证△COF≌△BOD得OF= OD再证∠F′CK=2∠PBA进而证得△CF′K≌△EBG得F′K=BG再证△F′FK≌△BFG可得F′F=BF OB=3OF进而求出点D的坐标运用待定系数法求出直线BD的解析式再求出直线BD与抛物线的交点P的坐标.【详解】(1)解:∵抛物线y=ax2+x+6交y轴于点C∴C(0,6)∴OC=6∵OB=OC∴B(6,0)∵ B (6,0)在抛物线y =ax 2+x +6上∴ 0=36a +6+6∴ a =−13∴ y =−13x 2+x +6.(2)∵点P 是第三象限抛物线上一点∴ P (t,−13t 2+t +6)设直线PB 的解析式为y =kx +b (k ≠0)∴ {6k +b =0kt +b =−13t 2+t +6∴ {k =−13(t +3)b =2(t +3)∴直线PB 的解析式为y =−13(t +3)x +2(t +3).令x =0 得y =2(t +3)=2t +6∴ D (0,2t +6)∴ CD =6−(2t +6)=−2t∵线段 CD 长为 d∴ d =−2t ;(3)解:找点F 关于原点的对称点F ′ 连接CF ′ 过点F ′作F ′K ⊥GE 于K∵ CG ⊥BP OB ⊥OC∴ ∠COF =∠BOD =90°∵ OC =OB∴ △COF ≌△BOD∴ CF =BD∵点F 关于原点的对称点F ′∴∠FCO=∠F′CO OF=OF′∴∠F′CK=2∠PBA∵∠BEG=2∠PBA∴∠F′CK=∠BEG∵F′K⊥CG∴△CF′K≌△EBG∴F′K=BG∵F′K⊥CG∴∠FKF′=∠FGB=90°∵∠F′FK=∠BFG∴△F′FK≌△BFG∴F′F=BF∴OB=3OF∴OD=OF=13OB=2∴D(0,−2)设直线BD的解析式是y=mx+n∴{−2=0×m+n0=8m+n∴{m=1 3n=−2∴直线BD的解析式是y=13x−2∵点P在直线BD上也在抛物线y=−13x2+x+6上∴{y=13x−2y=−13x2+x+6∴{x=−4y=−103∴P(−4,−103);【点睛】本题考查了二次函数的综合题熟练掌握二次函数图像上点的坐标特征二次函数的性质中心对称的性质全等三角形的判定和性质等知识添加正确的辅助线是解题的关键.10.(1)y=−14x2+x+3(2)1(3)5√174【分析】(1)先确定点A的坐标为(2,4)再结合等腰直角三角形的性质可得C(6,0)然后运用待定系数法即可解答;(2)先用待定系数法可得AC的函数解析式为y=−x+6设E(t,−14t2+t+3)N(t,−t+6)则EN=−14t2+2t−3然后化成顶点式求最值即可;(3)先确定点M(5,74)过点E作AD的对称点E′(0,3)连接E′M交AD于点P此时PE+PM最短时M(5,74)最后运用勾股定理即可解答.【详解】(1)解:∵AD为等腰直角△ABC底边BC上的高y=a(x−2)2+4的顶点为点A ∵A的坐标为(2,4)∵AD=4∵AD为等腰直角△ABC底边BC上的高∵CD=AD=4∵C(6,0).把C(6,0)代入y=a(x−2)2+4解得:a=−14∵抛物线的解析式为y=−14(x−2)2+4即y=−14x2+x+3.(2)解:设直线AC的函数解析式为y=kx+b ∵A(2,4),C(6,0)∵AC的函数解析式为y=−x+6.设E(t,−14t2+t+3)EN=−14t2+t+3−(−t+6)=−14t2+2t−3=−14(t−4)2+1∵当t=4时EN最大为1∵E(4,3).(3)解:∵M(5,b)在抛物线y =−14(x −2)2+4上∵M (5,74).∵AD 是此抛物线的对称轴∵过点E 作AD 的对称点E ′(0,3) 连接E ′M 交AD 于点P 此时PE +PM 最短 M (5,74);∵PE +PM 最短=E ′M =√(0−5)2+(3−74)2=5√174. 【点睛】本题主要考查了二次函数与几何的综合 求函数解析 求函数最值等知识点 灵活运用相关知识成为解题的关键.11.(1)x =1; (2)(3,0) (−1,0);(3)点P 的坐标为(3−√2,−√2)或(3+√2,√2).【分析】(1)本题根据抛物线y =ax 2+bx +c(a ≠0)的对称轴公式为x =−b2a 即可解题.(2)本题根据抛物线公式可整理为y =a (x 2−2x −3)=a (x −3)(x +1) 即可解题.(3)本题由(2)得到点B 的坐标 利用OB =OC 求得点C 的坐标 推出a 值 得到抛物线解析式 设直线BC 的解析式为y =kx −3 利用待定系数法求出直线BC 的解析式 设点P (m,m −3) 则M (m,m 2−2m −3) 根据过点P 作x 轴的垂线交抛物线于M 点 分以下两种情况讨论 当P 在M 的上方时 当P 在M 的下方时 根据这两种情况分析得到PM = CP 并对应的建立等式求解 即可解题.【详解】(1)解:∵抛物线解析式为y =ax 2−2ax −3a (a >0)∴抛物线的对称轴为x =−−2a2a =1;(2)解:∵抛物线解析式为y =ax 2−2ax −3a (a >0)整理可得y =a (x 2−2x −3)=a (x −3)(x +1)∴不论a 取何值 函数图象必过(3,0) (−1,0);(3)解:由(2)可知 点B 的坐标为(3,0)∴OB =3∵ OB =OC∴OC =3∴点C 的坐标为(0,−3) 且−3a =−3 即a =1∴抛物线解析式为y=x2−2x−3设直线BC的解析式为y=kx−3将(3,0)代入解析式有3k−3=0解得k=1∴直线BC的解析式为y=x−3设点P(m,m−3)则M(m,m2−2m−3)当P在M的上方时则PM=−m2+3m∵△PCM沿CM对折如果点P的对应点N恰好落在y轴上∴∠PCM=∠NCM∵PM∥y轴∴∠NCM=∠PMC∴∠PCM=∠PMC∴PC=PM∴√2m=−m2+3m整理得:m2+(√2−3)m=0解得:m1=0(不合题意舍去)则点P的坐标为(3−√2,−√2);当P在M的下方时则PM=m2−3m同理可得:√2m=m2−3m整理得:m2−(√2+3)m=0解得:m1=0(不合题意舍去)则点P的坐标为(3+√2,√2);综上所述点P的坐标为(3−√2,−√2)或(3+√2,√2).【点睛】本题考查了二次函数与一次函数综合折叠的性质二次函数的图象和性质待定系数法求函数解析式 勾股定理表示两点间的距离 等腰三角形性质 熟练掌握折叠的性质 结合分类讨论的数学思想 即可解题.12.(1)a =−16(2)(−2,−2)或(−2,4)或(−2,2√2)或(−2,−2√2)(3)−13−√2412或−13+√2412.【分析】本题主要考查了二次函数的应用 等腰三角形 全等三角形等几何图形等知识点 熟练运用数形结合利用几何关系寻找等量关系是解题的关键.(1)将点C 坐标代入抛物线解析式即可解答;(2)分三种情况:当ME =MC 、CE =CM 、EM =CE 时 然后利用等腰三角形的性质即可解答;(3)先判断出△PQE≌△P ′Q ′E (AAS )得出PQ =P ′Q ′、EQ =EQ ′ 进而得出P ′Q ′=n ,EQ ′=QE =m +2 确定出点P ′(n −2,2+m) 将点P ′的坐标代入直线AD 的解析式中和点P 代入抛物线解析式中 联立方程组求解即可.【详解】(1)解:∵抛物线y =a (x +6)(x −2)过点(0,2)∵2=a (0+6)(0−2) a =−16.(2)解:∵a =−16 ∵抛物线的解析式为y =−16(x +6)(x −2)=−16(x +2)2+83 ∵抛物线的对称轴为直线x =−2;∵E(−2,0)∵C(0,2)∵OC =OE =2∵CE =√2OC =2√2∵△CME 是等腰三角形∵①当ME =MC 时∵∠ECM =∠CED =45°∵∠CME =90°∵M(−2,2);②当CE =CM 时。

中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)

中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)

中考数学总复习《阅读理解综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.阅读下列有关材料并解决有关问题.我们知道|x|={x (x>0) 0 (x=0)−x (x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x−2|时,可令x+1=0和x−2=0,分别求得x=−1和x=2(称-1,2分别为|x+1|与|x−2|的零点值).在有理数范围内,零点值x=−1和x=2可将全体有理数分成不重复且不遗漏的三种情况:①x<−1;②−1≤x<2;③x≥2.化简|x+1|+|x−2|时,对应三种情况为:①当x<−1时,原式=−(x+1)−(x−2)=−2x+1;②当−1≤x<2时,原式=(x+1)−(x−2)=3;③当x≥2时,原式=(x+1)+(x−2)=2x−1.通过以上阅读,请你解决问题:(1)|x−3|+|x+4|零点值是_________和__________;(2)化简代数式|x−3|+|x+4|;(3)解方程|x−3|+|x+4|=9;(4)|x−3|+|x+4|+|x−2|+|x−2020|的最小值为_________,此时x的取值范围为____________.2.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式x2−xy+4x−4y和a2−b2−c2+2bc.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:(1)x2−xy+4x−4y=(x2−xy)+(4x−4y)=x(x−y)+4(x−y)=(x−y)(x+4)(2)a2−b2−c2+2bc=a2−(b2+c2−2bc)=a2−(b−c)2=(a+b−c)(a−b+c)这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)m3−2m2−3m+6(2)x2−2xy−9+y23.阅读下列材料:已知实数x y 满足(x 2+y 2+1)(x 2+y 2−1)=63 试求x 2+y 2的值.解:设x 2+y 2=a 则原方程变为(a +1)(a −1)=63 整理得a 2−1=63 a 2=64 根据平方根意义可得a =±8 由于x 2+y 2⩾0 所以可以求得x 2+y 2=8.这种方法称为“换元法” 用一个字母去代替比较复杂的单项式、多项式 可以达到化繁为简的目的.根据阅读材料内容 解决下列问题:(1)已知实数x y 满足(2x +2y +3)(2x +2y −3)=27 求x +y 的值.(2)已知a b 满足方程组{3a 2−2ab +12b 2=472a 2+ab +8b 2=36;求1a +12b 的值; (3)填空:已知关于x y 的方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 则关于x y 的方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2的解是_______. 4.例:解不等式(x ﹣2)(x +3)>0解:由实数的运算法则:“两数相乘 同号得正”得①{x −2>0x +3>0 或②{x −2<0x +3<0解不等式组①得 x >2解不等式组②得 x <﹣3所以原不等式的解集为x >2或x <﹣3.阅读例题 尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式x+1x−2的值为负数 求x 的取值范围.5.定义:有一个内角为90° 且对角线相等的四边形称为准矩形.(1)如图1 准矩形ABCD 中 ∠ABC =90° 若AB =2 BC =3 则BD =_____;(2)如图2 正方形ABCD中点E F分别是边AD AB上的点且CF∠BE 求证:四边形BCEF是准矩形;(3)已知准矩形ABCD中∠ABC=90° ∠BAC=60° AB=2 当△ADC为等腰三角形时求这个准矩形的面积.6.仔细阅读下面例题解答问题.【例题】已知:m2−2mn+2n2−8n+16=0求m n的值.解:∠m2−2mn+2n2−8n+16=0∠(m2−2mn+n2)+(n2−8n+16)=0∠(m−n)2+(n−4)2=0∠m−n=0n−4=0∠m=4n=4.∠m的值为4 n的值为4.【问题】仿照以上方法解答下面问题:(1)已知x2+2xy+2y2−6y+9=0求x y的值.(2)在Rt∠ABC中∠C=90°三边长a b c都是正整数且满足a2+b2−12a−16b+100=0求斜边长c的值.x+4与x轴y轴分别交于点A和点B.7.如图直线y=43(1)求A B两点的坐标;(2)过B点作直线与x轴交于点P 若∠ABP的面积为8 试求点P的坐标.(3)点M是OB上的一点若将∠ABM沿AM折叠点B恰好落在x轴上的点B1处求出点M的坐标.(4)点C在y轴上连接AC 若∠ABC是以AB为腰的等腰三角形请直接写出点C的坐标.8.定义:把斜边重合且直角顶点不重合的两个直角三角形叫做共边直角三角形.(1)概念理解:如图1 在△ABC和△DBC中∠A=90∘,AB=3,AC=4,BD=2,CD=√21说明△ABC 和△DBC是共边直角三角形.(2)问题探究:如图2 △ABC和△DBC是共边直角三角形E F分别是AD BC的中点连结EF求证EF⊥AD.(3)拓展延伸:如图3 △ABC和△DBC是共边直角三角形且BD=CD连结AD求证:AD平分∠BAC.9.【定义】如果1条线段将一个三角形分成2个等腰三角形那么这1条线段就称为这个三角形的“好线” 如果2条线段将一个三角形分成3个等腰三角形那么这2条线段就称为这个三角形的“好好线”.【理解】如图① 在△ABC中∠A=27° ∠C=72° 请你在这个三角形中画出它的“好线” 并标出等腰三角形顶角的度数.如图② 已知△ABC是一个顶角为45°的等腰三角形请你在这个三角形中画出它的“好好线” 并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中已知一个内角为24° 若它只有“好线” 请你写出这个三角形最大内角的所有可能值(按从小到大写);(2)在△ABC中∠C=27° AD和DE分别是△ABC的“好好线” 点D在BC边上点E在AB边上且AD =DC BE=DE 根据题意写出∠B的度数的所有可能值.10.【阅读】如图1 若ΔABD∽ΔACE且点B,D,C在同一直线上则我们把ΔABD与ΔACE称为旋转相似三角形.【理解】(1)如图2 ΔABC和ΔADE是等边三角形点D在边BC上连接CE.求证:ΔABD与ΔACE是旋转相似三角形.【应用】(2)如图3 ΔABD与ΔACE是旋转相似三角形AD//CE.求证:AC=DE.【拓展】(3)如图4 AC是四边形ABCD的对角线∠D=90°∠B=∠ACD BC=25AC=20AD= 16.试在边BC上确定一点E使得四边形AECD是矩形并说明理由.11.定义:如果三角形上有两点其中一点为一边的中点且这两点的连线将三角形分成周长相等的两部分我们就称这条线段为该三角形的“等分周线”.如图1 在△ABC中D是BC的中点点E在AB上若BD+BE=CD+AC+AE则DE为△ABC的一条“等分周线”.概念理解:(1)任意三角形的“等分周线”有______条若某三角形的一条“等分周线”有一个端点是三角形的顶点则这个三角形是______.规律探究:(2)如图1 在△ABC中DE为△ABC的一条“等分周线”.若AB>AC∠A=αAC=m求DE 的长.(用含mα的代数式表示).拓展应用(3)如图2 在四边形ABCD中BC=2CD AC平分∠BCD BA⊥AC点E在线段AC上连接ED EB 且AB=√3EC=√3+1∠BEC=120°求ED的长.12.(1)如图① 四边形ABCD中AB=AD ∠B=∠ADC=90°.E F分别是BC CD上的点且BE+FD=EF.试探究图中∠EAF与∠BAD之间的数量关系.小明同学探究此问题的方法是:延长FD到G 使DG=BE 连结AG.先证明△ABE≌△ADG再证明△AEF≌△AGF从而得出∠EAF=∠GAF 最后得出∠EAF与∠BAD之间的数量关系是.(2)将(1)中的条件“∠B=∠ADC=90°”改为“∠B+∠D=180°”(如图②)其余条件不变上述数量关系是否成立成立请证明;不成立说明理由(3)如图③ 中俄两国海军在南海举行联合军事演习中国舰艇在指挥中心(O)北偏西30°的A处俄罗斯舰艇在指挥中心南偏东70°的B处两舰艇到指挥中心距离相等.接到行动指令后中国舰艇向正东方向以60海里/小时的速度前进俄罗斯舰艇沿北偏东50°的方向以80海里/小时的速度前进2小时后指挥中心观测到两舰艇分别到达E F处且相距280海里.求此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小.13.定义:如图1 点M N把线段AB分割成AM MN和BN若以AM MN BN为边的三角形是一个直角三角形则称点M N是线段AB的勾股点.已知点M N是线段AB的勾股点若AM=1 MN=2 则BN =.(1)【类比探究】如图2 DE是△ABC的中位线M N是AB边的勾股点(AM<MN<NB)连接CM CN 分别交DE于点G H.求证:G H是线段DE的勾股点.(2)【知识迁移】如图3 C D是线段AB的勾股点以CD为直径画∠O P在∠O上AC=CP连结P A PB若∠A=2∠B求∠B的度数.(x>0)上的动点直线y=−x+2与坐标轴(3)【拓展应用】如图4 点P(a b)是反比例函数y=2x分别交于A B两点过点P分别向x y轴作垂线垂足为C D且交线段AB于E F.证明:E F是线段AB的勾股点.14.【了解概念】有一组对角互余的凸四边形称为对余四边形连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图① 对余四边形ABCD中AB=5 BC=6 CD=4 连接AC.若AC=AB求sin∠CAD的值;(2)如图② 凸四边形ABCD中AD=BD AD∠BD当2CD2+CB2=CA2时判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中点A(﹣1 0)B(3 0)C(1 2)四边形ABCD是对余四边形点E=u点D的纵坐标为t请直接写出u关于t 在对余线BD上且位于∠ABC内部∠AEC=90°+∠ABC.设AEBE的函数解析式.15.定义:若四边形有一组对角互补一组邻边相等且相等邻边的夹角为直角像这样的图形称为“直角等邻对补”四边形简称“直等补”四边形根据以上定义解决下列问题:(1)如图1 正方形ABCD中E是CD上的点将ΔBCE绕B点旋转使BC与BA重合此时点E的对应点F在DA的延长线上则四边形BEDF为“直等补”四边形为什么?(2)如图2 已知四边形ABCD是“直等补”四边形AB=BC=5CD=1AD>AB点B到直线AD的距离为BE.①求BE的长.②若M N分别是AB AD边上的动点求ΔMNC周长的最小值.16.定义:在平行四边形中若有一条对角线是一边的两倍则称这个平行四边形为两倍四边形其中这条对角线叫做两倍对角线这条边叫做两倍边.如图1 四边形ABCD是平行四边形BE//AC延长DC交BE于点E连结AE交BC于点F AB=1AD=m.(1)若∠ABC=90°如图2.①当m=2时试说明四边形ABEC是两倍四边形;②是否存在值m使得四边形ABCD是两倍四边形若存在求出m的值若不存在请说明理由;(2)如图1 四边形ABCD与四边形ABEC都是两倍四边形其中BD与AE为两倍对角线AD与AC为两倍边求m的值.17.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.【问题理解】(1)如图1 点A B C在∠O上∠ABC的平分线交∠O于点D 连接AD CD.求证:四边形ABCD是等补四边形;【拓展探究】(2)如图2 在等补四边形ABCD中AB=AD 连接AC AC是否平分∠BCD?请说明理由;【升华运用】(3)如图3 在等补四边形ABCD中AB=AD 其外角∠EAD的平分线交CD的延长线于点F.若CD=6 DF =2 求AF的长.18.我们把方程(x−m)2+(y−n)2=r2称为圆心为(m,n)半径长为r的圆的标准方程.例如圆心为(1,−2)半径长为3的圆的标准方程是(x−1)2+(y+2)2=9.在平面直角坐标系中⊙C与x轴交于点A B且点B的坐标为(8,0)与y轴相切于点D(0,4)过点A B D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)求抛物线的解析式;(3)试判断直线AE与⊙C的位置关系并说明理由.19.定义:点P(a b)关于原点的对称点为P' 以PP'为边作等边∠PP'C则称点C为P的“等边对称点”;(1)若P(1 √3)求点P的“等边对称点”的坐标.(x>0)上一动点当点P的“等边对称点”点C在第四象限时(2)若P点是双曲线y=2x①如图(1)请问点C是否也会在某一函数图象上运动?如果是请求出此函数的解析式;如果不是请说明理由.②如图(2)已知点A(1 2)B(2 1)点G是线段AB上的动点点F在y轴上若以A G F C 这四个点为顶点的四边形是平行四边形时求点C的纵坐标y c的取值范围.20.【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”两条弦所在直线..的交点为等垂弦的分割点.如图① AB CD是∠O的弦AB=CD AB∠CD垂足为E则AB CD是等垂弦E为等垂弦AB CD的分割点.【数学理解】(1)如图② AB是∠O的弦作OC∠O A OD∠OB分别交∠O于点C D连接CD.求证:AB CD是∠O的等垂弦.(2)在∠O中∠O的半径为5E为等垂弦AB CD的分割点BEAE =13.求AB的长度.【问题解决】(3)AB CD是∠O的两条弦CD=12AB且CD∠AB垂足为F.①在图③中利用直尺和圆规作弦CD(保留作图痕迹不写作法).②若∠O的半径为r AB=mr(m为常数)垂足F与∠O的位置关系随m的值变化而变化直接写出点F 与∠O的位置关系及对应的m的取值范围.参考答案1.解:(1)令x−3=0和x+4=0解得:x=3和x=−4故答案为:3 ﹣4.(2)当x<−4时|x−3|+|x+4|=−(x−3)−(x+4)=−2x−1;当−4≤x<3时|x−3|+|x+4|=−(x−3)+(x+4)=7;当x≥4时|x−3|+|x+4|=x−3+x+4=2x+1综上所述|x−3|+|x+4|={−2x−1,x<−4 7,−4≤x<32x+1,x>3.(3)当x<−4时3−x−x−4=9解得x=−5;当−4≤x<3时3−x+x+4=9方程无解;当x≥3时x−3+x+4=9解得x=4;∠方程的解为x=−5或x=4.(4)|x−3|+|x+4|+|x−2|+|x−2020|中的零点值分别为:x=3,x=−4,x=2,x=2020当x<−4时|x−3|+|x+4|+|x−2|+|x−2020|=3−x−x−4−x+2−x+2020=−4x+2021;当−4≤x<2时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4−x+2−x+2020=−2x+ 2029;当2≤x≤3时|x−3|+|x+4|+|x−2|+|x−2020|=3−x+x+4+x−2−x+2020=2025;当3<x<2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2−x+2020=2x+ 2019;当x≥2020时|x−3|+|x+4|+|x−2|+|x−2020|=x−3+x+4+x−2+x−2020=4x−2021;显然当2≤x≤3时原式取得最小值最小值为2025故答案为:2025 2≤x≤3.2.解:(1)m3−2m2−3m+6=m2(m−2)−3(m−2)=(m−2)(m2−3);(2)x2−2xy−9+y2=x2−2xy+y2−9=(x−y)2−32=(x−y+3)(x−y−3).3.解:(1)设2x +2y =a 则原方程变为(a +3)(a −3)=27整理 得:a 2−9=27 即a 2=36解得:a =±6则2x +2y =±6∴x +y =±3;(2)令a 2+4b 2=x ab =y则原方程变为:{3x −2y =472x +y =36解之得:{x =17y =2 ∠a 2+4b 2=17 ab =2∠(a +2b )2=a 2+4ab +4b 2=17+8=25∠a +2b =±5∠1a +12b =2b+a2ab =±54; (3)由方程组{a 1x 2−2a 1x +b 1y =c 1−a 1a 2x 2−2a 2x +b 2y =c 2−a 2 得{a 1x 2−2a 1x +a 1+b 1y =c 1a 2x 2−2a 2x +a 2+b 2y =c 2整理 得:{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2∵方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =9y =5 ∴方程组{a 1(x −1)2+b 1y =c 1a 2(x −1)2+b 2y =c 2的解是:{(x −1)2=9y =5 ∴x −1=±3 且y =5解得:{x =4y =5 或{x =−2y =5. 4.解:(1)解不等式x 2﹣9>0 即为解(x +3)(x −3)>0根据“两数相乘 同号得正”得①{x −3>0x +3>0 或②{x −3<0x +3<0解不等式组①得 x >3解不等式组②得 x <﹣3∠原不等式的解集为x >3或x <﹣3;(2)由题得不等式x+1x−2<0根据“两数相除 同号得正 异号得负”得①{x +1>0x −2<0 或②{x +1<0x −2>0解不等式组①得−1<x<2不等式组②无解∠原不等式的解集为−1<x<2.5.解:(1)∠∠ABC=90∠BD=√AB2+BC2=√4+9=√13故答案为√13(2)∠四边形ABCD是正方形∠AB=BC,∠A=∠ABC=90°∠∠EBF+∠EBC=90°∠BE∠CF∠∠EBC+∠BCF=90°∠∠EBF=∠BCF∠∠ABE∠∠BCF(AAS)∠BE=CF 且∠CBF=90°∠四边形BCEF是准矩形;(3)∠∠ABC=90° ∠BAC=60°∠∠ACB=30°∠AB=2∠AC=4 BC=2√3准矩形ABCD中BD=AC=4①当AC=AD时则AD=AC=BD 如图1 作DE∠AB∠AE=BE=12AB=1∠DE=√AD−2AE2=√16−1=√15∠S准矩形ABCD =S△ADE+S梯形BCDE=12DE×AE+12(BC+DE )×BE=12×√15×1+12(2√3+√15)×1=√15+√3;②当CA=CD 时 则CD=CA=BD 如图2 作DF∠BC 垂足为F∠BD=CD∠BF=CF=12BC=√3∠DF=√CD 2−CF 2=√16−3=√13∠S 准矩形ABCD =S △DCF +S 梯形ABFD=12FC×DF+12(AB+DF )×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当DA=DC 如图3 取AC 中点G 连DG 则DG∠AC . 连接BG过B 作BH∠DG 垂足为H .在Rt △ABC 中 ∠ABC =90° ∠BAC =60° AB =2 G 为AC 中点∠AG=BG=12AC=AB=2∠∠ABG 为等边三角形 ∠∠BGC=120° ∠BGH=30°又BD=AC=4在Rt △BHG 中 BG=2 ∠BGH=30°∠BH=1 HG=√3在Rt △DHB 中 BH=1 BD=4∠DH=√15∠DG=DH ﹣HG=√15﹣√3∠S 准矩形ABCD =S △ABC +S △ACD=12AB×BC+12AC×DG=12×2√3×2+12×4×(√15﹣√3) =2√15;故答案为√15+√3;√39+√3;2√15.6.解:(1)∠x 2+2xy +2y 2−6y +9=0∠(x 2+2xy +y 2)+(y 2−6y +9)=0∠(x +y)2+(y −3)=20∠x +y =0,y −3=0∠x =−3,y =3(2)∠a 2+b 2−12a −16b +100=0∠(a 2−12a +36)+(b 2−16b +64)=0∠(a −6)2+(b −8)2=0∠a −6=0 b −8=0∠a =6 b =8 在Rt ∠ABC 中 ∠C =90°∠c =√a 2+b 2=√62+82=10.7.解:(1)对于y =43x +4 令y =0 即y =43x +4=0 解得x =﹣3 令x =0 则y =4 故点A B 的坐标分别为(﹣3 0) (0 4);(2)设点P (x 0)则∠ABP 的面积=12×AP ×OB =12×4×|x +3|=8 解得x =1或﹣7故点P 的坐标为(1 0)或(﹣7 0);(3)由点A B 的坐标知 OA =3 BO =4 则AB =√AO 2+BO 2=5=AB 1 故点B 1的坐标为(2 0)设点M 的坐标为(0 m )由题意得:MB =MB 1 即m 2+4=(m ﹣4)2 解得m =1.5故点M 的坐标为(0 1.5);(4)设点C (0 t )则AB =5 AC =√32+t 2当AB =BC 时 则5=|t ﹣4| 解得t =9或﹣1当AB =AC 时 即25=9+t 2 解得t =4(舍去)或﹣4故点C 的坐标为(0 9)或(0 ﹣1)或(0 ﹣4).8.解:(1)∠在△ABC 中∠BC=√32+42=5∠BD =2,CD =√21∠BD 2+CD 2=25=BC 2∠∠BCD 是直角三角形∠△ABC 和△DBC 是共边直角三角形.(2)如图 连接AE,DE∠E 点是BC 中点∠AE,DE 分别是Rt∠ABC 和Rt∠DBC 斜边上的中线∠AE=12BC DE=12BC ∠AE=DE∠∠ADE 是等腰三角形∠F 点是AD 中点∠EF∠AD ;(3)作DN∠AB DM∠AC 的延长线于M 点∠∠BAC=90°∠四边形ANDM 是矩形∠∠NDM=90°∠∠NDC+∠CDM=90°又∠BDC=90°∠∠NDC+∠BDN=90°∠∠BDN= CDM∠∠BND=∠CMD=90° BD=CD∠∠BDN∠∠CDM∠DN=DM∠AD平分∠BAC.9.解:(理解)如图① 如图②所示(应用)(1)①如图③当∠B=24° AD为“好线”则A C=AD=BD这个三角形最大内角是∠BAC=106°;②如图④当∠B=24° AD为“好线”则AB=AD AD=CD 这个三角形最大内角是∠BAC=144°;③如图⑤当∠ABC=24°时BD为“好线”则AD=BD CD=BC 故这个三角形最大内角是∠C=148°④如图⑥ 当∠B=24°时CD为“好线”则AD=CD=BC 故这个三角形最大内角是∠ACB=117°⑤如图⑦ 当∠B=24°时CD为“好线”则AD=AC CD=BD 故这个三角形最大内角是∠ACB=70°⑥如图⑧ 当∠B=24°时AD为“好线”则AB=BD AD=CD 故这个三角形最大内角是∠BAC=117°上所述这个三角形最大内角的所有可能值是70°或106°或117或144°或148°故答案为70°或106°或117或144°或148°;(2)设∠B=x°①当AD=DE时如图1(a)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠DAE=2x°∠27×2+2x+x=180∠x=42∠∠B=42°;②当AD=AE时如图1(b)∠AD=CD∠∠C=∠CAD=27°∠DE=EB∠∠B=∠EDB=x°∠∠AED=∠ADE=2x°∠2x+x=27+27∠x=18∠∠B=18°.③当EA=DE时∠90﹣x+27+27+x=180∠x不存在应舍去.综合上述:满足条件的x=42°或18°.10.(1)证明:ΔABC和ΔADE是等边三角形∠AB=AC AD=AE∠BAC=∠DAE=60°∠AB AD =ACAE∠BAD=∠CAE∠ΔABD∽ΔACE又∠点B,D,C在同一直线∠ΔABD和ΔACE是旋转相似三角形.(2)证明:∠ΔABD与ΔACE是旋转相似三角形∠ΔABD∽ΔACE∠AB AC =ADAE∠BAD=∠CAE∠B=∠ACE∠∠BAC=∠DAE∠ΔABC∽Δ∠ADE∠∠B=∠ADE∠AED=∠ACB ∠ ∠ADE=∠ACE.∠AD//CE∠∠ADE=∠DEC∠ ∠ACE=∠DEC.∠∠AED=∠ACB∠∠AEC=∠DCE.又∠CE=CE∠ΔAEC≌ΔDCE(ASA)∠AC=DE.(3)解:如图过点A作AE⊥BC垂足为E连接DE.∠∠AEB=∠ADC=90°∠B=∠ACD∠ ΔABE∽ΔACD∠AB AC =AEAD∠BAE=∠CAD∠∠BAC=∠EAD ∠ΔABC∽ΔAED∠BC DE =ACAD∠ 25DE =2016∠DE=20.∠ΔABE∽ΔACD∠AE AD =BECD∠AE BE =√202−162=43.设AE=4k则BE=3k CE=25−3k在ΔACE中(4k)2+(25−3k)2=202解得k=3∠AE=12.又AD=16DE=20∠ΔADE是直角三角形∠DAE=90°.又∠AEC=∠ADC=90°∠四边形AECD是矩形.11.解:(1)∠任意三角形有三条边∠任意三角形有三条“等分周线”∠某三角形的一条“等分周线”有一个端点是三角形的顶点而另一点为一边的中点且将三角形的周长分为相等的两部分∠这个三角形是等腰三角形故答案为:3 等腰三角形;(2)延长BA 使AF=AC 连接CF 过点A 作AG∠CF 于G则∠ACF 为等腰三角形∠CG=GF=12CF ∠AGC=90° ∠ACF=∠AFC∠∠A =α 即∠BAC =α又∠BAC=∠ACF+∠AFC∠∠ACF=∠AFC=12∠BAC=12α∠ED 为∠ABC 的“等分周线”∠EB+BD=CD+CA+AE 又BD=CD∠EB=CA+AE=AF+AE=EF∠点E 为BF 的中点∠DE=12CF=CG在Rt∠AGC 中 ∠ACF=12α AC=m∠CG=m·cos 12α∠DE= m·cos 12α;(3)取BC 的中点F 连接EF 则BF=FC∠∠BEC=120°∠∠BEA=60°∠BA∠AC∠在Rt∠ABE 中 ∠ABE=30°∠AE=AB tan60∘=√3√3=1 BE=2AE=2∠EC =√3+1∠AB +AE =√3+1=EC∠BF=FC∠AB+AE+BF=CE+CF∠EF是∠ABC的一条“等分周线”由(2)知EF=AB·cos12∠BAC=√3cos45∘=√62∠BC=2CD∠CD=CF又∠AC平分∠BCD∠∠FCE=∠DCE 又CE=CE∠∠FCE∠∠DCE(SAS),∠ED=EF=√62.12.解:(1)如图① 延长FD到G 使DG=BE 连结AG.在∠ABE和∠ADG中AB=AD BE=DG ∠B=∠ADG=90°∠∠ABE∠∠ADG ∠AE=AG在∠AEF和∠AGF中AE=AG AF=AF EF=BE+FD=DG+FD=GF ∠∠AEF∠∠AGF ∠∠EAF=∠GAF=∠GAD+∠DAF=∠EAB+∠DAF∠∠BAD=∠EAF+∠EAB+∠DAF=2∠EAF∠∠EAF=12∠BAD(2)∠EAF=12∠BAD仍然成立.证明:如图② 延长FD到G 使DG=BE 连接AG.∠∠B+∠ADC=180° ∠ADC+∠ADG=180° ∠∠B=∠ADG∠∠ABE∠∠ADG(SAS).∠AE=AG ∠BAE=∠DAG.又∠EF=BE+DF DG=BE ∠EF=DG+DF=GF.∠∠AEF∠∠AGF(SSS).∠∠EAF=∠GAF.又∠∠GAF=∠DAG+∠DAF ∠∠EAF=∠DAG+∠DAF=∠BAE+∠DAF.而∠EAF+∠BAE+∠DAF=∠BAD∠∠EAF=1∠BAD2(3)如图③ 连接EF 延长AE BF相交于点C.∠2小时后舰艇甲行驶了120海里舰艇乙行驶了160海里即AE=120 BF=160.而EF=280 ∠在四边形AOBC中有EF=AE+BF又∠OA=OB 且∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°∠符合(2)中的条件.∠AOB =70°.又∠∠AOB=30°+90°+(90°﹣70°)=140° ∠∠EOF=12答:此时两舰艇的位置与指挥中心(O处)形成的夹角∠EOF的大小为70°.13.解:定义:∠点M N是线段AB的勾股点∠BN=√AM2+MN2=√5或BN=√MN2−AM2=√3∠BN=√3或√5.(1)如图∠CD =DA CE =EB∠DE ∠AB∠CG =GM CH =HN∠DG =12AM GH =12MN EH =12BN ∠BN 2=MN 2+AM 2∠14BN 2=14MN 2+14AM 2 ∠(12BN )2=(12MN )2+(12AM )2∠EH 2=GH 2+DG 2∠G H 是线段DE 的勾股点.(2)如图所示 连接PD∠AC =PC∠∠A =∠APC∠∠PCD =2∠A∠C D 是线段AB 的勾股点∠AC 2+BD 2=CD 2∠PC 2+BD 2=CD 2∠CD 是∠O 的直径∠∠CPD =90°∠PC 2+PD 2=CD 2∠PD=BD∠∠PDC=2∠B∠∠A=2∠B∠∠PDC=∠A在Rt∠PCD中∠∠PCD+∠PDC=90°∠2∠A+∠A=90°解得∠A=30°则∠B=12∠A=15°.(3)∠点P(a b)是反比例函数y=2x(x>0)上的动点∠b=2a.∠直线y=﹣x+2与坐标轴分别交于A B两点∠点B的坐标为(0 2)点A的坐标为(2 0);当x=a时y=﹣x+2=2﹣a∠点E的坐标为(a2﹣a);当y=2a 时有﹣x+2=2a解得:x=2﹣2a∠点F的坐标为(2﹣2a 2a ).∠BF=√(2−2a −0)2+(2a−2)2=√2(2﹣2a)EF=√(2−2a −a)2+[2a−(2−a)]2,=√2|2﹣a﹣2a| AE=√(2−a)2+[0−(2−a)]2=√2(2﹣a).∠BF2+AE2=16+2a2﹣8a+8a2﹣16a=EF2∠以BF AE EF为边的三角形是一个直角三角形∠E F是线段AB的勾股点.14.解:(1)过点A作AE∠BC于E 过点C作CF∠AD于F.∠AC=AB∠BE=CE=3在Rt∠AEB中AE=√AB2−BE2=√52−32=4∠CF∠AD∠∠D+∠FCD=90°∠∠B+∠D=90°∠∠B=∠DCF∠∠AEB=∠CFD=90°∠∠AEB∠∠DFC∠EB CF =ABCD∠3 CF =54∠CF=125∠sin∠CAD=CFAC =1255=1225.(2)如图②中结论:四边形ABCD是对余四边形.理由:过点D作DM∠DC 使得DM=DC 连接CM.∠四边形ABCD中AD=BD AD∠BD∠∠DAB=∠DBA=45°∠∠DCM=∠DMC=45°∠∠CDM=∠ADB=90°∠∠ADC=∠BDM∠AD=DB CD=DM∠∠ADC∠∠BDM(SAS)∠AC=BM∠2CD2+CB2=CA2CM2=DM2+CD2=2CD2∠CM2+CB2=BM2∠∠BCM=90°∠∠DCB=45°∠∠DAB+∠DCB=90°∠四边形ABCD是对余四边形.(3)如图③中过点D作DH∠x轴于H.∠A(﹣1 0)B(3 0)C(1 2)∠OA=1 OB=3 AB=4 AC=BC=2√2∠AC2+BC2=AB2∠∠ACB=90°∠∠CBA=∠CAB=45°∠四边形ABCD是对余四边形∠∠ADC+∠ABC=90°∠∠ADC=45°∠∠AEC=90°+∠ABC=135°∠∠ADC+∠AEC=180°∠A D C E四点共圆∠∠ACE=∠ADE∠∠CAE+∠ACE=∠CAE+∠EAB=45°∠∠EAB=∠ACE∠∠EAB=∠ADB∠∠ABE=∠DBA∠∠ABE∠∠DBA∠BE AB =AEAD∠AE BE =ADAB∠u=AD4设D(x t)由(2)可知BD2=2CD2+AD2∠(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2整理得(x+1)2=4t﹣t2在Rt∠ADH中AD=√AH2+AD2=√(x+1)2+t2=2√t∠u=AD4=√t2(0<t<4)即u=√t2(0<t<4).15.解:(1)如图1由旋转的性质得:∠F=∠BEC ∠ABF=∠CBE BF=BE ∠∠BEC+∠BED=180° ∠CBE+∠ABE=90°∠∠F+∠BED=180°∠ABF+∠ABE=90°即∠FBE=90°故满足“直等补”四边形的定义∠四边形BEDF为“直等补”四边形;(2)∠四边形ABCD是“直等补”四边形AB=BC∠∠A+∠BCD=180° ∠ABC=∠D=90°如图2 将∠ABE绕点B顺时针旋转90°得到∠CBF则∠F=∠AEB=90° ∠BCF+∠BCD=180° BF=BE∠D C F共线∠四边形EBFD是正方形∠BE=FD设BE=x 则CF=x-1在Rt∠BFC中BC=5由勾股定理得:x2+(x−1)2=25即x2−x−12=0解得:x=4或x=﹣3(舍去)∠BE=4(3)如图3 延长CD到P 使DP=CD=1 延长CB到T 使TB=BC=5,则NP=NC MT=MC,∠∠MNC的周长=MC+MN+NC=MT+MN+NP≥PT当T M N P共线时∠MNC的周长取得最小值PT过P作PH∠BC 交BC延长线于H∠∠F=∠PHC=90°,∠BCF=∠PCH,∠∠BCF∠∠PCH,∠BC PC =BFPH=CFCH,即52=4PH=3CH解得:CH=65,PH=85,在Rt∠PHT中TH=5+5+65=565,PT =√PH 2+HT 2=8√2,∠ΔMNC 周长的最小值为8√2.16.(1)①证明:∠四边形ABCD 是平行四边形∠AB∠CD BC=AD=2∠BE//AC AB∠CE∠四边形ABEC 是平行四边形 BC =2AB∴四边形ABEC 是两倍四边形;②存在 理由如下:当AC=2AB 时 则AC=2∠∠ABC =90° ∠BC =√AC 2−AB 2=√22−12=√3,∠m=AD=BC=√3;当AC=2AD 时 则AC=2m∠m 2+12=(2m)2解得m=√33或m=-√33(舍去)∠m 的值为√3或√33时 四边形ABCD 是两倍四边形;(2)∠四边形ABCD 是两倍四边形 BD 为两倍对角线 AD 为两倍边∠AD=DG∠∠DAG=∠AGD∠四边形ABEC 是两倍四边形 AE 为两倍对角线 AC 为两倍边∠AC=AF∠∠ACF=∠AFC又∠∠DAG=∠ACF∠∠DAG=∠AGD=∠ACF=∠AFC ∠∠ADG=∠CAF又∠ADBD =12ACAE=12∠AD BD =ACAE∠∠ADB∠∠ACE又∠AB=CE∠相似比为1∠∠ADB∠∠ACE∠AC=AD作DM∠AC于M 如图1设AM=x 则AC=AD=4x在Rt∠ADM中由勾股定理得:DM=√15x在Rt∠DMC中由勾股定理得:CD=2√6x∠CD=AB=1∠ 2√6x=1∠x=√612∠AD=4x=√63即m=√63.17.(1)证明:∠四边形ABCD为圆内接四边形∠∠A+∠C=180° ∠ABC+∠ADC=180°.∠BD平分∠ABC∠∠ABD=∠CBD∠弧AD=弧CD∠AD=CD∠四边形ABCD是等补四边形(2)AC平分∠BCD 理由如下:过点A作AE∠BC于E AF∠CD于F则∠AEB=∠AFD=90°∠四边形ABCD是等补四边形∠∠ADC+∠B=180°又∠∠ADC+∠ADF=180°∠∠B=∠ADF在∠AFD与∠AEB中{∠ADF=∠B ∠AEB=∠AFD AB=AD∠ΔAFD∠ΔAEB∠AE=AF∠点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=12∠BCD同理∠FAD=12∠EAD∠∠FCA=∠FAD.又∠∠F=∠F∠∠FAD∠∠FCA∠AF DF =CFAF即AF2=DF⋅CF=DF(DF+CF)=2×(2+6)=16∠AF=418.解:(1)如图连接CD CB 过点C作CM∠AB于M 设∠C的半径为r.∠与y轴相切于点D(0 4)∠CD∠OD∠∠CDO=∠CMO=∠DOM=90°∠四边形ODCM是矩形∠CM=OD=4 CD=OM=r∠B(8 0)∠OB=8 ∠BM=8-r在Rt∠CMB中∠BC2=BM2+CM2∠ r2=42+(8−r)2解得r=5 ∠C (5 4)∠∠C 的标准方程为(x −5)2+(y −4)2=25.(2)连接AC CE .∠CM∠AB ∠AM=BM=3 ∠A (2 0) B (8 0)∠可设抛物线的解析式为y=a (x -2)(x -8)把D (0 4)代入y=a (x -2)(x -8) 可得a=14 ∠抛物线的解析式为y=14(x -2)(x -8)=14x 2−52x +4=14(x −5)2−94;(3)结论:AE 是∠C 的切线.理由:由(2)可得抛物线的顶点E (5 −94) ∠AE=√(5−2)2+(−94)2=154 CE= 4−(−94)=4+94=254 AC=5∠CE 2=AC 2+AE 2 ∠∠CAE=90° ∠CA∠AE∠AE 是∠C 的切线.19.解:(1)∠P (1 √3)∠P '(﹣1 ﹣√3)∠PP '=4设C (m n )∠等边∠PP ′C∠PC =P 'C =4∠√(m −1)2+(n −√3)2=√(m +1)2+(n +√3)2=4∠m =﹣√3n∠(﹣√3n ﹣1)2+(n ﹣√3)2=16.解得n =√3或﹣√3∠m =﹣3或m =3.如图1 观察点C 位于第四象限 则C (﹣3 √3).即点P 的“等边对称点”的坐标是(3 √3).(2)①设P (c 2c )∠P '(﹣c ﹣2c )∠PP'=2√c2+4c2设C(s t)PC=P'C=2√c2+4c2∠√(s−c)2+(t−2c )2=√(s+c)2+(t+2c)2=2√c2+4c2∠s=﹣2tc2∠t2=3c2∠t=±√3c∠C(﹣2√3c √3c)或C(2√3c﹣√3c)∠点C在第四象限c>0∠C(2√3c﹣√3c)令{x=2√3cy=−√3c∠xy=﹣6 即y=﹣6x(x>0);②当AG为平行四边形的边时G与B重合时为一临界点通过平移可求得C(1 ﹣6)∠y c≤﹣6;当AG为平行四边形的对角线时G与B重合时求得C(3 ﹣2)G与A重合时C(2 ﹣3)此时﹣3<y c≤﹣2综上所述:y c≤﹣6或﹣3<y c≤﹣2.20.解:(1)如图① 连接BC∠OC∠O A OD∠OB∠∠AOC=∠BOD=90°∠∠AOB=∠COD∠AB=CD∠AC=AC∠∠ABC=1∠AOC=45°.2∠BOD=45°同理∠∠BCD=12∠∠AEC=∠ABC+∠BCD=90°即AB∠CD∠AB=CD AB∠CD∠ AB CD是∠O的等垂弦.(2)如图② 若点E在∠O内作OH∠AB垂足为H作OG∠CD垂足为G∠AB CD是∠O的等垂弦∠AB=CD AB∠CDAB OA=OD∠AHO=∠DGO∠AH=DG=12∠∠AHO∠∠DGO∠OH=OG∠矩形OHEG为正方形∠OH=HE .∠BE AE =13又AH=BH∠AH=2BE=2OH在Rt∠AOH中AO2=AH2+OH2.即(2OH)2+OH2=AO2=25解得OH=√5则AB=4HE=4√5;若点E在∠O外同理AH=√5则AB=2AH=2√5.(3)①如图所示弦CD即为所求;②∠AB是∠O的弦∠AB≤2r 即m≤2当点F在圆上时如图所示此时AB=mr CD=mr2AD=2r由勾股定理得(mr)2+(mr2)2=(2r)2解得m=45√5因此当0<m<45√5时点F在∠O外;当m=45√5时点F在∠O上;当45√5<m≤2时点F在∠O内.。

中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________专题02三角形之直角、等腰问题 题型训练训练题01【2023·内蒙古·中考真题】如图,在Rt ABC △中90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC 的值为 .训练题02【2023·山东菏泽·中考真题】无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)训练题03【2023·广东·中考真题】2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈ cos500.643︒≈ tan50 1.192︒≈)训练题04【2023·湖北黄冈·中考真题】综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD 的中点A 处竖直上升30米到达B 处,测得博雅楼顶部E 的俯角为45︒,尚美楼顶部F 的俯角为30︒,已知博雅楼高度CE 为15米,则尚美楼高度DF 为 米.(结果保留根号)训练题05【2023·河北沧州·模拟预测】如图1,嘉淇在量角器的圆心O 处下挂一铅锤,制作了一个简易测角仪.将此测角仪拿到眼前,使视线沿着仪器的直径刚好到达树的最高点M .(1)在图1中,过点A 画出水平线,并标记观测M 的仰角α.若铅垂线在量角器上的读数为53︒,求α的值;(2)如图2,已知嘉淇眼睛离地1.5米,站在B 处观测M 的仰角为(1)中的α,向前走1.25米到达D 处,此时观测点M 的仰角为45︒,求树MN 的高度.(注:3tan 374︒≈ 3sin 375︒≈ 4cos375≈︒) 训练题06【2023·四川成都·八年级期末联考】如图 在等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥于点G 点M N 分别是DE DG 上的动点 且DN EM = 则FM FN +的最小值为 .训练题07【2022·陕西西安·滨河期末】如图 直线y =x ﹣3分别交x 轴 y 轴于B A 两点 点C (0 1)在y 轴上 点P 在x 轴上运动 则2PC +PB 的最小值为 .训练题08【2021·四川甘孜·中考真题】如图 腰长为22+2的等腰ABC 中 顶角∠A =45° D 为腰AB 上的一个动点将ACD 沿CD 折叠 点A 落在点E 处 当CE 与ABC 的某一条腰垂直时 BD 的长为 .训练题09【2022·福建泉州·九年级联考】如图 ABC 和AGF 是等腰直角三角形 90BAC G ∠=∠=︒ AGF 的边AF AG 交边BC 于点D E .若4=AD 3AE = 则BEDC 的值是 .训练题10【2021·宁夏固元·联考一模】如图在直角△BAD中延长斜边BD到点C 使得BD=2DC 连接AC 如果则的值是()A.B.C.D.答案&解析5 tanB3=tan CAD∠3 3351315训练题01【2023·内蒙古·中考真题】【答案】5【简证】因为tan 311tan 4522ABC CD ABD α∠=⎧⇒=⇒=⎨∠=︒⎩ 故5AD DC =【常规法】解:过点D 作DF AB ⊥于点F∵90ACB ∠=︒ 3AC = 1BC =∴223110AB =+=∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△∴==10AB AB ' 90BAB '∠=︒∴ABB '是等腰直角三角形∴45ABB '∠=︒又∵DF AB ⊥∴45FDB ∠=︒∴DFB △是等腰直角三角形∴DF BF =∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ∵ 90C AFD ∠=∠=︒ CAB FAD ∠=∠∴AFDACB ∴DF AF BC AC= 即3AF DF = 又∵=10AF DF -45°α∴10=4 DF∴105=10=42AD⨯51=3=22CD-∴52==512ADCD故答案为:5.训练题02【2023·山东菏泽·中考真题】【答案】大楼的高度BC 为303m .【分析】如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥ 则四边形CQHB 是矩形 可得QH BC = BH CQ = 求解3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= 可得704030CQ BH ==-= tan 30103PQ CQ =︒= 可得403103303BC QH ==-=.【详解】解:如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥则四边形CQHB 是矩形 ∴QH BC = BH CQ =由题意可得:80AP = 60PAH ∠=︒ 30PCQ ∠=︒ 70AB = ∴3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= ∴704030CQ BH ==-= ∴tan 30103PQ CQ =︒=∴403103303BC QH ==-= ∴大楼的高度BC 为303m .训练题03【2023·广东·中考真题】【答案】15.3m【分析】连接AB 作作CD AB ⊥于D 由等腰三角形“三线合一”性质可知2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中利用sin AD ACD AC∠=求出AD 继而求出AB 即可.【详解】解:连接AB 作CD AB ⊥于D∵AC BC = CD AB ⊥∴CD 是边AB 边上的中线 也是ACB ∠的角平分线∴2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中 10m AC = 50ACD ∠=︒ sin AD ACD AC ∠= ∴sin 5010AD ︒= ∴10sin50100.7667.66AD =︒≈⨯=∴()227.6615.3215.3m AB AD =≈⨯=≈答:A B 两点间的距离为15.3m .训练题04【2023·湖北黄冈·中考真题】【答案】3053-/5330-+【分析】过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N 首先证明出四边形ECAM 是矩形 得到15AM CE == 然后根据等腰直角三角形的性质得到15AC EM BM === 进而得到15==AD AC 然后利用30︒角直角三角形的性质和勾股定理求出53BN = 即可求解.【详解】如图所示 过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N由题意可得 四边形ECAM 是矩形 ∴15AM CE == ∵30AB = ∴15BM AB AM =-= ∵博雅楼顶部E 的俯角为45︒ ∴45EBM ∠=︒ ∴45BEM ∠=︒ ∴15AC EM BM ===∵点A 是CD 的中点 ∴15==AD AC 由题意可得四边形AMFN 是矩形 ∴15NF AD == ∵尚美楼顶部F 的俯角为30︒ ∴60NBF ∠=︒ ∴30BFN ∠=︒ ∴2BF BN =∴在Rt BNF △中 222BNNF BF += ∴()222152BN BN +=∴解得53BN =∴3053FD AN AB BN ==-=-.故答案为:3053-.训练题05【2023·河北沧州·模拟预测】【答案】(1)37︒(2)树MN 的高度为5.25米【分析】(1)根据互余的性质计算即可.(2) 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米.解直角三角形求解即可.【详解】(1)如图1;905337α=︒-︒=︒;(2)如图 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米. 在Rt APM △中 4( 1.5)tan 373MP AP x ==-︒(米) 在Rt MCP 中 1.5CP MP x ==-(米) 4( 1.5)( 1.5) 1.253AC AP CP x x ∴=-=---=(米) 解得 5.25x =. 答:树MN 的高度为5.25米.训练题06【2023·四川成都·八年级期末联考】【答案】23【分析】过点E 作AE EF ⊥ 使得2AE DF == 证得AEM FDN ≅ 利用全等三角形的性质证得FN AM = 求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长 在Rt AEF 中利用勾股定理即可求解.【详解】解:过点E 作AE EF ⊥ 使得2AE DF == 如图所示∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF ==∴45DEF ∠=︒ 222222EF =+=∴9045AEM DEF ∠=︒-∠=︒∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥∴45FDN ∠=︒∴FDN AEM ∠=∠在AEM △和FDN 中AE DF AEM FDN EM DN =⎧⎪∠=∠⎨⎪=⎩∴AEM FDN≅()SAS ∴FN AM =∴求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长∴在Rt AEF 中()222222223AF AE EF =+=+=的最小值为23即FM FN故答案为:23训练题07【2022·陕西西安·滨河期末】【答案】4【分析】过P作PD⊥AB于D依据△AOB是等腰直角三角形可得∠BAO=∠ABO=45°=∠BPD进而得到△BDP是等腰直角三角形故PD22=PB当C P D在同一直线上时CD⊥AB PC+PD的最小值等于垂线段CD的长求得CD的长即可得出结论.【详解】如图所示过P作PD⊥AB于D∵直线y=x﹣3分别交x轴y轴于B A两点令x=0 则y=﹣3;令y=0 则x=3∴A(0 ﹣3)B(3 0)∴AO=BO=3又∵∠AOB=90°∴△AOB是等腰直角三角形∴∠BAO=∠ABO=45°=∠BPD∴△BDP是等腰直角三角形∴PD22=PB∴2PC+PB2=(PC22+PB)2=(PC+PD)当C P D在同一直线上即CD⊥AB时PC+PD的值最小最小值等于垂线段CD 的长此时△ACD是等腰直角三角形又∵点C(0 1)在y轴上∴AC=1+3=4∴CD22=AC=22即PC+PD的最小值为22∴2PC+PB的最小值为222⨯=4 故答案为:4.训练题08【2021·四川甘孜·中考真题】【答案】2或22【分析】分两种情况:当CE ⊥AB 时 设垂足为M 在Rt △AMC 中 ∠A =45° 由折叠得:∠ACD =∠DCE =22.5° 证明△BCM ≌△DCM 得到BM =DM 证明△MDE 是等腰直角三角形 即可得解;当CE ⊥AC 时 根据折叠的性质 等腰直角三角形的判定与性质计算即可;【详解】当CE ⊥AB 时 如图设垂足为M 在Rt △AMC 中 ∠A =45°由折叠得:∠ACD =∠DCE =22.5°∵等腰△ABC 中 顶角∠A =45°∴∠B =∠ACB =67.5°∴∠BCM =22.5°∴∠BCM =∠DCM在△BCM 和△DCM 中90BMC DMC CM CM BCM DCM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BCM ≌△DCM (ASA )∴BM =DM由折叠得:∠E =∠A =45° AD =DE∴△MDE 是等腰直角三角形∴DM =EM设DM =x 则BM =x DE 2=x∴AD 2=x .∵AB=22+2∴2x2x=22+2 解得:x2=∴BD=2x=22;当CE⊥AC时如图∴∠ACE=90°由折叠得:∠ACD=∠DCE=45°∵等腰△ABC中顶角∠A=45°∴∠E=∠A=45°AD=DE∴∠ADC=∠EDC=90°即点D E都在直线AB上且△ADC△DEC△ACE都是等腰直角三角形∵AB=AC==22+2∴AD22=AC=22BD=AB﹣AD=(22+2)﹣(22)2=综上BD的长为2或22.故答案为:2或22.训练题09【2022·福建泉州·九年级联考】【答案】916【分析】利用等腰直角三角形的性质先证明AED BEA ∽ 可得34BE AE AB AD ==,设3BE x = 则4AB x AC ==,再证明ADE CDA △∽△ 可得34AC AE CD AD == 可得163CD x = 从而可得结论. 【详解】解:∵ABC 和AGF 是等腰直角三角形 ∴45,B F FAG AB AC ∠=∠=∠=︒=∵AEB AED ∠=∠∴AED BEA ∽∴AD AE DE AB BE AE ==,而4=AD 3AE = ∴34BE AE AB AD == 设3BE x = 则4AB x AC ==同理可得:ADE CDA △∽△∴AD AE DE CD AC AD == ∴34AC AE CD AD == ∴BE AC AB CD = ∴344x x x CD =,即163CD x = ∴3916163BE x CD x ==.训练题10【2021·宁夏固元·联考一模】【答案】D【详解】解:如图 延长AD 过点C 作CE ⊥AD 垂足为E∵ 即∴设AD =5x 则AB =3x∵∠CDE =∠BDA ∠CED =∠BAD∴△CDE ∽△BDA∴∴CE = DE =∴AE = ∴tan ∠CAD =.5tanB 3=53AD AB =12CE DE CD AB AD BD ===32x 52x 152x 15CE AE =。

人教 中考数学(圆的综合提高练习题)压轴题训练附答案

人教 中考数学(圆的综合提高练习题)压轴题训练附答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为3. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =.∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, 由勾股定理求得6BE =.在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为3.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.3.已知:如图,△ABC 中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC 的外接圆,保留作图痕迹,不写作法; (2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π. 【解析】试题分析:(1)按如下步骤作图:①作线段AB 的垂直平分线;②作线段BC 的垂直平分线;③以两条垂直平分线的交点O 为圆心,OA 长为半圆画圆,则圆O 即为所求作的圆. 如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC =3,如图弦AC 所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.4.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.5.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

中考数学(相似提高练习题)压轴题训练及详细答案

中考数学(相似提高练习题)压轴题训练及详细答案

中考数学(相似提高练习题)压轴题训练及详细答案一、相似1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

2.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。

中考数学压轴题100题精选[含答案解析]

中考数学压轴题100题精选[含答案解析]

中考数学压轴题100题精选【含答案】【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE经过点C 时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。

中考数学综合压轴题100题精选(含答案解析)

中考数学综合压轴题100题精选(含答案解析)

中考数学综合压轴题100题精选(含答案解析)一、中考压轴题1.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.2.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.3.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.4.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.7.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.8.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.9.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.10.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.11.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB 的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.12.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.13.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.14.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.15.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.16.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.17.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.18.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.19.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.20.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.21.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.22.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.。

中考数学压轴题100题精选(附答案解析)

中考数学压轴题100题精选(附答案解析)

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学压轴题100题精选含答案【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图16【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D(8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

中考数学压轴题100题含答案解析

中考数学压轴题100题含答案解析

中考数学压轴题100题精选【含答案】【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •(1)求该抛物线的解析式;(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动•设它们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1) 当t = 2时,AP = ,点Q到AC的距离是:(2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4) 当DE经过点C时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (4, 0)、C ( 8, 0)、D ( 8,8) •抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△ CEQ是等腰三角形?请直接写出相应的t值。

2024年中考数学高频压轴题训练——圆-动点问题及参考答案

2024年中考数学高频压轴题训练——圆-动点问题及参考答案

2024年中考数学高频压轴题训练——圆-动点问题1.“同弧或等弧所对的圆周角相等”,利用这个推论可以解决很多数学问题.(1)【知识理解】如图1,圆O 的内接四边形ACBD 中,60ABC ∠=︒,BC AC =,①BDC ∠=;DAB ∠DCB ∠(填“>”,“=”,“<”)②将D 点绕点B 顺时针旋转60︒得到点E ,则线段DB DC DA ,,的数量关系为.(2)【知识应用】如图2,AB 是圆O 的直径,1tan 2ABC ∠=,猜想DA DB DC ,,的数量关系,并证明;(3)【知识拓展】如图3,已知2AB =,A B ,分别是射线DA DB ,上的两个动点,以AB 为边往外构造等边ABC ,点C 在MDN ∠内部,若120D ∠=︒,直接写出四边形ADBC 面积S 的取值范围.2.如图1,对于PMN 的顶点P 及其对边MN 上的一点Q ,给出如下定义:以P 为圆心,PQ 为半径的圆与直线MN 的公共点都在线段MN 上,则称点Q 为PMN 关于点P 的内联点.在平面直角坐标系xOy 中:(1)如图2,已知点(70)A ,,点B 在直线1y x =+上.①若点(34)B ,,点(30)C ,,则在点O ,C ,A 中,点是AOB 关于点B 的内联点;②若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围;(2)已知点(20)D ,,点(42)E ,,将点D 绕原点O 旋转得到点F .若EOF 关于点E 的内联点存在,直接写出点F 横坐标m 的取值范围.3.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(B C '',分别是B C ,的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233A B C B C B C ,,,,,,的横、纵坐标都是整数.在线段112233B C B C B C ,,中,O 的以点A 为中心的“关联线段”是;(2)ABC 是边长为1的等边三角形,点()0A t ,,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,12AB AC ==,.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.已知:点C 为⊙O 的直径AB 上一动点,过点C 作CD ⊥AB ,交⊙O 于点D 和点E ,连接AD 、BD ,∠DBA 的角平分线交⊙O 于点F .(1)若DF =BD ,求证:GD =GB ;(2)若AB =2cm ,在(1)的条件下,求DG 的值;(3)若∠ADB 的角平分线DM 交⊙O 于点M ,交AB 于点N .当点C 与点O 重合时,AD BD DM+=;据此猜想,当点C 在AB (不含端点)运动过程中,AD BD DM +的值是否发生改变?若不变,请求其值;若改变,请说明理由.5.在平面直角坐标系xOy 中,O 的半径为1,对于ABC 和直线l 给出如下定义:若ABC 的一条边关于直线l 的对称线段PQ 是O 的弦,则称ABC 是O 的关于直线l 的“关联三角形”,直线l 是“关联轴”.(1)如图1,若ABC 是O 的关于直线l 的“关联三角形”,请画出ABC 与O 的“关联轴”(至少画两条);(2)若ABC 中,点A 坐标为(23),,点B 坐标为(41),,点C 在直线3y x =-+的图像上,存在“关联轴l ”使ABC 是O 的关联三角形,求点C 横坐标的取值范围;(3)已知A ,将点A 向上平移2个单位得到点M ,以M 为圆心MA 为半径画圆,B ,C 为M 上的两点,且2AB =(点B 在点A 右侧),若ABC 与O 的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC 最大时AC 的长.6.如图,在⊙O 中,AB 为弦,CD 为直径,且AB ⊥CD ,垂足为E ,P 为 AC 上的动点(不与端点重合),连接PD .(1)求证:∠APD =∠BPD ;(2)利用尺规在PD 上找到点I ,使得I 到AB 、AP 的距离相等,连接AD (保留作图痕迹,不写作法).求证:∠AIP+∠DAI =180°;(3)在(2)的条件下,连接IC 、IE ,若∠APB =60°,试问:在P 点的移动过程中,IC IE 是否为定值?若是,请求出这个值;若不是,请说明理由.7.在平面直角坐标系xOy 中,已知线段AB 和点P ,给出如下定义:若PA PB =且点P 不在线段AB 上,则称点P 是线段AB 的等腰顶点.特别地,当90APB ∠≥︒时,则称点P 是线段AB 的非锐角等腰顶点.(1)已知点(20)A ,,(42)B ,.①在点(40)C ,,(31)D ,,(15)E -,,(05)F ,中,是线段AB 的等腰顶点的是▲;②若点P 在直线3(0)y kx k =+≠上,且点P 是线段AB 的非锐角等腰顶点,求k 的取值范围;(2)直线33y x =-+与x 轴交于点M ,与y 轴交于点N .⊙P 的圆心为(0)P t ,,半径为,若⊙P 上存在线段MN 的等腰顶点,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CPOQ的值.9.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,的长为半径的圆上;②B M '=;③DB C ' 为三角形,请证明你的结论.(2)拓展延伸当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB ' 面积的最大值为;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接PQ AQP AB E ∠=∠',,则2B C PQ '+的最小值为.10.在平面直角坐标系xOy 中,过⊙T (半径为r )外一点P 引它的一条切线,切点为Q ,若0<PQ≤2r ,则称点P 为⊙T 的伴随点.(1)当⊙O 的半径为1时,①在点A(4,0),B(0,),C(1,)中,⊙O 的伴随点是▲;②点D 在直线y =x+3上,且点D 是⊙O 的伴随点,求点D 的横坐标d 的取值范围;(2)⊙M 的圆心为M(m ,0),半径为2,直线y =2x ﹣2与x 轴,y 轴分别交于点E ,F .若线段EF 上的所有点都是⊙M 的伴随点,直接写出m 的取值范围.11.定义:在平面直角坐标系xOy 中,点P 为图形M 上一点,点Q 为图形N 上一点.若存在OP OQ =,则称图形M 与图形N 关于原点O “平衡”.(1)如图,已知⊙A 是以()1,0为圆心,2为半径的圆,点()1,0C -,()2,1D -,()3,2E .①在点C ,D ,E 中,与⊙A 关于原点O “平衡”的点是;②点H 为直线y x =-上一点,若点H 与⊙A 关于原点O “平衡”,点H 的横坐标的取值范围为:;(2)如图,已知图形G 是以原点O 为中心,边长为2的正方形.⊙K 的圆心在x 轴上,半径为2.若⊙K 与图形G 关于原点O “平衡”,请直接写出圆心K 的横坐标的取值范围.12.阅读下列材料,并按要求解答相关问题:【思考发现】根据直径所对的圆周角是直角,我们可以推出“如果一条定边所对的角始终为直角,那么所有满足条件的直角顶点组成的图形是以定边为直径的圆或圆弧(直径的两个端点除外)”这一正确的结论.如图1,若AB 是一条定线段,且90APB ∠=︒,则所有满足条件的直角顶点P 组成的图形是定边AB 为直径的O (直径两端点A 、B 除外)(1)已知:如图2,四边形ABCD 是边长为8的正方形,点E 从点B 出发向点C 运动,同时点F 从点C 出发以相同的速度向点D 运动,连接AE ,BF 相交于点P .①当点E 从点B 运动到点C 的过程中,APB ∠的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请直接写出APB ∠的度数.②当点E 从点B 运动到点C 的过程中,点P 运动的路径是()A .线段;B .弧;C .半圆;D .圆③点P 运动的路经长是▲.(2)已知:如图3,在图2的条件下,连接CP ,请直接写出E 、F 运动过程中,CP 的最小值.13.对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.在平面直角坐标系xOy 中,已知点()60A ,,(0B .(1)在()30R ,,()20S ,,(1T 三点中,点A 和点B 的等距点是;(2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为▲;②若直线y a =上存在点A 直线2y =-的等距点,求实数a 的取值范围;(3)记直线AB 为直线1l ,直线2l :33y x =-,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0m ≠,0n ≠),求m n ≠时,求r 的取值范围.14.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.15.如图,在ABC 中,AB BC =,30CAB ∠=︒,8AC =,半径为2的O 从点A 开始(如图1)沿直线AB 向右滚动,滚动时始终与直线AB 相切(切点为D ),当O 与ABC 只有一个公共点时滚动停止,作OG AC ⊥于点G .(1)图1中,O 在AC 边上截得的弦长AE =;(2)当圆心落在AC 上时,如图2,判断BC 与O 的位置关系,并说明理由.(3)在O 滚动过程中,线段OG 的长度随之变化,设AD x =,OG y =,求出y 与x 的函数关系式,并直接写出x 的取值范围.16.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的“近距离”,记为d(M ,N),特别地,若图形M ,N 有公共点,规定d(M ,N)=0.已知:如图,点A(2-,0),B(0,.(1)如果⊙O 的半径为2,那么d(A ,⊙O)=,d(B ,⊙O)=.(2)如果⊙O 的半径为r ,且d (⊙O ,线段AB )=0,求r 的取值范围;(3)如果C(m ,0)是x 轴上的动点,⊙C 的半径为1,使d (⊙C ,线段AB )<1,直接写出m 的取值范围.17.在平面直角坐标系xOy 中,对于点()P m n ,,我们称直线y mx n =+为点P 的关联直线.例如,点()24P ,的关联直线为24y x =+.(1)已知点()12A ,.①点A 的关联直线为;②若O 与点A 的关联直线相切,则O 的半径为;(2)已知点()02C ,,点()0.D d ,点M 为直线CD 上的动点.①当2d =时,求点O 到点M 的关联直线的距离的最大值;②以()11T -,为圆心,3为半径作.T 在点M 运动过程中,当点M 的关联直线与T 交于E ,F 两点时,EF 的最小值为4,请直接写出d 的值.18.在平面直角坐标系xOy 中,给定圆C 和点P ,若过点P 最多可以作出k 条不同的直线,且这些直线被圆C 所截得的线段长度为正整数,则称点P 关于圆C 的特征值为.k 已知圆O 的半径为2,(1)若点M 的坐标为()11,,则经过点M 的直线被圆O 截得的弦长的最小值为,点M 关于圆O 的特征值为;(2)直线y x b =+分别与x ,y 轴交于点A ,B ,若线段AB 上总存在关于圆O 的特征值为4的点,求b 的取值范围;(3)点T 是x 轴正半轴上一点,圆T 的半径为1,点R ,S 分别在圆O 与圆T 上,点R 关于圆T 的特征值记为r ,点S 关于圆O 的特征值记为.s 当点T 在x 轴正轴上运动时,若存在点R ,S ,使得3r s +=,直接写出点T 的横坐标t 的取值范围.答案解析部分1.【答案】(1)60︒;=;DC DB DA=+(2)解:在AB 上取一点E ,使ADE BDC ∠=∠,如图所示:∵AB 是圆O 的直径,1tan 2ABC ∠=,∴1tan 2AC ABC BC BC =∠⋅=,∴在Rt ACB 中,52AB BC ==,∵ BD BD =,∴DAB DCB ∠=∠,∵ADE BDC ∠=∠,∴ADE CDB ∽,∴ADAECD CB =,∴AD CB CD AE ⋅=⋅,∵ AD AD =,∴DBA DCA ∠=∠,∵ADE CDE CDB CDE ∠-∠=∠-∠,即ADC BDE ∠=∠,∴BDE CDA ∽,∴BDBECD AC =,∴BD AC CD BE ⋅=⋅,∴()AD CB AC BD CD AE CD BE CD AE BE CD AB⋅+⋅=⋅+⋅=⋅+=⋅,∴AB CD AC DB AD BC ⋅=⋅+⋅,∴122BC CD BC DB AD BC ⋅=⋅+⋅,∴5122CD DB AD ⋅=⋅+,∴5122CD DB AD =+,即2DB AD =+,故答案为:2DB AD =+.(3)解:∵A B ,分别是射线DA DB ,上的两个动点,120D ∠=︒,ABC 是等边三角形,∴四边形ADBC 的两个对角180ADB ACB ∠+∠=︒,∴构造四边形ADBC 的外接圆,∴根据四边形外接圆的性质可得:当点A 和点D 重合时,四边形ADBC 面积S 最小;当CD AB ⊥时,四边形ADBC 面积S 最大,①当点A 和点D 重合时,四边形ADBC 面积S 最小,∵CBD 时等边三角形,且2AB =,∴60CBD ∠=︒,2AB BD BC ===∴1sin 602CBD S BC BD =⋅⋅⋅= ,②当CD AB ⊥时,四边形ADBC 面积S 最大,∵CBD 时等边三角形,且2AB =,∴30ACD ∠=︒,2AC =,∴tan 233AD ACD AC =∠⋅==,∴11232322233ADC S AD DC =⋅⋅=⨯= ,∴23ADC ADBC S S == 四边形;433S <≤.2.【答案】(1)解:①O ,C ②当点B 的坐标为(0,1)时,如图,此时以BO 为半径的B 与线段OA 相切于点O ,∴点O 是OAB 关于点B 的内联点;当点B 移动到在y 轴左侧时,作图发现B 与x 轴有相交,且有一个交点不在线段OA 上,∴不再有OAB 关于点B 的内联点;当点B 的坐标为(7,8)时,以BA 为半径的B 与x 轴相切于点A ,∴点A 是OAB 关于点B 的内联点;当点B 直线x=7的右侧时,以BA 为半径的B 与x 轴相交,且有一个交点不在线段OA 上∴不再有OAB 关于点B 的内联点;综上所述,若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围为18n ≤≤;(2)80m 555m -≤≤≤≤或3.【答案】(1)22B C (2)解:由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C '' 是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D ,连接OB ',易得B C y ''⊥轴,∴12B D DC ''==,∴32OD ==,32==,∴OA =,∴t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =,∴t =;(3)当1min OA =时,此时BC =;当2max OA =时,此时2BC =.4.【答案】(1)证明:∵CD ⊥直径AB ,∴ BDBE =,∵DF =BD ,∴ DFBD =,∴ BEDF =,∴∠1=∠2,∴DG =BG(2)解:∠DBA 的角平分线交⊙O 于点F ,∴∠2=∠3,由(1)知,∠1=∠2,∴∠1=∠2=∠3,∵∠BCD =90°,∴∠1+∠2+∠3=90°,∴∠1=∠2=∠3=30°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠4=90°﹣∠2﹣∠3=30°,∵AB =2,∴BD =1,在Rt △BCD 中,∠1=30°,∴BC =12BD =12,在Rt △BCG 中,∠3=30°,∴CG ==6,∴BG =2CG =33,由(1)知,DG =BG =33(3)5.【答案】(1)解:如图1,作BM ⊥x 轴,垂足为M ,根据题意AB=AE=EF=BF=,且∠EFO=∠BFM=45°,∴∠EFB=90°,∴四边形ABFE 是正方形,∴边AE ,BF 的中点所在直线就是ABC 与O 的一条“关联轴”;∵O 的半径为1,∴,且∠EFG=90°,∴四边形EFGH 是正方形,∵∠EFG+∠EFB=180°,∴B 、F 、G 三点共线,∴直线EF 是ABC 与O 的一条“关联轴”.(2)解:如图2,根据A (2,3),B (4,1),C (4,1),计算2=,故AB 不能落在圆的内部;过点A 作AN ⊥y 轴,垂足为N ,则AN=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时0C x =;作点B 关于x 轴的对称点P ,此时BP=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时4C x =,综上所述,点C 横坐标的范围是04C x ≤≤.(3)解:OC 的最小值为2-;OC 最大,根据勾股定理,AC=4.6.【答案】(1)证明:∵直径CD ⊥弦AB ,∴ AD BD=,∴∠APD=∠BPD ;(2)解:如图,作∠BAP 的平分线,交PD 于I ,证:∵AI 平分∠BAP ,∴∠PAI=∠BAI ,∴∠AID=∠APD+∠PAI=∠APD+BAI ,∵ AD BD=,∴∠DAB=∠APD ,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI ,∴∠AID=∠DAI ,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)解:如图2,连接BI ,AC ,OA ,OB ,∵AI 平分∠BAP ,PD 平分∠APB ,∴BI 平分∠ABP ,∠BAI=12∠BAP ,∴∠ABI=12∠ABP ,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP )=60°,∴∠AIB=120°,∴点I 的运动轨迹是 AB ,∴DI=DA ,∵∠AOB=2∠APB=120°,∵AD ⊥AB ,∴ AD BD=,∴∠AOB=∠BOD=60°,∵OA=OD ,∴△AOD 是等边三角形,∴AD=AO ,∵CD 是⊙O 的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.7.【答案】(1)解:①C(4,0),E(-1,5);②(Ⅰ)当点(40),在直线3y kx =+上时,430k +=,34k =-;(Ⅱ)当点(31),在直线3y kx =+上时,331k +=,23k =-;(Ⅲ)当点(22),在直线3y kx =+上时,232k +=,12k =-;结合图象可得3142k -≤≤-且23k ≠-;(2)解:直线333y x =-+与x 轴的交点M 坐标为()30,,与y 轴交点N 的坐标为(03,,∴tan 3NMO ∠=,∴30NMO ∠=︒,如图,作出线段MN 的垂直平分线,如图为两个临界情况:,利用待定系数法求得MN 垂直平分线解析式为y =,∴(0R -,,12230ORQ P RQ ∠=∠=︒,∴1112PR PQ ==,2222P R P Q ==,∴(10P ,(20P -,,∴t -≤<.8.【答案】(1)A 、B 、D(2)解:如图,依题意作⊙O 的“等直三角形”△TQP∴TQ=PQ ,∠TQP=90°过Q 点作MH //x 轴,交y 轴于M 点,过点P 作PH ⊥MH 于H 点∴∠TMQ=∠QHP=90°∴∠TQM+∠MTQ=∠TQM+∠HQP=90°∴∠MTQ=∠HQP∴△TMQ ≌△QHP (AAS )∴TM=QH ,MQ=HP设Q (x ,y )∴HM=MQ+QH=MQ+TM=x+3-y ,PH=MQ=x∴P (x-y+3,x+y )∵C (3,0)∴∵∴CP OQ .9.【答案】(1)BE ;3332-;等边;证明:B′D=BC CD ==,∴△DB'C 为等边三角形(2)310.【答案】(1)B ,C ;解:②如图2中,设点D 的坐标为(3)d d +,当过点D 的切线长为22r =时,OD ==由两点之间的距离公式得:OD =解得1221d d =-=-,结合图象可知,点D 的横坐标d 的取值范围是21d -≤≤-;(2)解:对于22y x =-当0y =时,220x -=,解得1x =,则点E 的坐标为(10)E ,当0x =时,2y =-,则点F 的坐标为(02)F -,⊙M 的半径为2,⊙M 的圆心为(0)M m ,24r ∴=,OM m=由题意,由以下两种情况:如图3-1中,点M 在点E 的右侧设FT 是⊙M 的切线则有两个临界位置:4FT =和点E 对应的切线长为0当4FT =时,则4OM m FT ===当点E 对应的切线长为0,即2EM =12EM m ∴=-=解得3m =结合图象得,当34m <≤时,线段EF 上的所有点都是⊙M 的伴随点②如图3-2和3-3中,点M 在点E 的左侧则有如下两个临界位置:如图3-2,设ET 是⊙M 的切线,连接MT ,则90MTE ∠=︒当4ET =时,2222245EM MT ET =+=+此时15m -=解得15m =-如图3-3,当⊙M 在直线EF 的左侧与EF 相切时,设切点为T ,连接MT∵(10)(02)E F -,,,∴12OE OF ==,∴22125EF =+=∵EF 是切线∴EF MT⊥∴90MTE FOE ∠=∠=︒∵MET FEO∠=∠∴MTE FOE~ ∴EM MTEF OF =,即22=解得EM =,即1m -=解得1m =-结合图象得,当11m -≤<-时,线段EF 上的所有点都是⊙M 的伴随点综上,m 的取值范围是11m -≤<-或34m <≤.11.【答案】(1)点C 、D ;22H x -≤≤-或22H x ≤≤(2)解: 图形G 是以原点O 为中心,边长为2的正方形,∴原点O 到正方形的最短距离是1d =,最长距离是d =,⊙K 与图形G 关于原点O “平衡”,∴原点O 到⊙K 上一点的距离1d ≤≤,⊙K 的圆心在x 轴上,半径为2,∴当⊙K 在x 轴正半轴时,圆心K 的横坐标的取值范围为:22x -≤≤+,当⊙K 在x 轴负半轴时,圆心K 的横坐标的取值范围为:22x --≤≤,综上所述,圆心K 的横坐标的取值范围22x -≤≤+或22x --≤≤.12.【答案】(1)解:①90°;②B ;③2π(2)解:413.【答案】(1)S(2,0)(2)解:①(4,0)或(8,0);②如图,设直线y a =上的点Q 为点A 和直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C .点Q 为点A 和直线2y =-的等距点,QA QC ∴=.22QA QC ∴=.点Q 在直线y a =上,∴可设点Q 的坐标为()Q x a ,.()()22262x a a ∴-+=--⎡⎤⎣⎦.整理得2123240x x a -+-=.由题意得关于x 的方程2123240x x a -+-=有实数根.()()()212413241610a a ∴∆=--⨯⨯-=+≥.解得1a ≥-.(3)解:如图.直线l 1和直线l 2的等距点在直线l 3:33y x =-+上,直线l 1和y 轴的等距点在直线4l y =+:或33y x =+上,点O 与l 4的距离为32,点O 与l 3的距离为,点O 与l 5的距离为3,当r <时,n=0不符合题意,当r=时,m=2,n=0,符合题意,当<r <3时,m=n=2,不符合题意,当r≥3时,m=2,n=3或4,符合题意,综上所述,r=或r≥3.14.【答案】(1)C(2)解:∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1).∴AP =BP ==2,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP=OG=1,OE∥AB,∴PE=AE=,∴OE=12AG=1,∴K1(﹣1﹣,0),k2(1﹣,0),k3(﹣1,0),k4(1+,0),∵点K为点P与线段AB的共圆点,∴﹣1﹣≤x k≤1﹣或﹣1≤x k≤1+(3)解:分两种情况:①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=12x+3相切于点F,连接EF,则EF⊥FH,当x=0时,y=3,当y=0时,y=12x+3=0,x=﹣6,∴ON=3,OH=6,∵tan∠EHF=ON EFOH FH=36=12,设EF=a,则FH=2a,EH=a,∴OE=6﹣a,Rt △OEP 中,OP =1,EP =a ,由勾股定理得:EP 2=OP 2+OE 2,∴2221(6)a =+-,解得:a =2+(舍去)或2,∴QG =2OE =2(6﹣a )=﹣3+2,∴m≤3﹣2;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =3+2,∴m≥3+2,综上,m 的取值范围是m≤3﹣2或m≥3+215.【答案】(1)2(2)解:BC 与O 相切;理由:如图2,过点O 作OH BC ⊥于H ,连接OD ,∵O 与AB 相切于D ,∴OD AB ⊥,在Rt AOD 中,30BAC ∠=︒,∴24OA OD ==,∵8AC =,∴4OC =,在ABC 中,AB BC =,∴30C BAC ∠=∠=︒,在Rt OHC 中,30C ∠=︒,∴122OH OC OD ===,∴BC 与O 相切,(3)解:①当点O 在AC 的左侧时,连接OD 交AC 于F ,如备用图1,∵O 与AB 相切于D ,∴OD AB ⊥,∵OG AC ⊥,∴30FOG BAC ∠=∠=︒,在Rt FDA 中,tan FD BAC AD ∠=,∴tan 3FD AD BAC x =⋅∠=,∴23OF x =-,在Rt FOG 中,331cos 2322y OG OF FOG ⎛⎫==⋅∠=-⨯-+ ⎪ ⎪⎝⎭,即12y x =-+,此时x 的取值范围为0x ≤≤;②当点O 在AC 的右侧时,连接DO 并延长交AC 于F ,如备用图2,同①的方法得,33FD x =,∴23OF x =-,∵FD AB ⊥,∴90BAC AFD ∠+∠=︒,∴30FOG BAC ∠=∠=︒,在Rt FOG 中,331cos 2322y OG OF FOG x x ⎛⎫==⋅∠=-⨯- ⎪⎪⎝⎭,即12y x =-,此时x 的取值范围为1433x ≤≤.16.【答案】(1)0;2-(2)解:过点O 作OD ⊥AB 于点D ,∵点A(2-,0),B(0,.∴2OA OB ==,,∴4AB ==,∵1122OA OB AB OD ⋅=⋅,∴112422OD ⨯⨯=⨯⨯∴DO =,∵d (⊙O ,线段AB )=0,∴当⊙O 的半径等于OD 时最小,当⊙O 的半径等于OB 时最大,∴r r ≤≤(3)43423m -<<-17.【答案】(1)2y x =+(2)解:①当2d =时,()20D ,,设直线CD 的解析式为:y kx b =+,()02C ,,202k b b +=⎧∴⎨=⎩,解得:12k b =-⎧⎨=⎩,∴直线CD 的解析式为:y x =-+,设点M 的坐标为()2m m -+,,∴点M 的关联直线为:()212y mx m m x =-+=-+,∴点M 的关联直线经过定点()12N ,,如图2,过点O 作直线2y mx m =--+的垂线,垂足为H ,连接ON ,ON OH ∴≥,∴当点H与点N重合时,OH最大,即点O到点M的关联直线的距离最大,∴点O到点M=;2 d=②或2 3-18.【答案】(1);3(2)解:设点G是O的特征值为4的点,∴经过一点G且弦长为4(最长弦)的直线有1条,弦长为3的直线有2条,弦长为2的直线有且只有1条, 经过点G的直线被O截得的弦长的最小值为2,=,∴关于O的特征值为4的所有点都在以O为半径的圆周上,直线y x b=+分别与x,y轴交于点A、B,()0A b∴-,,()B b,,OA OB b∴==,45OBH∴∠=︒,当0b>时,线段AB与以O为半径的圆相切时,点G特征值为4,设切点为为H,连接OH,则OH=,OB∴==,b∴=,设以O 为半径的圆与y 轴正半轴的交点记为1B ,则1OB =,当线段AB 与以O 1B 时,可得b =,b ≤≤同理可求当0b <时,b ≤≤,综上,b b b ≤≤-≤(3)当372122t -≤≤+时,存在点R ,S ,使得3r s +=。

2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)

2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)

2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。

中考数学(二次函数提高练习题)压轴题训练附详细答案

中考数学(二次函数提高练习题)压轴题训练附详细答案

中考数学(二次函数提高练习题)压轴题训练附详细答案一、二次函数1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0),将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.2.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6),②存在,M(﹣1,11)或(﹣1,3﹣11)或(﹣1,﹣1)或(﹣1,132). 【解析】【分析】 (1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=12DE ,列方程可得P 的坐标; ②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标.【详解】解:(1)∵B (1,0),∴OB=1,∵OC=2OB=2,∴C (﹣2,0),Rt △ABC 中,tan ∠ABC=2,∴AC 2BC =, ∴AC 23=, ∴AC=6, ∴A (﹣2,6), 把A (﹣2,6)和B (1,0)代入y=﹣x 2+bx+c 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2﹣3x+4;(2)①∵A (﹣2,6),B (1,0),∴AB 的解析式为:y=﹣2x+2,设P (x ,﹣x 2﹣3x+4),则E (x ,﹣2x+2),∵PE=12DE , ∴﹣x 2﹣3x+4﹣(﹣2x+2)=12(﹣2x+2), ∴x=-1或1(舍),∴P (﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∵B(1,0),A(﹣2,6)∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,)或(﹣1,3ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,∴y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,∴y=132,∴M(﹣1,132);综上所述,点M的坐标为:∴M(﹣1,)或(﹣1,3)或(﹣1,﹣1)或(﹣1,132).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.3.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.【解析】【详解】 试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫ ⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62b x a =-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是3考点:二次函数的实际应用.4.如图,在平面直角坐标系中有抛物线y =a (x ﹣2)2﹣2和y =a (x ﹣h )2,抛物线y =a (x ﹣2)2﹣2经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B ;点P 是抛物线y =a (x ﹣2)2﹣2上一动点,且点P 在x 轴下方,过点P 作x 轴的垂线交抛物线y =a (x ﹣h )2于点D ,过点D 作PD 的垂线交抛物线y =a (x ﹣h )2于点D ′(不与点D 重合),连接PD ′,设点P 的横坐标为m :(1)①直接写出a 的值;②直接写出抛物线y =a (x ﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y =a (x ﹣h )2经过原点时,设△PDD ′与△OAB 重叠部分图形周长为L : ①求PD DD '的值; ②直接写出L 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、D 、D ′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1; ②L =2(22)(02)21(221)4(24)m m m π⎧+<⎪⎨+++<<⎪⎩…; (3)h =±3 【解析】【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值.【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中,得:0=a (0﹣2)2﹣2,解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭, 2222322m m 22,PG m 22m FH PH PF ===-+-=-+ ∵DD ′∥EG EG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG221224222m m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)2L ⎧+<⎪∴=⎨+-+++<<⎪⎩…; (3)如图3,∵OADD ′为菱形∴AD =AO =DD ′=4,∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.5.已知,抛物线y=x 2+2mx(m 为常数且m≠0).(1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A (-n+5,0),B(n-1,0)在该抛物线上,点M 为抛物线的顶点,求△ABM 的面积.(3)若点(2,p),(3,g ),(4,r)均在该抛物线上,且p<g<r ,求m 的取值范围.【答案】(1)抛物线与x 轴有2个交点,理由见解析;(2)△ABM 的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b 2-4ac 的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x 轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B 两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m 的值,进而求出抛物线的解析式,得出A,B,M 三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m 的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m 的取值范围,综上所述,求出m 的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m 的式子表示出p,g,r ,再代入 p<g<r 即可列出关于m 的不等式组,求解即可。

中考数学压轴题专项训练十套(含答案)

中考数学压轴题专项训练十套(含答案)

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,已知直线112y x=-+与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;(2个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.(1)求抛物线的解析式;(2)点K为线段AB上一动点,过点K作x轴的垂线,交直线CD于点H,交抛物线于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.②连接PA ,以PA 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为(1,0),直线AB 交抛物线C 1于另一点C .(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.图1 图2做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图1,在平面直角坐标系中,已知点A(0,,点B在x轴正半轴上,且∠ABO=30°.动点P在线段AB上,从点A向点B个单位长度的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边三角形PMN.(1)求直线AB的解析式;(2)求等边三角形PMN的边长(用含有t的代数式表示),并求出当等边三角形PMN的顶点M运动到与原点O重合时t的值;(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边三角形PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2时S与t的函数关系式,并求出S的最大值.图2图1做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,平面直角坐标系xOy中,点A的坐标为( 2,2),点B的坐标为(6,6),抛物线经过A,O,B三点.连接OA,OB,AB,线段AB交y 轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O,B重合),直线EF与抛物线交于M,N两点(点N在y轴右侧),连接ON,BN,当点F在线段OB 上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN 相似(点B,O,P分别与点O,A,N对应)的点P的坐标.做题时间:_______至_______ 家长签字:_____________共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,已知点A,B,C的坐标分别为( 1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式.(2)点P从点A出发,沿x轴正方向以每秒1个单位长度的速度向点B移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.设点P运动的时间为t(0≤t≤6)秒,△PBF的面积为S.①求S与t的函数关系式;②当t为何值时,△PBF的面积最大?最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC ⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值.(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值.(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.23.(1)21433y x x =-+; (2)22102412311143422tt S t t t t t ⎧<⎪⎪=-<⎨⎪⎪-+-<<⎩≤≤()()(); (3)存在,t =1或2.中考数学压轴题专项训练(二)参考答案23.(1)213222y x x =-++,(3 2),D ; (2)123(0 2) 2) 2),,,P P P --; (3)存在,点P的坐标为 (或.中考数学压轴题专项训练(三)参考答案中考数学压轴题专项训练(四)参考答案中考数学压轴题专项训练(六)参考答案中考数学压轴题专项训练(七)参考答案中考数学压轴题专项训练(八)参考答案中考数学压轴题专项训练(十)参考答案。

中考数学压轴题100题精选及答案全3篇

中考数学压轴题100题精选及答案全3篇

中考数学压轴题100题精选及答案全第一篇:数与代数1.下列各组数中,哪一组数最大?A. \frac{1}{2} ,\frac{2}{3},\frac{3}{4},\frac{4}{5}B. 0.99,0.999,0.9999,0.99999C. \sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7}D. 1,10^2,10^3,10^42. 一个整数,十位数与各位数的和为9,再去掉该整数中的各位数,十位数与剩下的数字的和为40,该整数为__________。

A. 45B. 54C. 63D. 723. 已知 a+b=2, ab=-1,求a^2+b^2的值。

A. 3B. 5C. 7D. 94. 解方程 2x-5=3x+1。

A. x=-3.5B. x=-2C. x=2D. x=3.55. 有两个数,各位数字相同,但顺序颠倒,若它们的和为110,这两个数分别是多少?A. 47,74B. 49,94C. 56,65D. 59,956. 若x-3y=-7,x+4y=1,则y的值为__________。

A. -2B. -1C. 0D. 17. 16÷(a-2)=4,则 a 的值为__________。

A. 6B. 8C. 10D. 128. 若a:b=5:3,b:c=7:4,则a∶b∶c=__________。

A. 35:21:12B. 25:15:12C. 25:21:16D. 35:15:169. 若a+3b=5,3a-5b=7,则 a 的值为__________。

A. -2B. -1C. 0D. 110. 已知x+y=3,xy=2,则y的值为__________。

A. 1B. 2C. 3D. 4第二篇:几何图形11. 已知正方形 ABCD 的边长为6,以 BC 为边,画一个正三角形 BCE,连接 AE,AD,请问△ADE 和正方形 ABCD 的面积之比是多少?A. \frac{2}{9}B. \frac{1}{2}C. \frac{4}{9}D.\frac{5}{6}12. 把一张纸平整地放在桌上,在纸的中央画一个圆形,请问可以用多少个直径为5 厘米的圆去覆盖这个圆形(圆覆盖圆)?A. 1B. 2C. 3D. 413. 已知△ABC 是等腰三角形,AB=AC,E是BC中点,DE∥AC,AE=CD=2,求△ABC 的面积。

中考数学(旋转提高练习题)压轴题训练及答案解析(1)

中考数学(旋转提高练习题)压轴题训练及答案解析(1)

一、旋转真题与模拟题分类汇编(难题易错题)1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF 有怎样的数量关系?证明你发现的结论.【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.3.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.4.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.5.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC ,连结DF 、BF .∴AF=FC=AC ,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC ,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD ,AC=FC ,∴DC=FC .②∵BC=BC ,③∴由①②③,得△DCB ≌△FCB ,∴DB=BF ,∠DBC=∠FBC .∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD ,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC ,AC=AF ,∴AB=AF .⑤∵AD=AD ,⑥∴由④⑤⑥,得△DAB ≌△DAF .∴FD=BD .∴FD=BD=FB .∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.6.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC2+CO2=CD2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD.【解析】试题分析:(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题7.正方形ABCD和正方形AEFG的边长分别为2和22,点B在边AG上,点D在线段EA 的延长线上,连接BE.(1)如图1,求证:DG⊥BE;(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,当点B恰好落在线段DG上时,求线段BE的长..【答案】(1)答案见解析;(2)26【解析】【分析】(1)由题意可证△ADG≌△ABE,可得∠AGD=∠AEB,由∠ADG+∠AGD=90°,可得∠ADG+∠AEB=90°,即DG⊥BE;(2)过点A作AM⊥BD,垂足为M,根据勾股定理可求MG的长度,即可求DG的长度,由题意可证△DAG≌△BAE,可得BE=DG.【详解】(1)如图,延长EB交GD于H∵四边形ABCD和四边形AEFG是正方形∴AD=AB,AG=AE,∠DAG=∠BAE=90°∴△ADG≌△ABE(SAS)∴∠AGD=∠AEB∵∠ADG+∠AGD=90°∴∠ADG+∠AEB=90°∴DG⊥BE(2)如图,过点A作AM⊥BD,垂足为M∵正方形ABCD和正方形AEFG的边长分别为2和22,∴AM=DM=2,∠DAB=∠GAE=90°∴MG=22-=6,∠DAG=∠BAEAG MA∴DG=DM+MG=2+6,由旋转可得:AD=AB,AG=AE,且∠DAG=∠BAE∴△DAG≌△BAE(SAS)+∴BE=DG=26【点睛】考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.8.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB,∴∠A CC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,∴∠BAB′=40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年中考数学压轴题提高练习题1、(安徽)按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。

(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。

(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解】(1)当P=12时,y=x +()11002x -,即y=1502x +。

∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)……3分 又当x=20时,y=1100502⨯+=100。

而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;……6分(2)本题是开放性问题,答案不唯一。

若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。

如取h=20,y=()220a x k -+,……8分∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ①令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+。

………14分 2、(常州)已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)由(1)2(m m -=+g g,得m =-k = ····· 2分 (2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =BC =30BCE =o ∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =o∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ····························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =o∠,设11(0)DF m m =>,则1AF =,12AD m =,由点(1A --,,得点11(1)D m --,.因此11(1)()m --=g解之得1m =10m =舍去),因此点63D ⎛⎫⎪ ⎪⎝⎭,.5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =o∠,从而150ACD =o∠.作DH x ⊥轴,H 为垂足,则60DCH =o∠,设22(0)CH m m =>,则2DH =,22CD m =由点(10)C -,,得点22(1)D m -+, 因此22(1)m -+=.解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(2D -,,四边形ABCD 是梯形. ·············· 9分图1图2综上所述,函数y =图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:63D ⎛⎫⎪ ⎪⎝⎭,或(1D或(2D -,. ······ 10分3、(福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.解:(1)抛物线的对称轴5522a x a -=-=………2分(2)(30)A -,(54)B ,(04)C ,…………5分 把点A 坐标代入254y ax ax =-+中,解得16a =-………6分 215466y x x ∴=-++…………………………………………7分图3(3)存在符合条件的点P 共有3个.以下分三类情形探索.设抛物线对称轴与x 轴交于N ,与CB 交于M . 过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =,5.5AN =,52BM =① ········································································································· 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= ················· 8分在1Rt ANP △中,1PN ====152P ⎛∴ ⎝⎭, ························· 9分 ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,2MP ====分252P ⎛∴ ⎝⎭························11分 ③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△.312P K BQ CK AQ ∴==. 3 2.5P K =Q 5CK ∴= 于是1OK = ················ 13分 3(2.51)P ∴-, ··························· 14分注:第(3)小题中,只写出点P 的坐标,无任何说明者不得分. 4、(福州)如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线(k>0)的交点 , ∴k = 4 ×2 = 8 . (2) 解法一:如图12-1,∵ 点C 在双曲线上,当y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 .图12Ox A yBx y 21xy 8=S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 . 解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F , ∵ 点C 在双曲线8y x=上,当y = 8时,x = 1 . ∴ 点C 的坐标为 ( 1, 8 ). ∵ 点C 、A 都在双曲线8y x=上 , ∴ S △COE = S △AOF = 4 。

相关文档
最新文档