高压电力电缆附件选型问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压电力电缆附件选型问题
摘要:高压交联电缆附件的正确选型不仅影响电缆工程的施工和投资,也直接影响电缆系统的安全运行和使用寿命。文章扼要分析了当今国内、外常用产品的结构特点及制造、安装和使用中应注意的问题,提出高压交联电缆附件的选型原则,并对涉及结构选型方面的一些问题进行了探讨。
关键词:高压交联电缆;电缆附件;户外终端;GIS终端;中间接头;结构选型;品质评判
110 kV及以上电压等级的交联电缆在我国已有20余年运行历史,期间发生过不少绝缘击穿事故。统计表明,这些击穿事故大多数发生在电缆附件上,电缆本体故障率较低。分析电缆附件故障的原因,除安装质量问题外,有不少是由于电缆附件本身存在问题而引起的,包括选型不当和制造质量。因此,在电缆工程项目中,选择合适的电缆附件至关重要。
1电缆附件选型原则
评判电缆附件品质的因素是多元的,原则上有以下几个方面。
(1)电气性能。电气性能的好坏是评判电缆附件品质的首要原则。主要考虑电缆附件的电场分布是否合理,改善电场分布的措施是否恰当,材料的电气强度、介质损耗和产品的绝缘余度等。同时,还须考虑电气性能的稳定性,包括电缆附件材料的化学、物理性能和结构的稳定性等。例如应力控制材料性能是否稳定,应力锥是否容易变形,电缆绝缘回缩对电缆附件的电场分布的影响及防止措施,各种材料结合的相容性,结合界面性能的稳定性等。此外,还应考虑电缆附件的热性能,如介质损耗、导体连接的接触电阻及其稳定性、热量的传导释放、热胀冷缩对各部件电性能和机械性能的影响等。
(2) 密封性能。密封防潮性能直接影响电缆附件的电气性能和使用寿命。终端的密封结构是否可靠、稳定。一般来说,中间接头也应有一个与之相匹配的金属防潮外壳,特别是直埋或使用在潮湿环境中。
(3) 机械性能。终端应该有足够的抗弯、防震的能力。中间接头应能承受一定的拉力和防止外力损伤的措施。
(4) 工艺性能。工艺性能是电缆附件设计和选型的一个重要的条件,安装工艺应尽量简单,便于现场施工,工期要短;品质优良的产品对现场环境要求和对安装工人技术水平依赖不高;安装质量容易控制,质量可靠等。
(5) 适合本工程的要求。当今国内、外市场上超高压交联电缆附件品种繁多,结构多不相同。众多类型的电缆附件各有特点,近十多年来相互并存和发展。电缆附件的选型应该根据实际使用要求决定,不
必盲目追求新潮,适用才是最好。
(6) 制造厂商的质量保证体系。这一条是重要而又容易被忽视的选型原则。预制型电缆附件出厂时,制造厂提供的是橡胶预制件、预制应力锥、瓷套、外壳、浸渍剂等零部件和材料,在现场安装时再装配成整体终端或接头。每一个零部件的制造质量和安装工艺好坏都直接影响电缆附件的质量。这套质量保证程序至少应包括以下内容:①出厂时,应该严格对关键零部件(例如橡胶应力锥、GIS的环氧树脂套管、浸渍剂、中间接头的预制件等)进行出厂试验。仔细检查(审查)试验和测量设备是否可靠,试验方法是否有效、试验人员是否训练有素和试验记录是否齐全;②制造厂派遣的安装和施工人员是否受到严格培训和有足够的施工经验;③制造厂不同部门之间的协调是否良好;④以往的销售和运行记录。
2主要型式及特点
2.1电缆终端
国内、外新建设的高压电缆工程,大多是采用预制型电缆附件。预制型电缆终端的种类很多,传统的预制型终端的内绝缘采用预制应力锥控制电场,外绝缘是瓷套管(或环氧树脂套管)。套管与应力锥之间一般都充硅油或者聚丁烯、聚异丁烯之类的绝缘油。出厂时,制造厂提供的是橡胶预制应力锥、瓷套、绝缘油等零部件,在现场安装时再装配成终端。现代预制型终端有3种基本结构[1]:
(a)户外终端(b)GIS / 变压器终端
1-导体引出杆;2-瓷套管;3-环氧树脂套管;4-绝缘油;5-橡胶预制应力锥
图1橡胶应力锥直接套在电缆绝缘层上的结构示意图
(1)将橡胶预制应力锥机械扩张后套在电缆的绝缘层上,其典型结构示意图见图1。这种结构的特点是应力锥直接套在电缆的绝缘上, 依靠应力锥材料自身的弹性保持应力锥与电缆绝缘层之间的界面上的应力和电气强度。欧美一些国家的电缆制造厂商,如我国用户熟悉的瑞士Brugg、意大利Pirelli、法国Nexans等公司以及我国沈阳电缆厂﹑上海三原电缆附件公司和北京国电四维电力技术公司都有这种结构的产品。它的外绝缘是瓷套(GIS终端一般用环氧树脂套管),内绝缘是一个合成橡胶(硅橡胶或乙丙橡胶)预模制应力锥, 瓷套(或环氧树脂套管)内注入合成绝缘油。显然,这种结构简单,但是存在2个令人关心的技术问题: ①合成橡胶应力锥与浸渍油的相容性;②在高电场和热场作用下,预模制的橡胶应力锥老化会引起界面压力的变化(松弛),从而降低电气强度。以上2个问题实际上就是一个材料问题。合适的材料既可以使合成橡胶与浸渍油相容,又可以确保良好的老化性能。上述产品的长期安全运行经验可以说明这一点。
图2在橡胶应力锥上加弹簧压紧装置示意图的结构
(2)采用弹簧压紧装置。这种结构的特点是在应力锥上增加一套机械弹簧装置以保持应力锥与电缆之间界面上的应力恒定, 辅以对付在高电场和热场作用下,橡胶应力锥老化后可能会引起的界面压力的变化(松弛)。图2为在户外终端应力锥上加弹簧压紧装置的结构示意图(GIS终端上采用的弹簧压紧装置结构与户外终端是一样的)。弹簧5通过喇叭形的铝合金托架4将压力传递到应力锥3上。由于环氧套2的限制,弹簧压力分解,增加了应力锥与电缆绝缘层的界面压力。这种结构还有一个很重要的特点,就是它的橡胶应力锥与浸渍油基本隔离,从而消除了应力锥材料溶涨的可能性。日本和韩国的电缆制造厂商采用了这种结构,我国湖南省长沙电缆附件公司的产品也是这种结构。这种在应力锥上增加弹簧装置的结构在设
计上似乎更周全些,但结构复杂,对制造和现场安装的要求高,现场安装所需的时间也增长。
(3) 采用一种非橡胶应力锥,在设计上它既能提供可靠的应力控制又能避开应力锥与电缆绝缘直接接触。典型的结构是美国G&W 公司设计的产品,在我国已经有不少用户。图3为这种结构用在户外终端的结构示意图(用在GIS终端上的设计与此相同)。应力锥用铝合金成型,表面喷镀一定厚度的环氧树脂。由图3可见,这种结构的应力锥与电缆绝缘不直接接触,因此可以允许配套电缆有较大的直径和偏心度的制造公差。另外,这类终端在工厂内已经把主要的零部件瓷套管、应力锥、顶盖、底盘和油压调整装置等都装配好,并且充满绝缘油。安装时,当把电缆端部准备好后,把预制终端套入电缆即可。
图3非橡胶型应力锥结构示意图
上述3种结构各有所长,均达到了实用化水平,并都已经有比较成熟的使用经验。
GIS终端的基本结构与各公司的户外终端相似。由于GIS是在全封闭环境下运行,可以免受大气条件和污秽的影响,加上SF6气体的良好绝缘特性,所以GIS终端的外绝缘采用环氧树脂套管,其尺寸比户外终端瓷套小得多。它的内绝缘用的应力锥和绝缘油与户外终端相似。在图1和图3的GIS电缆终端的环氧树脂套管内充有绝缘油,称为湿式(或充油式)GIS电缆终端。图2的GIS终端内,不灌注绝缘油,称