染料敏化太阳能电池的介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染料敏化太阳能电池的介绍
电气与电子工程学院信息1301班1131200116 马文栋
十六周的新能源课程让我对新兴能源有了一定的了解,现在让我来介绍一下染料敏华电池。
染料敏化太阳电池主要是模仿光合作用原理,研制出来的一种新型太阳电池。
它是继多晶硅及薄膜太阳能电池之后,第三代太阳能电池产品——染料敏化太阳能电池产业化开发取得突破。
染料敏化太阳能电池是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能。
与传统太阳能电池相比,它的最大优势在于其制作工艺简单、不需昂贵的设备和高洁净度的厂房设施,制作成本仅为硅太阳能电池的1/10~1/5。
该电池使用的纳米二氧化钛、N3染料、电解质等材料价格便宜且环保无污染,同时它对光线的要求相对不那么严格,即使在比较弱的光线照射下也能工作。
敏化染料太阳能电池主要优势是:原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。
自从1991年瑞士洛桑高工领导的研究小组在该技术上取得突破以来,欧、美、日等发达国家投入大量资金研发。
敏化染料太阳能电池简称DSC, 主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。
纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、等),聚集在有透明导电膜的玻璃板上作为DSC的负极。
对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。
敏化染料吸附在纳米多孔二氧化钛膜面上。
正负极间填充的是含有氧化还原电对的电解质,最常用的是I3-/I-。
敏化染料太阳能电池发电的原理是:
(1)染料分子受太阳光照射后由基态跃迁至激发态;
(2)处于激发态的染料分子将电子注入到半导体的导带中;
(3)电子扩散至导电基底,后流入外电路中;
(4)处于氧化态的染料被还原态的电解质还原再生;
(5)氧化态的电解质在对电极接受电子后被还原,从而完成一个循环;
(6)和(7)分别为注入到TiO2 导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合;
敏化染料太阳能电池工作原理:
染料敏化太阳能电池主要由表面吸附了染料敏化剂的半导体电极、电解质、Pt 对电极组成。
当有入射光时,染料敏化剂首先被激发,处于激发态的染料敏化剂将电子注入半导体的导带。
氧化态的染料敏化剂被中继电解质所还原,中继分子扩散至对电极充电。
这样,开路时两极产生光电势,经负载闭路则在外电路产生相应的光电流
通过超快光谱实验可得出染料敏化太阳能电池各个反应步骤速率常数的数量级。
染料敏化太阳能电池的发展历史:
染料敏化太阳能电池的研究历史可以追溯到19世纪早期的照相术。
1837年,Daguerre制出了世界上第一张照片。
两年后,Fox Talbot将卤化银用于照片制作,但是由于卤化银的禁带宽度较大,无法响应长波可见光,所以相片质量并没有得到很大的提高。
1883年,德国光电化学专家V ogel发现有机染料能使卤化银乳状液对更长的波
长敏感,这是对染料敏化效应的最早报导。
使用有机染料分子可以扩展卤化银照相软片对可见光的响应范围到红光甚至红外波段,这使得“全色”宽谱黑白胶片乃至现在的彩色胶片成为可能。
1887年,Moser将这种染料敏化效应用到卤化银电极上,从而将染料敏化的概念从照相术领域延伸到光电化学领域。
1964年,Namba和Hishiki发现同一种染料对照相术和光电化学都很有效。
这是染料敏化领域的重要事件,只是当时不能确定其机理,即不确定敏化到底是通过电子的转移还是通过能量的转移来实现的。
直到20世纪60年代,德国的Tributsch发现了染料吸附在半导体上并在一定条件下产生电流的机理,才使人们认识到光照下电子从染料的基态跃迁到激发态后继而注入半导体的导带的光电子转移是造成上述现象的根本原因。
这为光电化学电池的研究奠定了基础。
但是由于当时的光电化学电池采用的是致密半导体膜,染料只能在膜的表面单层吸附,而单层染料只能吸收很少的太阳光,多层染料又阻碍了电子的传输,因此光电转换效率很低,达不到应用水平。
后来人们制备了分散的颗粒或表面积很大的电极来增加染料的吸附量,但一直没有取得非常理想的效果。
1988年,Gratzel小组用基于Ru的染料敏化粗糙因子为200的多晶二氧化钛薄膜,用Br2/Br-氧化还原电对制备了太阳能电池,在单色光下取得了12 %的转化效率,这在当时是最好的结果了。
直到1991年,Gratzel在O’Regan的启发下,应用了O’Regan制备的比表面积很大的纳米TiO2颗粒,使电池的效率一举达到7.1 %,取得了染料敏化太阳能电池领域的重大突破。
应当说,纳米技术促进了染料敏化太阳能电池的发展。
目前,DSSCS的光电转化效率已能稳定在10%以上,据推算寿命能达15~20年,且其制造成本仅为硅太阳能电池的1/5~1/10之间。
2011年,Michae Gratzel等人宣布制成了光电效率为12.3%的电池,这打破了染料电池光电效率的最高纪录。
2014年,Michael Gratzel课题组再次刷新染料敏化太阳能电池效率,最终达到13%。
现如今,我国自主研发的这种新一代太阳能电池产品只在短短十几年内就迈向了产业化,目前国内在该领域的科研水平与世界保持同步,计划在2015年染料敏化太阳能电池达到20MW的生产能。
各组成部分的进展光阳极材料:
光敏材料敏化的半导体光阳极对该电池的性能起到至关重要的作用,成为目前研究的热点。
敏化的TiO2电极是染料敏化太阳能电池的关键部分,可以说其性能直接关系到太阳能电池的总效率。
TiO2:TiO2 是一种价廉、无毒、稳定且抗腐蚀性能良好的半导体材料,它的吸收范围在紫外区,因此须进行敏化处理。
为了提高光捕获效率和量子效率,可以将半导体二氧化钛纳米化、多孔化、薄膜化。
这样的结构使TiO2 具有高比表面积,使其能吸附更多的单层染料分子,只有紧密吸附在半导体表面的单层染料分子才能产生有效的敏化效率。
另外,这种结构的电极,其表面粗糙度大,太阳光在粗糙表面内多次反射,可被染料分子反复吸收,从而大大提高太阳光的利用率。
围绕光电转化效率的提高,研究者从二氧化钛膜的制备、表面修饰、掺杂、复合等方面做了大量工作。
染料敏化太阳能电池中,TiO2光阳极所用的纳米晶薄膜分为致密TiO2薄层、纳米多孔结构TiO2薄膜,其中致密薄膜是早期染料敏化太阳能电池中TiO2光阳极所采用的,因其吸附染料效率低,后来少被采用,纳米多孔结构TiO2薄膜在目前染料敏化太阳能电池中TiO2光阳极采用极为广泛。
研究结果表明:只有非常靠近TiO2表面的敏化剂分子才能顺利把电子注入到TiO2导带中去,多层敏化剂的吸附反而会阻碍电子运输;染料色激发态寿命很短,必须与电极紧密结合,最好能化学吸附到电极上;染料分子
的光谱响应范围和量子产率是影响DSC的光子俘获量的关键因素。
到目前为止,电子在染料敏化二氧化钛纳米晶电极中的传输机理还不十分清楚,有Weller等的隧穿机理、Lindquist等的扩散模型等,有待于进一步研究。
TiO2的催化原理(光催化反应过程):
半导体粒子具有能带结构,一般由填满电子的低能价带和空的高能导带构成,价带和导带之间存在禁带。
当用能量等于或大于禁带宽度(也称带隙,)的光照射半导体时,价带上的电子(e- )被激发跃迁至导带,在价带上产生相应的空穴(H+),并在电场作用下分离并迁移到粒子表面。
光生空穴有很强的得电子能力,具有氧化性,可夺取半导体颗粒表面被吸附物质或溶剂中的电子,使原本不吸收光的物质被活化氧化,电子受体通过接受表面的电子而被还原。
半导体光催化机理:
它们在一定波长的光激发后,价带上的电子( e-)被激发,越过禁带进入导带,同时在价带上产生相应的空穴(h+)。
这些光生电子和空穴带有一定能量可以自由迁移,当它们迁移到催化剂表面时就可以和吸附在催化剂表面的化学物质发生化学反应,并产生大量的高活性自由基(·OH) ,这些自由基就能将有机化合物氧化分解。
光阴极材料:阴极在染料敏化太阳能电池中也发挥着重要的作用。
在实际工作中,染料敏化太阳能电池由于有电流通过阴极,产生极化现象,形成超电势,引起电势的损失,降低了电池的性能。
因此,阴极的制备一般用导电玻璃片作为基体,采用不同方法镀上石墨、铂或导电聚合物等不同材料,其中镀铂的效果较好。
电解质:电解质在DSC电池中主要起着还原染料正离子及传输电荷的作用。
高效率的电解质应当具有与染料HOMO轨道相匹配的氧化还原能级和快速的空穴传导能力。
目前, 最常用、最有效的电解质都含有I3-/I-电对主要得益于其优异的可逆性和动力学性能, 且复合反应较慢。
但是也有缺点,如腐蚀能力强, 对可见光有一定的吸收等。
电解质从表观形态上大致可以分为液态电解质、准固态电解质(凝胶电解质)和全固态电解质。
液态电解质一般由氧化还原电对I-3/I-、溶剂和添加剂组成。
它粘度小, 离子扩散快, 对TiO2多孔膜的浸润性好和渗透能力强, 使得液态DSC电池一直保持着最高的效率。
而离子液体电解质对DSC电池的长期稳定性得到了很大的改善。
除了离子液体电解质, 准固态电解质和全固态电解质的研究也越来越受到重视。
一般来讲, 准固态电解质是在液体电解质中加入凝胶剂而得到的, 根据凝胶机理的不同又分为物理交联和化学交联。
物理交联是交联剂之间通过氢键或范德华力形成三维网络结构而使电解液凝胶, 常用的交联剂有高聚物、有机小分子、无机纳米颗粒等。
化学交联是通过前驱体之间发生化学反应而形成三维网络来凝胶液体电解质, 常用的有烯烃类单体的聚合反应和含氮杂环前驱体与卤代物之间的季胺化反应等。
总的来说, 离子液体电解质和凝胶电解质是比较有应用前景的(准)固态电解质, 因为它们表现出较高的电转换效率, 电池的稳定性也得到一定保障。
当然,发展高效的全固态DSC电池是最终的目标。
提高固态DSC电池效率的关键就是解决电解质在光阳极多孔膜中的填充问题, 但就目前来看, 这是一项长期而又艰巨的工作。
因此, 发展固态-离子液体复合电解质体系也许是一个更为有效、可行的途径。
由于液态电解质在封装上的技术困难,人们开发了无机半导体体系的固态电解质、有机空穴传输材料和高分子电解液体系等。
与液态电解质相比,固态染料敏化太阳能电池敏化剂的氧化还原电位,可以和空穴导体的工作函数更好的匹配,所以固态染料敏化太阳能电池获得的Uoc值很高,可以达到接近1V。
以固态电解质取代液态电解液应用于染料敏化太阳能电池,可以提高和改善电池的长期稳定性。
敏化剂:敏化剂吸收太阳光产生光致分离,它的性能直接决定太阳电池的光电性能。
新的敏化剂使吸收长波的能力增加,并且具有很高的光学横断面和吸收近红外光的能力。
敏化剂按其结构中是否含有金属原子或离子,敏化剂分为有机和无机两大类。
无机类敏化剂包括钌、锇类的金属多吡啶配合物、金属卟啉、金属酞菁和无机量子点等;有机敏化剂包括天然染料和合成染料。