大跨度建筑结构体系简述-各种大跨度结构类型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大跨度空间结构是目前发展最快的结构类型。大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。而大跨度结构的表现形式是多种

多样的。

大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;

膜结构

一、拱券结构及穹隆结构

从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。

拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。很明显,这必然会影响空间组合的灵活性。为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。

在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组

合带来极大的灵活性。

优缺点 优点:拱结构是使构件摆脱弯曲变形的一种突破性发展,它为抗压性能好的材料提供了一种

理想的结构型式。

缺点:拱结构的支座(拱脚)会产生水平推力,跨度大时这个推力不小,要对付这个推力将

是一桩麻烦而又耗费材料的事。

二、椼架结构与网架结构

椼架也是一种大跨度结构。在古代,虽然也有用木材做成各种形式的构架作为屋顶结构的,但是符合力学原理的新型椼架的出现却是现代的事。椼架结构虽然可以跨越较大的空间,但是由于它自身具有一定的高度,而且上弦一般又呈两坡后曲线的形式,所以只适合担当作

屋顶结构。

网架结构也是一种新型大跨度空间结构。它具有刚度大、变形小、应力分布均匀、能大幅度地减轻结构自重和节省材料等优点。网架结构可以用木材、钢筋混凝土或钢材来做,并且具有多种多样的形式,使用灵活方便,可适应于多种形式的建筑平面的要求。近来国内外许多大跨度公共建筑或工业建筑均普遍地采用这种新型的大跨度空间结构来覆盖巨大的空

间。

网架结构可分为单层平面网架、单层曲面网架、单层平板网架和双层穹隆网架等多种形式。但层平面网架多由两组互相正交的正方形网格组成,可以正方,也可以斜放。这种网架比较适合于正方形或接近于正方形的巨型平面建筑。如果把单层平面网架改变为曲面-拱或穹隆网架,或可以进一步提高结构的刚度并减小构件所承受的弯曲力。从而增大结构的跨度。

网架结构象框架结构一样,承重系统与非承重系统有明确的分工,即支承建筑空间的骨架是承重系统,而分割室内外空间的围护结构和轻质隔断,是不承受荷载的。在网架结构体系下,室内空间常依照功能要求进行分隔,可以使封闭的,也可以是半封闭或开敞的。

当今,空间平板网架结构在我国已有较大发展,而由于网架结构多采用金属管材制造,能承受较大的纵向弯曲力,与一般钢结构相比,可节约大量钢材和降低施工费用(根据有关资料统计,节约钢材约35%,降低施工费用约25%,甚至在某些情况下,耗钢量接近于普通钢筋混凝土梁中的钢筋数量)。因此,空间网架的结构形式,用于大跨度建筑具有很大的经济意义。另外,由于空间平板网架具有很大的刚度,所以结构高度不大,这对于大跨度空

间造型的创作,具有无比的优越性。

桁架结构由杆件组成,体形可以多样化。

网架结构的优缺点

1.整体性强,稳定性好,空间刚度大,是一种良好的抗震结构形式,尤其对大跨度建筑,其优越性更为显著;

2.充分发挥材料的强度,节省钢材;

3.结构高度较小,可以有效地利用建筑空间;

4. 能够利用较小规格的杆件建造大跨度的结

构;

5.杆件规格划一,适合于工业化生产;

6.片面形状丰富。

三、壳体结构

一般而言,用轻质高强材料做成的结构,若按强度计算,其剖面尺寸可以大大地减小,但是这种结构在荷载的作用下,却容易因变形而失去稳定并最后导致破坏。而壳体结构正是

由于合理的外形,不仅内部应力分配既合理又均匀,同时又可以保持极好的稳定性,所以壳体结构尽管厚度极小却可以覆盖很大的空间。

壳体结构的刚度,取决于它的合理形状,而不像其他结构形式需要加大结构断面,所以材料消耗量低;其静载也不像其他结构形式那样随跨度增大而加大,所以其厚度可以做得很薄;该结构的承重和无盖合而为一,使其更加经济有效,且在建筑空间利用上越加充分。

壳体结构按其受力情况不同可以分为折板、单曲面壳和双曲面壳等多种类型。在实际应用中,壳体结构的形式更是丰富多彩的。例如悉尼歌剧院,其外观为三组巨大的壳片,耸立在一南北长186米、东西最宽处为97米的现浇钢筋混凝土结构的基座上。而壳体结构既可以单独使用又可以组合起来使用;既可以用来覆盖大面积空间,又可以用来覆盖中等面积的空间;既适合方形、矩形平面要求,又可以适应圆形平面、三角形平面,及至其他特殊形状

平面的要求。

因为壳体结构属于高效能空间薄壁结构范畴,可以适应于力学要求的各种曲线形状,所以其承受弯曲及扭转的能力远比平面结构系统大。另外,因结构受力均匀,因而可充分发挥材料的材耗,所以壳体结构体系非常适用于大跨度的各类建筑。

四、悬索结构

悬索结构的特点和组成

悬索的受力与拱的受力情况刚好相反。

特点:

1.主要承重构件是“索”,索网只受轴向拉力,受力简单;

2.索网结构自重小,强度大,能跨越很大的跨度;

3.抵抗水平反力应采用合理的支座型式;

相关文档
最新文档