低渗透油藏储层渗流特征研究

低渗透油藏储层渗流特征研究
低渗透油藏储层渗流特征研究

低渗透油藏概述

低渗透油藏概述[加入收藏][字号:大中小] [时间:2012-03-23 来源:中国能源网关注度:3083] 摘要: 要认识低渗透油藏,我们可以从以下几个方面去进行认识:低渗透油藏的形成条件、低渗透油田的概念和低渗透油藏的主要特征、低渗透油层界限、低渗透油田分类。为什么laowen会首先选择介绍低渗透油藏?因为在laowen看来,国内,特别是我们四川... 要认识低渗透油藏,我们可以从以下几个方面去进行认识:低渗透油藏的形成条件、低渗透油田的概念和低渗透油藏的主要特征、低渗透油层界限、低渗透油田分类。为什么laowen 会首先选择介绍低渗透油藏?因为在laowen看来,国内,特别是我们四川这个卡卡低渗透的油藏很是普遍,想什么胜利油田啊,塔河油田啊,都存在大面积的低渗透油藏,所以呢,laowen一直觉得有需求才有价值!所以我们一定要好好的研究一下低渗透油藏。 一、低渗透油藏的形成条件 我国低渗透油层,形成于山麓冲积扇-水下扇三角洲沉积体系和浊积扇沉积体系,有砾岩油层、跞状砂岩(或含跞砂岩)油层、砂岩(粗中细砂岩)和粉砂岩油层四种岩石类型。主要包括由近源沉积的油层分选差、矿物成熟度低、成岩压实作用、近源深水重力流和远源沉积物形成的油层。 二、低渗透油田的概念和低渗透油藏的主要特征 所谓低渗透油田是一个相对的概念,世界上并无统一固定的标准和界限,因不同国家、不同时期的资源状况和技术经济条件而划定,变化范围较大。根据我国生产实践和理论研究,对于低渗透油层的范围和界限已经有了比较一致的认识。低渗透油藏的主要特征,不言而喻,就是其渗透率很低、油气水赖以流动的通道很微细、渗流的阻力很大、液固界面及液液界面的相互作用力显著。它导致渗流规律产生某种程度的变化而偏离达西定律。这些内在的因素反映在油田生产上往往表现为单井日产量小,甚至不压裂就无生产能力,稳产状况差,产量下降快,注水井吸水能力差;注水压力高,而采油井难以见到注水效果;油田见水后,随着含水上升,采液指数和采油指数急剧下降,对油田稳产造成很大困难。 三、低渗透油层界限 油层是原油储集和流动的场所,油层的物理化学性质影响油水在孔隙中的分布及渗流的特征和规律。在渗流的范畴,油层属于多孔介质,它是由岩石的颗粒、胶结物作为固体骨架和大量形态复杂的孔隙网络空间组成的。流体就在那些细小的孔隙网络中流动。根据渗透率对采收率的影响程度及渗透率与临界压力梯度关系曲线的观察,渗透率在(40*10^-3 um2)前后有较大的变化,即渗透率低于40*10^-3μm2后,采收率明显降低,临界压力梯度明显加大,从油田生产实际看,渗透率低于50*10^-3μm2 的储层,虽然具有工业油流,但一般都要进行压裂改造,经过增产措施后,才能有效地投入正常开发,综上所述,1990 年油田开发工作会议上把低渗透油层上限定为50*10^-3μm2 。 低渗透油层下限也就是通常所称的有效厚度下限(截止值),对低渗透油田来说这是一个十分重要的问题。在渗透率贡献分布图上,对应于渗透率累积贡献为98%的孔喉半径即为有效孔喉半径下限,低于该下限的孔隙空间对渗透率基本无贡献,液体基本不流动,如老君庙M 油层孔喉半径下限为0.691μm 2。通过单层试油确定能够产油的有效厚度渗透率下

第四节 多相流体的渗流特性

第四节多相流体的渗流特性 一.名词解释 1.有效渗透率(effective permeability): 2.相对渗透率(relative permeability): 3.流度(mobility): 4.产水率fw(water production rate): 5.退汞效率(efficiency of mercury ejection): 二.判断题,正确的在括号内画√,错误的在括号内画× 1.在相对渗透率曲线上,若交点含水饱和度大于50%,则可判定岩石亲水。() 2. 流度比是被驱替相流度与驱替相流度之比。() 3.就非湿相流体而言,自吸过程的相对渗透率曲线必定高于驱替过程的相对 渗透率曲线。() 4.在油气水三相共存的油藏中,不可能出现单相流动。() 5.两相流体流动时,并联孔道中较大孔道内的流速一定大于较小孔道内的流速。() 6.同一油藏中,油气过度带的宽度大于油水过度带的宽度。() 7.两相渗流时,随含水饱和度上升,产水率也上。() 三.选择题 1.在残余油饱和度时,产水率为,产水率随含水饱和度的上升率为。 A.1,1 B.1,0

2.自由水面为100% 的 界面,水淹界面为100%的 界面。 A.含水,含水 B.产水,产水 C.含水,产水 D.产水,含水 ( ) 3.若某油藏束缚水饱和度为30%,水驱残余油饱和度为35%,则其水驱采收率为 。 A.30% B.40% C.50% D.65% ( ) 4.亲水岩石与亲油岩石的相对渗透率曲线相比,前者的交点含水饱和度较 ,前者的水 相端点相对渗透率较 。 A.大,大 B.大,小 C.小,大 D.小,小 ( ) 5.若某油藏油水过度带中平均毛管力Pc 为0.3kg/2cm ,油水重度差g 为0.2g/3cm ,则 油水过度带平均为 。 A.1.5cm B.15m C.2/3m D.2/3cm ( ) 6.岩石润湿性发生显著变化后,下列参数中哪项的测定结果将发生显著变化 。 A.比面 B.孔隙度 C.绝对渗透率 D.相对渗透率 ( )

低渗透储层的微观孔隙结构分类及其储层改造技术的探讨

[收稿日期]2009-01-18  [作者简介]宋周成(1966-),男,1989年大学毕业,高级工程师,博士生,现主要从事油气田开发方面的研究工作。 低渗透储层的微观孔隙结构分类 及其储层改造技术的探讨 宋周成 (西南石油大学石油工程学院,四川成都610500;塔里木油田分公司,新疆库尔勒841000) [摘要]讨论了低渗透油层的空隙、喉道结构,几何形态、孔隙系统、孔隙喉道组合;低渗储层自然产能 高低不一,一般需要压裂改造才能获得有效产能,其储层微孔隙发育,存在储层伤害因素,在此类油气 藏的勘探开发过程中,需要进行配套的大型油层改造措施攻关,要注意油层改造过程中的油层保护工作, 以提高油气井产能。具体工艺措施如下:钻井、固井、射孔、油层改造、采油等技术处理。 [关键词]低渗透储层;孔隙类型;压裂改造;油层保护;工艺技术 [中图分类号]TE384[文献标识码]A [文章编号]1000-9752(2009)01-0334-03 我国低渗透储层在油气勘探中占有十分重要的地位,约有214×109t 以上的低渗透油藏,占总探明储量比例高达47%。因此,研究低孔隙度、低渗透率储层的形成原因及其优质储层的形成与分布规律,可以提高低渗透率储层的勘探效率。但是低渗透油层由于孔喉细小,结构复杂,渗流阻力大,固液表面分子作用强烈,贾敏效应显著,使其渗流特性与中高渗透油层有很大的不同,具有启动压力梯度,加上配套工艺的适应性差,造成这些单井产能很低,开发动用难度大。随着对低渗透油藏渗流规律认识的不断进步以及开采工艺技术的提高,低渗透油藏逐渐成为油田实现稳产目标的主力军。和其他油藏一样,低渗透油藏的开发也存在递减阶段,过去大家偏重于对递减规律的研究[1],而忽略了对递减影响因素的分析。低渗透油藏渗流特征研究是开发低渗透油气田所需要解决的重要问题,也是现在渗流力学的前沿研究方向之一。笔者就此讨论了低渗透油层的空隙、喉道结构,几何形态、孔隙系统、孔隙喉道组合,及其储层改造技术。 1 低渗透油层孔隙结构分类及评价 我国低渗和特低渗透储集层中的主要类型,如丘陵油田J 2s 油层组中、粗、细砂油层均以中小孔为主,细喉道约占58%。值得注意的是在特低和超低渗透油层中,也出现以小孔、细喉、微喉连接的孔隙网络,或出现裂隙,它们的组合非常复杂,在油田开发中有更大的难度[2]。 将低渗透油层分为6类,符合我国低渗透油田的实际状况: Ⅰ类:一般低渗透层,渗透率在(50~10)×10-3μm 2之间,是低渗透层中的佼佼者。各项分类参数明显,是低渗透油层中驱油效率最高的油层。 Ⅱ类:特低渗透油层,渗透率在(10~1)×10-3μm 2之间,分类中的参数与其上下油层有明显的 差异,上流半径小(115309 μm ),孔喉配位低,喉道细,流动能力差,石油采收率在50%左右。Ⅲ类:超低渗油层,渗透率在(110~011)×10-3μm 2之间,排驱压力高(21282M Pa ),主流半径 小(0111 μm )。其分类参数虽具明显性,但能否成为工业油层,实例较少,只有火烧山油田平二段油层,平均渗透率为01523×10-3μm 2(32块样品),其他油层的平均渗透率均大于1×10-3μm 2。新疆小拐油田夏子街组油层是这类油层的实例,平均渗透率为01247×10-3μm 2(387块样品),其中夏一段渗433石油天然气学报(江汉石油学院学报)  2009年2月 第31卷 第1期Journal of Oil and G as T echnology (J 1J PI )  Feb 12009 Vol 131 No 11

表面活性剂在低渗透油气藏全过程保护中的应用进展

第27卷第2期 2010年6月25日 油 田 化 学O ilfield Che m istry V o l 27 N o 2 25June ,2010 文章编号:1000 4092(2010)02 0216 05 * 收稿日期:2009 12 28;修改日期:2010 03 28。 基金项目:国家科技重大专项 低渗油气田储层保护技术 (项目编号2008ZX05022 004),973计划项目 深井复杂地层漏失与井壁失稳 机理及预测 (项目编号2010CB226705)。 作者简介:刘雪芬(1985-),女,西南石油大学石油工程专业学士(2008)、油气井工程硕士研究生(2008-),从事储层保护理论与技术 研究,E m ai:l xu efen580@126 co m 。康毅力(1964-),男,教授,博士生导师,本文通讯联系人,通讯地址:610500四川成都新都区西南石油大学油井完井技术中心,电话:028 ********,83049005,E m ai :l c w ct ky@l vip si n a com 。 表面活性剂在低渗透油气藏全过程保护中的 应用进展 * 刘雪芬1 ,康毅力1 ,游利军1 ,杨 斌 2 (1 油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都610500; 2 川庆钻探工程有限公司工程技术研究院,陕西西安710021) 摘要:相圈闭损害在裂缝性低渗透油气藏中极为严重。概括了表面活性剂降低界面张力、改变润湿性的机理。氟表面活性剂可促进液相返排、预防相圈闭损害,故界面修饰显示出扩展屏蔽暂堵技术和欠平衡作业在低渗透油气藏全过程储层保护技术覆盖度的潜力。介绍了界面修饰在低渗透油气藏保护中的应用实例和氟表面活性剂的优良特性,指出进一步研究的发展方向。表2参50 关键词:低渗透;表面活性剂;界面修饰;储层损害;进展;综述中图分类号:TE258+ 2 文献标识码:A 前言 低渗透油气资源储量在中国未动用石油地质储量中高达72 8%,随着油气工业的发展,将成为常规油气资源的接替者和保障油气资源供应的主角。这种低渗油气藏一般具有天然裂缝发育,基块渗透性差,非均质严重,孔喉细小、毛细管现象突出、油气流动阻力大,黏土矿物含量高等特点。潜在损害类型有敏感性损害、液相圈闭损害、乳状液堵塞、固相侵入等,其中液相(包括水相和油相)圈闭损害是主要损害类型,损害率一般在70%~90%。 储层损害一旦出现,靠增产改造措施是很难完全消除的,为此须采取 预防为主、治理为辅 的原则。保护油气层是 增储上产 和提高采收率的关键,是一项系统工程,贯穿在建井和开采作业全过程中,每个环节均应重视油气层保护,任一环节的失误都会造成油气层损害 [1] 。 表面活性剂具有降低表面张力、起泡、乳化、分散、润湿、增溶等性能,广泛用于储层钻井完井、E OR 和增产改造等过程,可以提高机械钻速、促进返排,有效预防储层损害,提高采收率等。由于低渗透油气藏微观结构复杂,潜在损害甚于常规储层,表面活性剂在这类储层的应用超越了在常规储层或以往应用的局限,尤其在修饰岩石表面润湿性时,能显著降低毛管自吸势能,预防水相圈闭损害,在低渗透油气藏开发中优势明显。为此,重新认识和深入研究表面活性剂与储层的作用及润湿性反转对渗透率的影响很有必要。 常用的表面活性剂有阴离子型、阳离子型、非离子型和两性离子型,各自突出的特点使其在同一作业环节中可以发挥独特作用(表1)。本文结合表面活性剂的常规应用(注水驱、聚合物驱等)和在低渗透油气藏的特殊应用,简要概括了其对储层渗透率和流体渗流的影响。

渗流(高等土力学)

Earth dam design 3 (1)渗流量问题 如基坑开挖或施工围堰时的 渗水量及排水量计算,土堤 坝身、坝基土中的渗水量, 水井的供水量或排水量等 4 尾矿污水排放 渗滤液排放量 5 (2)渗透破坏问题 土中的渗流会对土颗粒施加作用 力,即渗流力(渗透力),当 渗流力过大时就会引起土颗粒或 土体的移动,产生渗透变形,甚 至渗透破坏。 6 概述 液体(如地下水、地下石油)在土孔隙或其他透水性介质 (如水工建筑物)中的流动问题称为渗流。 土体渗流研究的目的在于研究土体中的渗流运动规律、渗 流场分布情况,确定水头、渗流速度、孔隙水压力、渗流 力等渗流要素,并判别渗流破坏的可能性及提出合理的防 治措施。 2 土体渗流原理与计算

水污染 9 石油开采的工作原理 向储层中注气或注水来提高油层压力 10 蒸汽辅助重力泄油SADG 双水平井开采的工作原理 Oil sand 稠油 11 离散裂隙网络油藏渗流模拟(中国石油大学油气渗流中心) 12 1993年8月27日23时左右,青海省共和县境内的沟后水库发生溃坝,库内蓄水近300万立方米,冲开坝体60多米,从40 多米高处跌落,扫荡了恰卜恰河滩地区,死亡300余人 溃坝的主要原因是 面板顶端与防浪墙 底板接缝严重漏水, 使防浪墙底板与砂 卵石间产生接触冲 刷以及坝体砂卵石 产生管涌 8 工程案例 2003年7月1日凌晨,建上海轨道交通4号线突发险情,造成若干地面建筑遭到破坏,损失1.5亿元。 竖井与旁通道的开挖顺序错误、冷冻设备出现故障(冷冻法施工)、地下承压水导致喷沙

低渗透油藏

一.低渗透致密气藏的定义 关于低渗透气田的定义,大多根据储层物性来划分,但是目前国内外尚没有统一的 低渗透气田划分标准。以前关于低渗透气田的定义多参考低渗透油田标准,由于气体分 子直径要比油分子小得多,气体熟度(o.01mPa?)也远远小于原油,使气体具有吸附、 渗透和扩散的特性,在地层条件下其流动应该较原油容易得多,因此相应的气体可流动 的物性下限应较原油低得多。采用袖藏物性划分标准,往往使得气田的流动物性界限偏高,而忽略了许多有开采价值的储层,因此有必要对气藏的可流动物性界限做相应的研究。根据我国气田开发多年的经验,借鉴国外相关研究成果已形成了以下比较一致的观点。 一.低渗透气藏地质特征 美国在低渗透致密储层方面已经作过了不少的研究工作,其中最主要的研究成果有下列的几项:spenc欧(1985)简要讨论了落基山地区的低渗透致密储层的地质现状,F1nley (1984)总结了有代表性的毯状(层状)致密储层的地质及工程特征s spe皿。和Mast (1986)以美国石油地质学家协会名义发表了致密气藏的地质研究;M踢比船(1984)描述了 加拿大致密气藏的重要现状,spnc既(1989)总结了美国西部的低渗透致密储层特征等。 由于我国在低渗透气藏方面尚未进行全面的系统研究,因此下列基本特征是在美国所总结的资料基础上,参考我国低渗透油气田实际情况进行总结得到的。 (一)沉积特征和成因分娄 我国低渗透储层和其他中高渗透层一样,大部分生成于中、新生代陆相盆地之中,具有陆相碎屑岩储层共有的一些基本沉积特征——多物源、近物源、矿物及其结构成熟度低和沉积相带变化快等。从具体沉积环境分析,低渗透储层有以下几种成因类型和特点。 1.近源沉积 储层离物源区较近,未经长距离搬运就沉积下来,碎屑物质颗粒大小相差悬殊,分选差,不同粒径颗粒及泥块充填在不同的孔隙中,使储层总孔隙显连通孔隙都大幅度减小,形成低渗透储集层。冲积扇相沉积属于这类型,冲积扇沉积是山地河流一出山口,坡度变缓,宽度扩大,加上地层滤失,水量减少,流速急速更小,河水携带的碎屑物快速堆积成扇体沉积。 2.远源沉积 储层沉积时离物源区较远,水流所携带的碎屑经长距离的搬运,颗粒变细,悬浮部分增多。沉积成岩后,形成粒级细、孔隙半径、泥质(或钙质)含量高的低渗透储层。此类 储层在助陷型大型盆地沉积中心广泛发育。 3成岩作用 碎屑岩的形成从渗透储层的原因来说,除沉积成因以外,沉积后的成岩作用及后生作用对储层物性也起着十分重要的作用。储层在压实作用、胶结作用和溶蚀作用下,储层的孔隙度、渗透率不断发生变化。成岩过程中的压实作用和胶结作用使岩石原生孔隙减小,特别是成熟度低的岩石,由于孔隙度大量减小,容易变为低渗透储层,甚至变为极致密的非储集层。溶蚀作用可产生次生孔隙,使致密层孔隙度增加,重新变为低渗透储层。一般该类储层主要表现为低孔、低渗储层。 (二)储层特征 低渗透砂岩气藏主要有以下特征: 含水饱和度。 1.非均质性 低渗透砂岩储层一般具有严重的非均质性,储层物性在纵、横向上各向异性明显,产层厚度和岩性都很不稳定,在短距离内就会出现岩相变化或岩性尖灭,以致井问无法对比。

特低渗透储层可动原油饱和度确定方法及影响因素分析

2019年第6期 西部探矿工程*收稿日期:2018-10-18 作者简介:武晓鹏(1986-),男(汉族),河北邢台人,助理工程师,现从事岩石流体饱和度分析工作。 特低渗透储层可动原油饱和度确定方法及影响因素分析 武晓鹏* (大庆油田勘探开发研究院中心化验室,黑龙江大庆163000) 摘 要:近年来,大庆油田新增油气储量中特低渗透储量不断上升,如何高效动用这部分特低渗透储 量对油田可持续发展意义重大。研究表明,特低渗透油藏具有孔隙度和渗透率低、孔喉细小、粘土矿物含量高、构造裂缝发育等特征,有效动用难度大。可动油饱和度是评价特低渗透储层的重要参数,利用核磁共振技术可以求取可动油饱和度,结合宏观上和微观上对可动油分布特征研究,可以为特低渗透储量有效动用提供指导。 关键词:特低渗透储层;特征;可动油饱和度;求取方法 中图分类号:TE348文献标识码:A 文章编号:1004-5716(2019)06-0062-03我国特低渗透油藏油气资源丰富,随着持续的勘探,特低渗透储量在石油储量中占比不断上升[1]。大庆油田东部扶余油层石油地质储量丰富,属于特低渗透储层,地层有效孔隙度在12%左右,渗透率在1.5×10-3μm 2左右,且裂缝较发育。在特低渗透扶余油层开发过程中,存在储层动用程度低、注水开发效率低、产量递减快等问题,制约了扶余油层勘探开发进程[2-3]。为此,深入研究特低渗透储层特征,准确求取可动油饱和度,提高特低渗透储层开发效率具有重要意义。1 特低渗透油藏的地质特征 我国每年新增油气储量中,低渗透、特低渗透油藏储量不断上升。特低渗透油藏是一个相对的概念,区别于常规的储层,具有以下特征: (1)特低渗透油藏孔隙度、渗透率低。特低渗透储层最显著的特征是低孔、低渗。特低渗透油藏中组成岩石的颗粒分选差,粒径分布范围广,且粘土矿物、碳酸盐岩胶结物多,导致储层中岩石孔隙度和渗透率均较低[4]。研究表明,低渗透油藏孔隙度多分布在1.2%~30.2%之间,平均孔隙度为18.6%,渗透率在(10~1)×10-3μm 2,且储层非均质性严重。 (2)粘土矿物含量高。特低渗透油藏中含有大量粘土矿物,造成储层孔隙度低,不同粘土矿物水敏性不同。蒙脱石、伊利石是典型的水敏矿物,极易吸水,遇水膨胀后体积增大几十倍,使得储层岩石中孔隙吼道变窄,储层流通性变差。高岭石是速敏矿物,由于分子 结构不紧密,遇水极易发生脱落,随水流运移堵塞孔隙。绿泥石属于酸敏矿物,与酸反应可以生成沉淀,堵塞孔隙通道,使得储层渗透率降低。 (3)特低渗透储层岩石中孔隙孔喉细小,且溶蚀孔较发育。特低渗透储层岩石孔隙多为粒间孔,同时发育溶蚀孔隙。此外还发育有晶间孔、裂缝孔及微孔隙。孔隙直径以中、小孔为主,孔隙吼道呈片状或管状,据统计,特低渗透储层岩石中孔隙半径中值通常小于1μm ,且非有效孔隙在孔隙体积中占比较大,导致储层渗透性较差。 (4)特低渗透储层发育构造裂缝,裂缝通常分布比较规律,深度较大,产状以高角缝为主,裂缝分布受到构造、岩性等影响,通常在背斜构造、褶皱转折处或断层处较为发育,且岩石越致密、硬度越大裂缝越发育。裂缝在特低渗透储层中具有重要地位,能够沟通基质孔隙,提升储层孔隙连通性,有利于储层流体渗流。2特低渗透油藏可动油饱和度测定方法及影响因素分析 2.1 核磁共振原理 核磁共振基本原理是原子核和磁场之间相互作用。原子核由质子和中子组成,其中质子带电,中子不带电,原子核质量取决于质子和中子的数量之和,而电荷取决于质子的数量。原子核分为有自旋的原子核和无自旋的原子核,研究发现,核子为奇数或核子个数为偶数但原子序数为奇数的原子核都具有自旋特性,例62

节理在不同接触状态下的渗流特性解析

第29卷第7期岩石力学与工程学报V ol.29 No.7 节理在不同接触状态下的渗流特性 夏才初1,2,王伟1,2,3,曹诗定1,2,4 (1. 同济大学岩土及地下工程教育部重点实验室,上海200092;2. 同济大学地下建筑与工程系,上海200092; 3. 闵行区建设工程安全质量监督站,上海201100; 4. 上海市政工程设计研究总院,上海200092) 摘要:将取自雅砻江水电站锦屏二期工程施工现场的白色大理岩,采用劈裂法制成张拉性人工节理试件,用TJXW–3D型岩石节理表面形貌仪测量节理的表面形貌,并采用自行编制的表面形貌和组合形貌参数计算软件,分析其用以表征节理表面形貌的节理面二维分形维数,以及用以表征组合形貌的节理内空腔的三维分形维数。对节理面进行错位,以改变其接触状态,然后进行不同接触状态下节理的渗流试验。将试验实测结果与传统的经验公式及各种修正公式的计算值进行比较,发现利用现有经验公式分析试验结果存在较大的偏差。通过对实测数据做进一步分析,发现表征节理表面形貌和组合形貌特征的分形维数也是影响节理渗透率的重要因素之一。综合考虑节理透过率以及表征节理形貌的分形维数等因素对节理渗透特性的影响,得到更为合理的节理渗流经验公式,该公式具有更广阔的应用前景。 关键词:岩石力学;表面形貌;组合形貌;节理;接触状态;错位;渗流;分形 中图分类号:TU 45 文献标识码:A 文章编号:1000–6915(2010)07–1297–10 FLOW CHARACTERISTICS OF JOINTS UNDER DIFFERENT CONTACT CONDITIONS XIA Caichu1,2,W ANG Wei1,2,3,CAO Shiding1,2,4 (1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University,Shanghai 200092,China;2. Department of Geotechnical Engineering,Tongji University,Shanghai200092,China;3. Construction Safety and Quality Supervision Station,Minhang Sub-station,Shanghai201100,China;4. Shanghai Municipal Engineering Design and Research General Institute,Shanghai200092,China) Abstract:Seepage characteristics of rock joints under different contact conditions are studied. Artificial tension rock joints are made of white marble samples taken from construction site of the Yalong River(Jinping II Project),using cleaving method. Surface topographies of rock joints are measured by a three-dimensional TJXW–3D-typed portable rock surface topography measuring instrument. A self-programmed software is used to calculate parameters for rock joints,including not only 2D fractal dimension of surface topography for each single joint surface,but also 3D fractal dimension of composed topography for vacuum formed by two coupled joint surfaces. Then seepage experiments of the artificial rock joints are carried out. During the experiment,contact condition of rock joints varied by offsetting the relative position of the joints from 1 mm to 6.5 mm. Deficiency of traditional empirical formulas,such as Darcy s law,cubic flow law and its modified formula,and seepage formula in turbulent flow,are exposed by comparing experimental results with calculating ones from those traditional 收稿日期:2010–02–25;修回日期:2010–03–31 基金项目:国家自然科学基金资助项目(40472142,50579088) 作者简介:夏才初(1963–),男,博士,1984年毕业于中南大学采矿工程专业,现任教授、博士生导师,主要从事岩石力学、地下结构等方面的教学与研究工作。E-mail:tjxiaccb@

低渗透油藏

低渗透油藏 一(低渗透致密气藏的定义 关于低渗透气田的定义,大多根据储层物性来划分,但是目前国内外尚没有统一的低渗透气田划分标准。以前关于低渗透气田的定义多参考低渗透油田标准,由于气体分子直径要比油分子小得多,气体熟度(o(01mPa?)也远远小于原油,使气体具有吸附、渗透和扩散的特性,在地层条件下其流动应该较原油容易得多,因此相应的气体可流动的物性下限应较原油低得多。采用袖藏物性划分标准,往往使得气田的流动物性界限偏高,而忽略了许多有开采价值的储层,因此有必要对气藏的可流动物性界限做相应的研究。根据我国气田开发多年的经验,借鉴国外相关研究成果已形成了以下比较一致的观点。 一(低渗透气藏地质特征 美国在低渗透致密储层方面已经作过了不少的研究工作,其中最主要的研究成果有下列的几项:spenc欧(1985)简要讨论了落基山地区的低渗透致密储层的地质现状,F1nley (1984)总结了有代表性的毯状(层状)致密储层的地质及工程特征s spe皿。和Mast (1986)以美国石油地质学家协会名义发表了致密气藏的地质研究;M踢比船(1984)描述了加拿大致密气藏的重要现状,spnc既(1989)总结了美国西部的低渗透致密储层特征等。由于我国在低渗透气藏方面尚未进行全面的系统研究,因此下列基本特征是在美国所总结的资料基础上,参考我国低渗透油气田实际情况进行总结得到的。 (一)沉积特征和成因分娄 我国低渗透储层和其他中高渗透层一样,大部分生成于中、新生代陆相盆地之中,具有陆相碎屑岩储层共有的一些基本沉积特征——多物源、近物源、矿物及

其结构成熟度低和沉积相带变化快等。从具体沉积环境分析,低渗透储层有以下几种成因类型和特点。 1(近源沉积 储层离物源区较近,未经长距离搬运就沉积下来,碎屑物质颗粒大小相差悬殊,分选差,不同粒径颗粒及泥块充填在不同的孔隙中,使储层总孔隙显连通孔隙都大幅度减小,形成低渗透储集层。冲积扇相沉积属于这类型,冲积扇沉积是山地河流一出山口,坡度变缓,宽度扩大,加上地层滤失,水量减少,流速急速更小,河水携带的碎屑物快速堆积成扇体沉积。 2(远源沉积 储层沉积时离物源区较远,水流所携带的碎屑经长距离的搬运,颗粒变细,悬浮部分增多。沉积成岩后,形成粒级细、孔隙半径、泥质(或钙质)含量高的低渗透储层。此类储层在助陷型大型盆地沉积中心广泛发育。 3成岩作用 碎屑岩的形成从渗透储层的原因来说,除沉积成因以外,沉积后的成岩作用及后生作用对储层物性也起着十分重要的作用。储层在压实作用、胶结作用和溶蚀作用下,储层的孔隙度、渗透率不断发生变化。成岩过程中的压实作用和胶结作用使岩石原生孔隙减小,特别是成熟度低的岩石,由于孔隙度大量减小,容易变为低渗透储层,甚至变为极致密的非储集层。溶蚀作用可产生次生孔隙,使致密层孔隙度增加,重新变为低渗透储层。一般该类储层主要表现为低孔、低渗储层。 (二)储层特征 低渗透砂岩气藏主要有以下特征: 含水饱和度。 1(非均质性

低渗透砂岩储层类型及地质特征

低渗透砂岩储层类型及地质特征 摘要:矿物含量高;成岩成熟度高,毛管压力高,孔半径小;沉积物成熟度低 等是我国低渗透砂岩储层的地质特点,如果进行开采、钻井以及完井的工程,就 会引起巨大的危害,通常来说,低渗透砂岩储层测井反映的都是低电阻率,所以,对这个类型油藏的开采与认知难度系数较大。本文先对低渗透砂岩储层几个主要 的特征进行了分析和讨论,然后讨论了低渗透砂岩储层是怎样形成的,最后介绍 了裂缝的成因类型、特征及分布规律,希望对读者有帮助。 关键词:低渗透;砂岩;储层类型;地质特征 引言:低渗透砂岩的优质储层中会进行发育,并留存着次生孔隙、原生孔隙 以及裂缝。若想简单的就可以留存原生空隙,满足的条件是压实作用低、埋深浅。在孔隙流体中存在各种各样的矿物质,其中绿泥石能够起到结膜的作用,大多数 情况下都在碎屑颗粒中,这种现象将抗压实性大大增加了,能够较好的保留原生 孔隙;成岩中会出现溶蚀的情况,主要是将岩屑与长石等进行溶蚀,其中有很多 稳定性低的颗粒,从而使得次生孔隙带状态稳定;次生孔隙带再次出现的因素为 方解石等胶结物溶蚀后以酸性孔隙流体为基础;影响裂缝的有断层、岩性以及褶皱,断层周边之所以时常出现裂缝带,是由于砂岩致密硬脆时才可以。对此类储 层的认识时间我国是比较早的,在十八世纪初,就探寻到了典型的特低渗油藏, 即延长油矿。在我国的油气储量中,低渗透油气藏的占比为三成。 1低渗透砂岩储层的特征 非均质性强;孔隙结构差;压力敏感性强;结构与成分成熟度低;裂缝发育 以及储层物性差等都归属于低渗透砂岩储层的特性当中。 1.1岩石学特征 在低渗透砂岩中,岩石特性各不相同,类型也多种多样,长石砂岩与岩屑砂 岩在低渗透砂岩中分布的最为广泛,并且有较低成熟度的结构与矿物,碳酸盐胶 结物与黏土矿物在其中的含量多。安塞油田位于鄂尔多斯盆地,在低渗透砂岩储 层的探究中优势大,开发便捷,成本低,效率高,南部油田的砂岩较为细腻,直 径大约零点二毫米,称之为中粒长石砂岩,呈次棱状;颗粒多、薄膜等是孔隙式 胶结的特性;颗粒的成分大多数是长石,含量大约在百分之五十;浊沸石与绿泥 石占填隙物的比例大。 1.2孔隙结构特征 在低渗透砂岩储层中,孔隙的状态一般为粒间孔,次生粒间溶蚀孔与原生粒 间孔都包含在内。孔隙形状不规整,一般的形状为多边形,喉道细是其的特征, 片状与管状占多数,其孔隙结构差。 1.3物性特征 在我国低渗透油田中,基质渗透率在四十毫升以下,基质的孔隙度在百分之 十以下。根据气田来讲,其基质渗透率在零点五毫升以下,基质的孔隙度在百分 之十以下。 1.4裂缝特征 成岩裂缝与构造裂缝这两个天然裂缝都出现在低渗透砂岩中,它们的储集性 能低,不过在渗透通道中是主要通道。 1.5非均质性特征 裂缝的发育趋势不同、裂缝的出现等是导致孔隙非均质性高的一个主要原因,并且裂缝的发育状况各不相同,从而让裂缝的渗透率差别越来越不同。

低渗透油藏的油层保护技术

低渗透油藏的油层保护技术 摘要:油田在勘探开发的各个环节均可造成低渗透层油层损害。究其原因,均属油层本身的潜在损害因素,它包括储层的敏感性矿物,储渗空间,岩石表面性质及储层的液体性质等。在外在条件变化时,包括钻开油气层、射孔试油、酸化、压裂等,储层不能适应变化情况,就会导致油层渗透率降低,造成油层损害。对低渗透油层特别强调油层保护并不是因为这类油层比高渗透油层更易受污染,而是因为低渗透油层自然渗透能力差,任何轻微的污染伤害都会导致产能的大幅度降低,因此,低渗透油层的油层保护尤为重要。 一、射孔过程中的油层保护技术 射孔过程中对油层的损坏主要有两方面的原因:一是射孔弹的碎屑物堵塞孔眼;二是射孔液的固相和滤液伤害油层。在射孔打开油层的短时间内,如果井内液柱压力过大或射孔液性能不符合要求,就可能通过射孔孔眼进入油层的较深部位,其对油层的损害比钻井还要严重。针对射孔过程中可能损害油层的原因,主要采用以下几方面的保护油层措施: 1、选用新型无杵堵、穿透能力又强的聚能射孔弹,如89弹、102弹、127弹及1米弹。 2、改进射孔工艺技术,采用油管传输射孔和负压射孔工艺。

3、使用优质射孔液,射孔液要与地层水相配伍,不堵塞孔眼,不与地层水发生反应而损害地层。 4、采用负压射孔技术 二、压裂过程中的油层保护技术 虽然压裂所造成的填砂裂缝具有很高的导流能力,但在压裂过程中由于压裂液性能和压裂工艺的不当又可能会造成对油层的损害,这种损坏不仅会大大降低填砂裂缝的导流能力,而且还会损害储层本身的渗流能力,在压裂中对填砂裂缝和油层的损害主要有以下几个方面: 1、压裂液残渣损害填砂裂缝导流能力:例如普通田箐冻胶压裂液残渣可达20%—30%,可使填砂裂缝导流能力降低60%—90%。 2、压裂液滤液损害油层导流能力:在高压高温影响下,压裂液的滤失量可以达到相当大的数量。据有关实验资料表明,当田菁压裂液水化液挤入量达到孔隙体积2—3倍时,岩心渗透率伤害达75%左右。渗透率越低,损害越严重。 3、返排液不及时,不彻底时损害油层:压裂液的滤液在地下长时间停留,不仅会加重粘土膨胀和油水乳化程度,而且还会产生物理和化学沉淀,加重对油层的损害。压裂后不及时排液对岩心渗透率的伤害比及时排液高3—4倍以上。 针对上述原因,在压裂过程中主要采取以下防护技术措施:

煤层气扩散与渗流特性

第四章煤层气扩散与渗流特性 煤层是多孔介质,煤层气穿过煤层孔隙介质的流动机制可以描述为三个过程,即:由于压力降低使气体从煤基质孔隙的内表面上发生解吸;穿过基质和微孔扩散到裂隙中,扩散作用是由于在基质与裂隙间存在的浓度差引起的;在压力差作用下以达西流的方式在裂隙中渗流。这三种作用是一个互为前提并且连续进行的统一过程,不能割裂开来单独进行。 第一节主要内容: 一、煤层气扩散特征: 气体穿过煤基质和微孔的扩散流动时由于体积扩散(分子与分子间的相互作用)、克努森扩散(分子与孔壁间的相互作用)和表面扩散(吸附的类液体状甲烷薄膜沿微孔隙壁的转移)共同作用的结果。当孔隙直径大于气体分子的平均自由运动路程时,以体积扩散为主;当孔隙相对于气体分子的平均自由运动路程较小时,以克努森扩散为主。各种类型的扩散流动都是气体随机运动的结果。 二、煤层扩散性影响因素 从气体的流动特征来考察煤层扩散性的影响因素。煤是一种双孔隙介质,气体在裂隙(割理)系统中为达西流,在煤基质块中为扩散流。 扩散系数是物质的一种传递性质,其值受温度、压力、混合物中组分浓度的影响,同一组分在不同的混合物中其扩散系数也不一样。扩散系数的值越大,扩散性越好。 扩散系数和形状因子的测定是相当困难的,从实用的角度,一般可用吸附时间来近似的表示扩散作用进行的快慢。吸附时间是一个特征时间。其确切的物理意义为:总吸附气量(包括残留气)的63.2%被解吸出来所需的时间。吸附时间是表征气体从煤基质中解吸出来快慢的定量指标,可作为表征气体从储层中扩散出来快慢的近似指标。 第二节主要内容: 一、煤层气渗流特征: 一般认为,在中孔(直径大于100nm)以上的孔隙和裂隙中,气体的流动为渗流,并且可能存在两种方式,即层流和紊流。 二、煤层渗透性影响因素 煤层是一种典型的双重孔隙介质,包括基质孔隙和割理两个系统。由于基质孔隙平均直径通常很小,渗透率很低,为10-9~10-12m2,可视为零;而割理的渗透率一般在0.1×10-3~50×10-3m2之间。因此煤层的渗透性主要取决于割理系统的渗透性。所以,研究煤层渗透性影响因素,实质上就是分析割理、裂隙的发育程度(包括数量和规模)、连通性及开启程度。 1、煤体结构 煤体结构是指煤层经过地质构造变动后煤的结构和构造的保留程度。在煤田地质界对煤的结构和构造的定义为:煤的结构是指煤的组成成分的各种特征—包括形态、大小、厚度、植物组织残骸以及它们之间数量关系的变化等,煤的构造是组成成分之间的空间排列和分布特点以及它们之间的相互关系;它们都是煤的

致密砂岩气藏读书总结

致密砂岩气藏读书总结 本次对于致密砂岩气藏的文献阅读主要从致密砂岩气藏的概念、分类、气藏特征、成藏要素、成藏机理以及国内外不同盆地致密砂岩气藏的特点等方面进行的,总结如下: 1.致密砂岩气藏的概念 国内外学者对致密砂岩气藏的定义与很多,其共同特点是储层致密,孔隙度渗透率很低。国内普遍认可的定义为:致密砂岩气是指孔隙度低(<12%)、渗透率比较低(1×10-3μm2)、含气饱和度低(<60%)、含水饱和度高(>40%)、天然气在其中流动速度较为缓慢的砂岩层中的非常规天然气(关德师,中国非常规油气地质,1995)。 2.致密砂岩气藏的分类 致密砂岩气藏根据产状分类可分为致密深盆气、致密根源气、致密连续型砂岩气。通过阅读学习发现,对于致密砂岩气藏比较合理的分类方式是按照气藏的成因进行分类,根据有机质大量生、排烃时间与储层致密化时间的关系可将致密砂岩气藏分为三大类:“先成型”深盆气藏、“后成型”致密砂岩气藏、后期改造复合型砂岩气藏。 “先成型”深盆气藏是指有机质大量生排烃时间晚于储层致密化的时间,即储层先致密后成藏。“后成型”致密砂岩气藏与“先成型”相反,是储层先成藏后致密,可见,“先成型”早期属于常规气藏,也称为常规致密砂岩气藏,根据圈闭类型可分为:致密构造类砂岩气藏和致密岩性类砂岩气藏。第三类后期改造复合型致密砂岩气藏是指早期形成的致密类油气藏受到构造变动改造后形成的、地质特征可能完全不同的一种新类型的油气藏或者致密常规型油气藏与致密深盆型油气藏在地史过程中叠加复合而形成的致密型砂岩类油气藏。 3.致密砂岩气藏地质特征: (1)储层致密,储层孔隙度低,一般都在12%以下;储层渗透率低,一般都在1×10-3μm2以下。 (2)致密砂岩气藏埋深变化范围大,分布面积较大。 (3)储量规模大,但储量丰度低,产能低、开采难度大。 (4)油藏压力特征复杂,既有异常高压又有异常低压。一般的,深盆气藏随着成藏演化由异常高压变为异常低压。 (5)气水关系复杂,既有上气下水,又有下气上水,汽水边界不规则。 不同类型的致密砂岩气藏其特点也有不同,特别的,“先成型”深盆气藏地质特征比较特别。 深盆气藏最本质的特征为:天然气被圈闭在地层下倾方向或盆地中心区域;含气区域内的各地质体孔隙均含气而少含水。另外,深盆气气水关系为下气上水型,无明显的边水和底水,气藏形态不受构造控制;深盆气藏的地层压力异常,在主要盆地深盆气藏中,加拿大阿尔伯塔盆地和中国的鄂尔多斯盆地、吐哈盆地属于异常低压,美国的绿河盆地和红沙漠盆地以及中国的四川盆地都属于异常高压,研究表明在天然气充注和深盆气藏的形成过程中,它们的压力显现出正异常;在盆地上升剥蚀或深盆气成藏作用停止过程中,它们的压力显现出负异常。深盆

低渗透油藏调研报告

低渗透油气藏调研报告 1 概念 21世纪以来,我国国民经济持续快速发展,对能源的需求量日趋增大,目前我国已成为仅次于美国的世界第二大能源消费国。石油和天然气作为目前影响我国能源安全的战略能源品种,其供需矛盾十分突出。据统计,2011年我国全年共消耗石油是4.5亿吨,其中2.5亿吨从国外进口,占石油总需求的56%。这意味着中国能源环境已经从“比较安全”向“比较不安全”转移。 2 0 0 6 年以来,国际油价持续走高,特别是自2 0 0 8 年1 月2 日国际油价首次突破1 0 0 美元/ 桶后,一直走高达到1 4 7 . 2 美元/ 桶的历史最高记录。尽管2 0 0 8 年9 月以来,由于国际金融危机的蔓延使得国际油价回落,但从长远看,石油是一种不可再生的战略资源,多个国际机构组织预测,至2 0 3 0 年石油仍将在全球一次能源消费中占据主导地位,国际石油市场仍以卖方市场为主,国际油价仍将高价位运行。随着我国石油对外依存度的升高,中国在国际油价的话语权将会越来越少,石油、天然气的国际高价格将给我国经济的长期持续稳定发展带来巨大挑战。 随着世界和我国油气工业的发展消耗以及未来对石油的需求,那些规模大、储量大、资源丰度高、易勘探、好开采的油气资源在整个剩余油气资源总量中所占的比重越来越小,一些以前不被重视的、未列入主要勘探目标的、开发效益相对较差、勘探开发技术要求高的油气资源逐步成为全球油气勘探开发的热点。用于常规油气资源勘探开发的工艺技术也可同样适用于低渗透油气资源。此外,低渗透油气资源勘探开发过程中对环境的影响是所有目前人类可开发利用的非常规油气资源中相对较小的,因而开展低渗透油气资源研发的重要性日益凸显。 近年以来在大庆、吉林、辽河、胜利、长庆等主要油田陆续发现了许多低渗透油藏。据统计,在近几年探明的未动用石油地质储量中,渗透率小于50md的低渗透储量占58%,而在探明的石油地质储量中,低渗透油藏的石油地质储量所占比例高达60~70%,甚至更高。经过多年的研究和试验,我国在低渗透油田的特征认识、开发决策和工艺技术等方面,都有了较大的发展和提高。但是,目前,世界范围内的低渗透油藏开发均没有取得突破性进展,低渗透储量的动用程度很低,只有储层条件好、埋藏浅的低渗透油藏才得到较好的开发。

国外致密砂岩气藏储层研究现状和发展趋势

国外致密砂岩气藏储层研究现状和发展趋势 谷江锐 刘岩(中国石油勘探开发研究院) 摘要 致密砂岩气藏具有低孔渗、连通性差的特点,储层评价研究水平是有效开发该类气藏的关键因素。美国和加拿大致密砂岩气藏勘探和开发程度最高,在致密储层评价研究方面积累了大量的经验。致密砂岩气藏主要指发现于盆地中心或者是连续分布的大面积天然气藏,也有观点认为大多数的致密气藏是位于常规构造、地层或复合圈闭中的低渗储层中,通常被称为 甜点 。国外致密气藏描述、评价和评估主要依赖于岩石学、测井和试井三种手段。未来致密砂岩气藏储层评价描述水平的提高主要基于两个方面:一是为了准确地评估和开发致密气藏,需要从岩心、测井和钻(录)井以及试井分析中获取更多的基础数据;二是使致密储层描述向高精度发展,进一步研究气藏砂体展布和含气富集带,包括透镜体砂岩大小、形状、方向和分布的确定,储层物性在空间分布的定量描述,低渗、特低渗岩心物性测定技术。 关键词 致密砂岩气藏 砂岩储层 气藏类型 储层评价 发展趋势 DOI:10 3969/j.issn.1002 641X 2009 07 001 1 引言 在世界石油资源供需矛盾加剧、原油价格居高不下、天然气储采比持续下降的形势下,随着人类对清洁、环保、高效能源需求的持续高涨,人们对非常规能源特别是非常规天然气的关注日益增加。非常规天然气又称分散天然气,是指储藏在地质条件复杂的非常规储层中的天然气,主要包括致密砂岩气、页岩气、煤层甲烷气、地下水中(水溶性)的天然气以及天然气水合物等。 与常规天然气相比,非常规天然气的类型和赋存形式更为多样,分布范围更为广泛,潜在资源量远远大于常规天然气资源。M asters [1]提出的天然气资源金字塔充分说明了致密气资源在世界天然气资源分布中的重要地位(图1)。从图上可以看出, 在金字塔的底部,致密气资源(储层渗透率 0 1) 的体积非常巨大。另据世界石油委员会报告(Raymond 等,2007),在全球,致密砂岩气藏中的天然气资源量大约为114 108m 3,煤层甲烷气资源量大约为233 108 m 3[2] 。 图1 天然气资源金字塔示意图(Masters,1980) 本文关注致密砂岩气藏,致密砂岩气的开发主 要局限在拥有巨大储量的美国和加拿大。美国已有近70年勘探开发低渗透致密砂岩气藏的历史,在非常规天然气优惠政策促进下,致密储层气开采的天然气量逐年增加,随之形成了一套较为成熟的勘探开发技术、方法系列,积累了大量的经验,也发表了许多这方面的成果。致密砂岩气藏本身具有的低孔渗、连通性差的复杂地质条件的特点,开采难度相对较大,给地质工程师和油藏工程师带来了很大的挑战,以致于当前低渗致密气田的有效开发,特别是储层评价研究,已是国内低渗透致密气田面临的一个普遍问题。为了对国外低渗致密气田的储层研究现状和做法有所了解,本文通过查阅大量文献资料,从致密砂岩气藏的类型、储层评价手段等角度入手,总结了国外特别是北美的致密砂岩气藏的储层研究成果,并就其发展趋势进行了分析,力求对国内致密气砂岩储层的评价研究起到一定的参考借鉴作用。 2 致密砂岩气藏的定义及其一般特征 致密砂岩储层通常是指储层渗透率低的砂岩储层,根据储层所含流体的不同,对孔隙度和渗透率的要求也不同,所以低渗透储层是一个相对的概念。不同的组织对致密砂岩气藏有不同的定义,最原始的定义可以追溯到1978年美国天然气政策法案,其中规定只有砂岩储层对天然气的渗透率等于或小于0 1 10 -3 m 2 时的气藏才可以被定义为致

相关文档
最新文档