(完整版)土壤阳离子交换量

合集下载

土壤.doc阳离子交换量

土壤.doc阳离子交换量

土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的测定方法确认报告1. 目的通过标准酸溶液滴定来确定土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。

2. 职责2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。

2.2 技术负责人负责审核检测结果和方法确认报告。

3.适用范围及方法标准依据本标准规定了土壤阳离子交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。

本标准适用于中性土壤阳离子交换量和交换盐基的测定,也可用于胃酸性少含2:1型粘土矿物的土壤。

4. 方法原理用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。

蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。

土壤交换性盐基是用土壤阳离子交换量测定时所得到的乙酸土壤浸提液,在选定工作条件的原子吸收分光光度计上直接测定;但所用钙、镁、钾、钠标准溶液应用乙酸铵溶液配制,以消除基体效应。

用土壤浸出液测定钙、镁时,还应加入释放剂锶,以消除铝、磷和硅对钙、镁测定的干扰。

5. 仪器与试剂5.1 仪器与设备:a)土壤筛:b)离心管:c)天平:d)电动离心机:e)原子吸收分光光度计:5.2试剂所有试剂除注明者外,均为分析纯,水均指去离子水。

5.2.1 1mol/L乙酸铵溶液:称取77.09g乙酸铵,用水溶解并稀释至近1L。

必要时用1:1氨水或乙酸调节至PH7.0,然后定容至1L。

5.2.2 95%乙醇溶液5.2.3 液体石蜡(化学纯)5.2.4 氧化镁:将氧化镁放入镍蒸发皿内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器皿中。

5.2.5 20g/L硼酸溶液:20g硼酸溶于1L无二氧化碳蒸馏水。

土壤阳离子交换量

土壤阳离子交换量
土壤阳离子交换量
土壤胶体所能吸附各种阳离子的总量
01 概念
03 测定方法
目录
02 影响因素
04
阳离子交换量测定的 意义
基本信息
土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质 的量来表示,即mol/kg。
概念
概念
土壤阳离子交换量、即CEC是指土壤胶体所能吸附各种阳离子的总量,其数值以每千克土壤中含有各种阳离 子的物质的量来表示,即mol/kg。
氯化钡-硫酸强迫交换法。将土壤用氯化钡饱和,然后用相当于土壤溶液中离子强度那样浓度的氯化钡溶液 平衡土壤,继而用硫酸溶液交换钡离子,生成硫酸钡沉淀。通过测定交换反应前后的硫酸含量的变化,可以计算 出硫酸消耗量,进而计算出阳离子交换量。
阳离子交换量测定的意义
阳离子交换Байду номын сангаас测定的意义
1、土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸 附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染 物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生 理平衡”,同时还可以保持养分免于被雨水淋失。
测定方法
测定方法
土壤阳离子的测定受多种因素影响,如交换剂的性质、盐溶液的浓度和pH、淋洗方法等。联合国粮农组织规 定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。
NaOAc法是广泛应用于石灰性土壤和盐碱土壤交换量测定的常规方法。中性乙酸铵法是我国土壤和农化实验 室所采用的常规分析方法,适于酸性和中性土壤。其方法是用中性乙酸铵溶液反复处理土壤,使土壤成为铵饱和 的土,再用95%乙醇洗去多余的乙酸铵后,用水将土样洗入凯氏瓶中,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶 液吸收,然后用盐酸标准溶液滴定,根据铵的量计算土壤阳离子交换量。

土壤.doc阳离子交换量

土壤.doc阳离子交换量

土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的测定方法确认报告1. 目的通过标准酸溶液滴定来确定土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。

2. 职责2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。

2.2 技术负责人负责审核检测结果和方法确认报告。

3.适用范围及方法标准依据本标准规定了土壤阳离子交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。

本标准适用于中性土壤阳离子交换量和交换盐基的测定,也可用于胃酸性少含2:1型粘土矿物的土壤。

4. 方法原理用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。

蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。

土壤交换性盐基是用土壤阳离子交换量测定时所得到的乙酸土壤浸提液,在选定工作条件的原子吸收分光光度计上直接测定;但所用钙、镁、钾、钠标准溶液应用乙酸铵溶液配制,以消除基体效应。

用土壤浸出液测定钙、镁时,还应加入释放剂锶,以消除铝、磷和硅对钙、镁测定的干扰。

5. 仪器与试剂5.1 仪器与设备:a)土壤筛:b)离心管:c)天平:d)电动离心机:e)原子吸收分光光度计:5.2试剂所有试剂除注明者外,均为分析纯,水均指去离子水。

5.2.1 1mol/L乙酸铵溶液:称取77.09g乙酸铵,用水溶解并稀释至近1L。

必要时用1:1氨水或乙酸调节至PH7.0,然后定容至1L。

5.2.2 95%乙醇溶液5.2.3 液体石蜡(化学纯)5.2.4 氧化镁:将氧化镁放入镍蒸发皿内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器皿中。

5.2.5 20g/L硼酸溶液:20g硼酸溶于1L无二氧化碳蒸馏水。

第8章 土壤阳离子交换量分析.ppt.Convertor

第8章 土壤阳离子交换量分析.ppt.Convertor

第八章土壤阳离子交换性能的分析P152第一节概述土壤中阳离子交换作用,早在19世纪50年代已为土壤科学家所认识。

当土壤用一种盐溶液(例如醋酸铵)淋洗时,土壤具有吸附溶液中阳离子(例如铵离子)的能力,同时释放出等量的其它阳离子如Ca 2+、Mg2+、K+、Na+等交换性阳离子。

在交换中还可能有少量的金属微量元素和铝。

Fe3+ (Fe2+)一般不作为交换性阳离子,因为它们的盐类容易水解生成难溶性的氢氧化物或氧化物。

土壤吸附阳离子的能力用吸附的阳离子总量表示,称为阳离子交换量[cation exchange capacity,简作(Q)],其数值以厘摩尔每千克(cmol·kg-1)表示。

土壤交换性能的分析包括土壤阳离子交换量的测定、交换性阳离子组成分析和盐基饱和度、石灰、石膏需要量的计算。

土壤交换性能是土壤胶体的属性。

土壤胶体有无机胶体和有机胶体。

土壤有机胶体腐殖质阳离子交换量200~400cmol·kg -1。

无机胶体包括各种类型的粘土矿物,其中2:1型的粘土矿物如蒙脱石的交换量为60~100cmol·kg-1,1:1型的粘土矿物如高岭石的交换量为10~15cmol·kg-1。

因此,不同土壤由于粘土矿物和腐殖质的性质和数量不同,阳离子交换量差异很大。

例如东北的黑钙土的交换量为30~50cmol·kg-1,而华南的土壤阳离子交换量均小于10cmol·kg-1:这是因为黑钙土的腐殖质含量高,粘土矿物以2:1型为主;而红壤的腐殖质含量低,粘土矿物又以1:1型为主。

阳离子交换量的测定受多种因素影响。

例如交换剂的性质、盐溶液的浓度和pH等,必须严格掌握操作技术才能获得可靠的结果。

作为指示阳离子常用的有NH4+、Na+、Ba 2+,亦有选用H+作为指示阳离子。

各种离子的置换能力为:Al 3+ > Ba2+> Ca 2+> Mg 2+> NH4+> K+> Na+。

土壤阳离子交换量的测定

土壤阳离子交换量的测定

土壤阳离子交换量的测定(EDTA—铵盐快速法)土壤中有机无机胶体所吸附的交换性阳离子总量,称为土壤阳离子交换量,以100g 干土吸附阳离子的毫克当量数表示。

阳离子交换量的大小,可作为评价土壤保肥供肥能力的指标,是改良土壤和合理施肥的重要依据之一,也是高产稳产农田肥力的重要指标。

方法原理:采用0.005M EDTA(乙二胺四乙酸)与1N醋酸铵混合液作为交换剂,在适宜的PH条件下(酸性土壤PH7.0,石灰性土壤PH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。

同时由于醋酸铵缓冲液的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。

操作步骤:1. 称取通过60号筛的风干土样1.0g(精确到0.01g),有机质少的土样可称2—5g,将其小心放入100ml离心管中。

2. 沿管壁加入少量EDTA—醋酸铵混合液,用橡皮头玻璃棒充分搅拌,使样品与交换剂混合,直到整个样品成均匀的泥浆状态。

再加交换剂使总体积达80ml左右,再搅拌1—2分钟,然后洗净橡皮头玻璃棒。

3. 将离心管在粗天平上成对平衡,对称放入离心机中离心3—5分钟,转速3000转/分左右,弃去离心管中的清液。

4. 将载土的离心管管口向下用自来水冲洗外部,然后再用不含铵离子的95%酒精如前搅拌样品,洗去过剩的铵盐,洗至无铵离子反应为止。

检查方法见注意事项。

5. 最后用自来水冲洗管外壁后,在管内放入少量自来水,以橡皮头玻璃棒搅成糊状,并洗入150ml开氏瓶中,洗入体积控制在80—100ml左右,其中加2ml液状石蜡(或2g 固体石蜡),1g左右氧化镁,然后在定氮仪上进行蒸馏,蒸馏方法同土壤全氮的测定。

同时进行空白试验。

结果计算阳离子交换量(m·e/100g土)=N×(V—V0)×100/样品重式中:V——滴定待测液所消耗盐酸毫升数V0——滴定空白消耗盐酸毫升数N——盐酸的当量浓度100——换算成每百克样品中的毫克当量数。

实验九 土壤的阳离子交换量

实验九     土壤的阳离子交换量

实验题目:土壤的阳离子交换量实验原理:土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。

土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。

在无机物中,粘土矿物是其主要部分。

粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。

四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。

这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。

这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。

土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。

当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。

同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。

若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。

这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。

这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。

实验目的:1.测定污灌区表层和深层土的阳离子交换总量。

2.了解污灌对阳离子交换量的影响。

仪器与试剂:电动离心机离心管锥形瓶量筒移液管滴定管试管1N氯化钡溶液酚酞指示剂1%(W/V)硫酸溶液0.2N 土壤实验过程:1.0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解在500ml煮沸后冷却的蒸馏水中。

称取0.5克(分析天平上称)于105C烘箱中烘干后的邻苯二甲酸氢钾两份,分别放入250毫升锥形瓶中,加100毫升煮沸冷的蒸馏水,溶完再加4滴酚酞指示剂,用配制的氢氧化钠标准溶液滴定到淡红色,在用煮沸冷却后的蒸馏水做一个空白试验,并从滴定邻苯二甲酸氢钾的氢氧化钠溶液中扣除空白值。

(完整版)土壤阳离子交换量

(完整版)土壤阳离子交换量

土壤阳离子交换量(Bacl2实验原理本实验采用的是快速法来测定阳离子交换量。

土壤中存在的各种阳离子可被某些中性盐(BaCl2)水溶液中的阳离子(Ba2+)等价交换。

由于在反应中存在交换平衡,交换反应实际上不能进行完全。

当增大溶液中交换剂的浓度、增加交换次数时,可使交换反应趋于完全。

交换离子的本性,土壤的物理状态等对交换反应的进行程度也有影响。

再用强电解质(硫酸溶液)把交换到土壤中的Ba2+交换下来,这由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。

这样通过测定交换反应前后硫酸含量的变化,可以计算出消耗硫酸的量,进而计算出阳离子交换量。

用不同方法测得的阳离子交换量的数值差异较大,在报告及结果应用时应注明方法。

1. 仪器(1)离心机:北京产CD5–A型离心机(2)离心管:100 mL(3)锥形瓶:100 mL(4)量筒:50 mL(5)移液管:10 mL 、25 mL(6)碱式滴定管:25 mL2. 试剂(1)氯化钡溶液:称取60 g氯化钡(BaCl2·2H2O)溶于水中,转移至500 mL容量瓶中,用水定容。

(2)0.1%酚酞指示剂(W∕V):称取0.1 g酚酞溶于100 mL醇中。

(3)硫酸溶液(0.1 mol/L):移取5.36 mL浓硫酸至1000 mL容量瓶中,用水稀释至刻度。

(4)标准氢氧化钠溶液(≈0.1 mol/L):称取2 g氢氧化钠溶解于500 mL煮沸后冷却的蒸馏水中。

其浓度需要标定。

标定方法:各称取两份0.5000g邻苯二甲酸氢钾(预先在烘箱中105 ℃烘干)于250 mL 锥形瓶中,加100 mL煮沸后冷却的蒸馏水溶解,再加4滴酚酞指示剂,用配制好的氢氧化钠标准溶液滴定至淡红色。

再用煮沸后冷却的蒸馏水做一个空白试验,并从滴定邻苯二甲酸氢钾的氢氧化钠溶液的体积中扣除空白值。

计算公式如下:式中:W ——邻苯二甲酸氢钾的重量,V1 ——滴定邻苯二甲酸氢钾消耗的氢氧化钠体积,mL;V0 ——滴定蒸馏水空白消耗的氢氧化钠体积,mL;204.23 ——邻苯二甲酸氢钾的摩尔质量,g/mol。

DB33T 966-2015 土壤阳离子交换量的测定

DB33T 966-2015 土壤阳离子交换量的测定

ICS13.080.05B11 DB33 浙江省地方标准DB 33/T 966—2015土壤阳离子交换量的测定Determination of cation exchange capacity in soil2015-05-07发布2015-06-07实施前言本标准按GB/T 1.1-2009给出的规则起草。

本标准由浙江省农业厅提出。

本标准由浙江省种植业标准化技术委员会归口。

本标准起草单位:浙江省土壤与肥料检测中心、富阳市农技推广中心土肥站、杭州市余杭区农产品质量安全检验检测站。

本标准主要起草人:季天委、戴学龙、高素珍、颜军、刘俊红、邵赛男、韩海林、沈月。

本标准首次发布。

土壤阳离子交换量的测定1 范围本标准规定了土壤阳离子交换量的测定方法。

本标准适用于土壤阳离子交换量的测定。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 601 化学试剂标准滴定溶液的制备GB/T603 化学试剂试验方法中所用制剂及制品的制备GB/T 6682-2008 分析实验室用水规格和试验方法NY/T 1121.1 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2 土壤检测第2部分:土壤pH的测定3 方法提要用乙二胺四乙酸二钠与乙酸铵混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤 pH 7.0,石灰性土壤 pH 8.5),混合液中的NH4+与土壤交换性阳离子交换,使土壤成为NH4+饱和土,用乙醇洗去多余的铵盐,用蒸馏水将土壤洗入定氮仪的消化管内,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,求出土壤阳离子交换量含量。

4 试剂和溶液4.1 所有试剂除注明者外,均为分析纯。

分析用水应符合GB/T 6682-2008中至少三级水的规格要求。

实验中所需标准滴定溶液、制剂及制品,在没有注明其它要求时均按GB/T 601、GB/T 603的规定制备。

土壤.doc阳离子交换量

土壤.doc阳离子交换量

土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的测定方法确认报告1. 目的通过标准酸溶液滴定来确定土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。

2. 职责2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。

2.2 技术负责人负责审核检测结果和方法确认报告。

3.适用范围及方法标准依据本标准规定了土壤阳离子交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。

本标准适用于中性土壤阳离子交换量和交换盐基的测定,也可用于胃酸性少含2:1型粘土矿物的土壤。

4. 方法原理用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。

蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。

土壤交换性盐基是用土壤阳离子交换量测定时所得到的乙酸土壤浸提液,在选定工作条件的原子吸收分光光度计上直接测定;但所用钙、镁、钾、钠标准溶液应用乙酸铵溶液配制,以消除基体效应。

用土壤浸出液测定钙、镁时,还应加入释放剂锶,以消除铝、磷和硅对钙、镁测定的干扰。

5. 仪器与试剂5.1 仪器与设备:a)土壤筛:b)离心管:c)天平:d)电动离心机:e)原子吸收分光光度计:5.2试剂所有试剂除注明者外,均为分析纯,水均指去离子水。

5.2.1 1mol/L乙酸铵溶液:称取77.09g乙酸铵,用水溶解并稀释至近1L。

必要时用1:1氨水或乙酸调节至PH7.0,然后定容至1L。

5.2.2 95%乙醇溶液5.2.3 液体石蜡(化学纯)5.2.4 氧化镁:将氧化镁放入镍蒸发皿内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器皿中。

5.2.5 20g/L硼酸溶液:20g硼酸溶于1L无二氧化碳蒸馏水。

土壤阳离子交换量

土壤阳离子交换量

土壤阳离子交换量的测定一、目的意义阳离子交换量的大不,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一,也是高产稳产农田肥力的重要指标。

二、方法原理有醋酸铵法,EDTA—铵盐快速法,醋酸法-氯化铵法,同位素法,醋酸钙法等,本实验仅介绍目前国内外普遍应用的醋酸铵法。

但此法在洗去多余盐溶液时,容易洗过头或洗不彻底,使结果偏低或偏高,故常用于例行分析。

对研究工作则不太适宜,适用于中性和酸性土壤。

EDTA—铵盐快速法适用于石灰法、中性和酸性土壤,此法除所用的交换剂为乙二铵四乙酸与醋酸铵的混合液而不同于醋酸铵法外。

其余操作方法及计算均相同。

醋酸铵-氯化铵法及醋酸钙法适用于石灰性土壤。

土壤吸收性复合体上的钾、钠、镁、铝、氢等阳离子,被提取液中的铵离子进行当量交换,使土壤成为NH4+饱和土,用95%酒精洗去多余的醋酸铵后,用定氮蒸馏的方法进行测氨,即可计算出土壤阳离子交换量。

三、操作步骤称取通过0.25mm筛孔的风干土2g(精确到0.01g),(如还要测定盐基含量则称5g),放入100ml离心管中,沿管壁加入少量1NNH4Ac溶液,用皮头玻璃棒搅拌样品,使成为均匀的泥浆状,再加NH4Ac溶液使总体积达到约60ml,充分搅拌使土壤分散,然后用NH4Ac 溶液洗净皮头玻棒与管壁上粘附的土粒。

将离心管成对地在粗天平上平衡,对称地放入离心机中,离心3-5分钟(转速3000转/分),弃去管中清液。

如此连续处理3-4次直到提取液中无钙离子反应为止。

(如要测交换性盐基时则须收集清液)。

将载土的离心管口向下,用自来水冲洗外部,然后再用不含铵离子的95%酒精如前搅拌样品,以洗去过量的NH4Ac,洗至无铵离子反应为止。

用自来水冲洗管外壁后,在管内放入少量自来水,用皮头玻棒搅成糊状,并洗入250ml 开氏瓶中,洗入体积控制在80-100ml左右,加1ml液体石蜡及10ml12%MgO悬浊液,然后在定氮器上进行蒸馏(蒸馏方法见土壤全氮量的测定),最后用HCL标准溶液滴定。

土壤阳离子交换量计算公式

土壤阳离子交换量计算公式

土壤阳离子交换量计算公式土壤阳离子交换量计算公式是土壤科学中重要的一环,它是研究土壤基本有机质、碳、氮、磷、钾、钙、镁等特性的基础,是决定土壤生产力的重要因素。

因此,了解土壤阳离子交换量计算公式,有助于深刻了解土壤性质,为决定土壤肥力搭建重要基础。

一、土壤阳离子交换量及其计算原理土壤阳离子交换量(CEC)是指土壤能给予并有能力与其他单质或离子进行交换的带正电荷微粒或分子的能力。

其计算原理主要是根据土壤的pH值和溶液中的离子活度,通过土壤具有微电荷的矿物质和有机质组成,来估算土壤具有的阳离子交换量(CEC)。

二、土壤阳离子交换量的计算公式土壤阳离子交换量的计算公式主要是根据土壤中的有机质、矿物质和无机质含量来确定的,有如下公式:CEC=Clay+Silt+Organic Matter+Cationic Exchangeable Base 这里,Clay指的是土壤中的粘土含量;Silt指的是土壤中的粉土含量;Organic Matter指的是土壤中的有机质含量;Cationic Exchangeable Base指的是土壤中的阳离子含量,包括钙离子(Ca2+)、钠离子(Na+)、镁离子(Mg2+)和铵离子(NH4+)等。

三、土壤阳离子交换量的影响因素1、土壤的成分土壤的矿物质和有机质含量是影响土壤阳离子交换量的主要因素,例如沙类土壤、黏粒土壤和有机质含量较低的干土壤等,其阳离子交换量(CEC)较低;而有机质含量较高的湿土壤,其阳离子交换量(CEC)较高。

2、土壤pH值土壤pH值也是影响土壤阳离子交换量的重要因素,一般情况下,土壤的pH值越低,土壤阳离子交换量(CEC)也会越低。

3、土壤水含量土壤的水含量也会影响土壤的阳离子交换量,例如有机质含量较高的湿土壤,其阳离子交换量(CEC)会比土壤水分较低的情况要高。

四、土壤阳离子交换量的意义1、评价土壤肥力土壤阳离子交换量(CEC)是衡量土壤肥力大小的重要指标,一般情况下,土壤的阳离子交换量(CEC)越高,表示土壤肥力越强;而土壤阳离子交换量(CEC)越低,表示土壤肥力越弱。

HJ 889-2017土壤 阳离子交换量 方法证实

HJ 889-2017土壤 阳离子交换量  方法证实

1 方法依据
HJ 889-2017土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法;
2 仪器和设备
土壤筛,高速离心机,电子分析天平
3 分析步骤
详见HJ 889-2017 9分析步骤
4 验证结果
4.1 方法检出限
按HJ 168-2010规定以扣除空白值后的与0.01吸光度相对应的浓度值作为检出限,按公式MDL=0.01/b,结合HJ 889-2017标准中的公式,得到检出限:
MDL=0.01×V×3±
b×m
=
0.01×50×3
0.5609×3.5
=0.8cmol(+)/kg
4.2 精密度
取3个浓度水平样品,按照HJ 889-2017分别做6次平行实验,计算阳离子交换量的平均值,标准偏差并求出相对标准偏差,结果见表1。

表1 精密度测试数据
4.3 准确度
取2个有证标准物质,分别做6次平行实验,计算平均值,相对标准偏差,最大相对误差,检测结果见表3。

表3 有证标准物质测试数据
5.1检出限
实验测得检出限为0.8cmol(+)/kg。

5.2精密度
样品1平均值为8.3cmol(+)/kg,相对标准偏差为1%;样品2平均值为16.3cmol(+)/kg,相对标准偏差为2%;样品3平均值为35.4cmol(+)/kg,相对标准偏差为0.9%;
5.3准确度
分别对GBW07414a(ASA-3a)和GBW07461(ASA-10)两个有证标准物质进行测定,单次测定结果均在标准值范围内。

土壤阳离子交换量测定方法

土壤阳离子交换量测定方法

土壤阳离子交换量测定方法
土壤阳离子交换量测定方法是衡量土壤肥力的一种重要方法。

下面介绍一种被称为“Cation Exchange Capacity(CEC)”的土壤阳离子交换量测定方法:
一、准备工作
1.准备样品:按照一定比例将土壤进行筛分,取质量为0.01g的样品,用水溶液浸泡24小时,进行固溶回收;
2.准备脲酶:使用无水雌二醇脲酶,按照0.05g/L的比例溶解在氯化钠中,溶液焓度为27;
3.准备参照溶液:取上述雌二醇/氯化钠溶液,加入酸化胆碱至pH8.5;
二、实验过程
1.质量测定:将0.01g的样品放入25ml的容器中,将中和液(用盐酸/碳酸氢钠调节的氯化钠)加入到样品中,用酸化胆碱试管调节pH值;
2.CEC测定:在质量-容量表上记录样品原始质量,将容器中盐母液用蠕动搅拌机搅拌,稍微加热20分钟;
3.参照液混合:取上述参照液,加入样品混合,搅拌30分钟;
4.质量测定:滴定搅拌缓慢,用酸化胆碱试管调节即可,继续到滴定尾点,在质量-容量表上记录样品终末质量;
5.CEC比值测定:比较终末质量与原始样品质量,计算测试结果,CEC 比值=(原始质量-终末质量)/0.01;
三、数据处理
1.质量分析:首先,用盐酸表中的盐酸按照离子比例计算,将溶液中各种离子的质量计算出来;
2.计算CEC值:将计算出来的各离子的质量,乘以湿度比和离子比,
就可得到CEC值;
3.数据安全存储:采用电脑,存储所有测定的结果,以及半成品和最后的测试结果。

土壤阳离子交换量测定是一种具有重要意义的技术,它可以指导土壤
肥力的变化。

它通过采用CEC测定方法,能够帮助我们深入地理解土
壤的性质,从而更好地利用土壤中氮、磷、钾等养分,协助农业生产。

环境保护部公告2017年第73号――关于发布《土壤阳离子交换量的测定

环境保护部公告2017年第73号――关于发布《土壤阳离子交换量的测定

环境保护部公告2017年第73号――关于发布《土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法》等四项国家
环境保护标准的公告
【法规类别】环保综合规定
【发文字号】环境保护部公告2017年第73号
【发布部门】环境保护部
【发布日期】2017.12.17
【实施日期】2018.02.01
【时效性】现行有效
【效力级别】XE0303
环境保护部公告
(2017年第73号)
关于发布《土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法》等四项国家环
境保护标准的公告
为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,现批准《土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法》等四项标准为国家环境保护标准,并予发布。

土壤的阳离子交换量1

土壤的阳离子交换量1

实验六土壤的阳离子交换量11991340 田泽宇一、概述土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又使它成为重金属类污染物的主要归宿。

污染物在土壤表面的吸附剂离子交换能力又和土壤的组成、结构等有关,因此,对土壤性能的测定,有助于了解土壤对污染物质的净化能力及对污染负荷的允许程度。

土壤中主要存在三种基本成份,一是无机物,而是有机物,三是微生物。

在无机物中,粘土矿是其主要部分。

粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。

四面体硅氧层中的Si4+常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分的被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。

这些电荷分布在硅酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。

这些阳离子主要是Ca2+、Mg2+、Al3+、Na+、K+和H+等,它们往往被吸附于矿物质胶体表面上,决定着粘土矿物的阳离子交换行为。

壤中的有机物质主要是腐殖物质,它们可分为三类。

一类是不能被碱萃取的胡敏素,另一类是可被碱萃取,但当萃取液酸化时析出而成为沉淀物的腐殖酸,第三类是酸化时不沉淀的富里酸。

这些物质成份复杂,分子量不固定,结构单元上存在各种活性基因。

它们在土壤中可以提供出很大量的阳离子交换能力,而且对重金属污染物在土壤中有吸附、络合等行为起着重要作用。

土壤存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。

若无副反应时,交换反应可以等当量地进行。

上述反应中因为存在交换平衡,因此,交换反应实际上不完全。

当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。

同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。

若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这是由于生成了硫酸钡沉淀,且由于氢离子的交换吸附能力很强,交换基本完全。

这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。

土壤的阳离子交换量实验报告

土壤的阳离子交换量实验报告

土壤的阳离子交换量实验报告
土壤阳离子交换实验属于土壤物理化学实验的一部分,是研究土壤离子的活动度的一
种重要手段。

土壤的阳离子交换量是衡量土壤水热量、有机质、离子活性及土壤结构状况
的量化指标,对提高土壤可持续利用能力具有重要意义。

本实验旨在研究一个典型山地土
壤在不同pH值条件下的阳离子交换量。

实验中,采用的土壤样品来自一个位于山地的森林园地,由该森林园的工作人员采集,整块地将分成三份,每份重200克,由于较大的粒径分布,采集后将各份土壤分别趋近筛选,按粒径由小到大分成7个等级,分别为2、2.5、2.8、3.2、4.0、5.0和6.0毫米。

筛选后取其中一份样品,经晒干后病酸溶法清洗,采用汞堆称法测定阳离子交换量。

实验结果表明,土壤细粒径(<2.0mm)粘壤含量比较高,交换性痕量元素含量较高。

在较低的pH(4.0)条件下,样品的阳离子交换量最高;随着pH值的上升,阳离子交换量逐渐降低,而在较高的pH(8.0)条件下,样品的阳离子交换量最低。

此外,实验结果显示,细粒径土壤的阳离子交换量明显小于粗粒径土壤。

本次实验的结果对深入的研究土壤的阳离子交换量以及土壤的结构状况等具有重要的
指导意义,为采用有效的施肥和入渗性方案提供了参考。

通过这项实验,我们可以正确评
估土壤的营养状况,从而为土壤综合管理提供有力支撑。

土壤的阳离子交换量

土壤的阳离子交换量

环工102 章徐涛 2010013248土壤的阳离子交换量实验原理:土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。

土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。

在无机物中,粘土矿物是其主要部分。

粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。

四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。

这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。

这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。

土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。

当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。

同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。

若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。

这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。

这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。

实验目的:1.测定污灌区表层和深层土的阳离子交换总量。

2.了解污灌对阳离子交换量的影响。

仪器与试剂:电动离心机离心管锥形瓶量筒移液管滴定管试管1N氯化钡溶液酚酞指示剂1%(W/V)硫酸溶液0.2N 土壤实验过程:1.0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解在500ml煮沸后冷却的蒸馏水中。

称取0.5克(分析天平上称)于105C烘箱中烘干后的邻苯二甲酸氢钾两份,分别放入250毫升锥形瓶中,加100毫升煮沸冷的蒸馏水,溶完再加4滴酚酞指示剂,用配制的氢氧化钠标准溶液滴定到淡红色,在用煮沸冷却后的蒸馏水做一个空白试验,并从滴定邻苯二甲酸氢钾的氢氧化钠溶液中扣除空白值。

土壤阳离子交换量计算公式

土壤阳离子交换量计算公式

土壤阳离子交换量计算公式土壤阳离子交换量是指土壤中的阳离子的总量,是土壤矿物质组成的重要组成部分。

土壤阳离子交换量可以用来测定土壤矿物质组成和性质,从而预测土壤生态环境和作物生长正常状况。

土壤阳离子交换量由六类主要成分组成,分别为碱金属离子、合金离子、交联离子、氧离子、水离子和有机离子。

其中碱金属离子主要由钠、钾、钙、镁、氢离子组成,这些元素在土壤中的含量是决定土壤性质的重要因素。

合金离子主要由铝、铁离子组成,它们在土壤中的含量直接关系到土壤的酸碱度和土壤的水解松紧度。

这两类离子中的所有元素都是造成土壤交换性的重要因素。

交联离子是由交换离子和其他离子在固定离子表面上发生络合反应而形成的,它们是土壤矿物质组成中重要的部分,它们也是控制土壤性质的重要因素。

氧离子是土壤中最主要的离子,它可以提供大量的水分,必须要注意它对土壤水分平衡的影响。

水离子可以洗涤土壤植被,对土壤有利;而有机离子则可以改变土壤的腐蚀性,从而影响土壤的性质。

二、计算土壤阳离子交换量的公式计算土壤阳离子交换量的公式为:CEC = (Na + K + Ca + Mg + H + Al) + (Cl + SO4 + NO3 + HCO3) 其中CEC是土壤阳离子交换量,Na是钠离子,K是钾离子,Ca是钙离子,Mg是镁离子,H是氢离子,Al是铝离子,Cl是氯离子,SO4是硫酸根离子,NO3是硝酸根离子,HCO3是碳酸根离子。

三、计算土壤阳离子交换量的步骤(1)首先测定土壤中各离子的含量,记录下离子浓度。

(2)将各离子的浓度输入到计算公式中,公式中的每一项都用离子的浓度乘以各自的电荷数,最后将乘积求和。

(3)最后,得出的和就是土壤阳离子交换量。

四、关于土壤阳离子交换量的用途(1)土壤阳离子交换量可以用来反映土壤矿物质组成和性质,从而预测土壤生态环境和作物生长正常状况。

(2)土壤阳离子交换量可以用来控制土壤酸碱度和水解松紧度,并对土壤中各类养分积累和吸收有重要影响。

土壤阳离子交换量的测定

土壤阳离子交换量的测定

土壤阳离子交换量的测定A. EDTA-乙酸铵盐交换法1 方法提要用0.005mol·L-1 EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。

由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。

通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。

2 适用范围本方法适用于各类土壤中阳离子交换量的测定。

3 主要仪器设备3.1 电动离心机:转速3000 r/min~5000r/min;3.2 离心管:100mL;3.3 定氮仪;3.4 消化管(与定氮仪配套)。

4 试剂4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容;4.2 95%乙醇(须无铵离子);4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。

用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。

4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中;4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定;4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL;4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研钵中充分研磨混匀,贮于棕色瓶中备用;4.8 甲基红-溴甲酚绿混合指示:称取0.5g 溴甲酚绿和0.1g 甲基红于玛瑙研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL ;4.9 纳氏试剂:称取10.0g 碘化钾溶于5mL 水中,另称取3.5g 二氯化汞溶于20mL 水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤阳离子交换量(Bacl2
实验原理
本实验采用的是快速法来测定阳离子交换量。

土壤中存在的各种阳离子可被某些中性盐(BaCl2)水溶液中的阳离子(Ba2+)等价交换。

由于在反应中存在交换平衡,交换反应实际上不能进行完全。

当增大溶液中交换剂的浓度、增加交换次数时,可使交换反应趋于完全。

交换离子的本性,土壤的物理状态等对交换反应的进行程度也有影响。

再用强电解质(硫酸溶液)把交换到土壤中的Ba2+交换下来,这由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。

这样通过测定交换反应前后硫酸含量的变化,可以计算出消耗硫酸的量,进而计算出阳离子交换量。

用不同方法测得的阳离子交换量的数值差异较大,在报告及结果应用时应注明方法。

1. 仪器
(1)离心机:北京产CD5–A型离心机
(2)离心管:100 mL
(3)锥形瓶:100 mL
(4)量筒:50 mL
(5)移液管:10 mL 、25 mL
(6)碱式滴定管:25 mL
2. 试剂
(1)氯化钡溶液:称取60 g氯化钡(BaCl2·2H2O)溶于水中,转移至500 mL容量瓶中,用水定容。

(2)0.1%酚酞指示剂(W∕V):称取0.1 g酚酞溶于100 mL醇中。

(3)硫酸溶液(0.1 mol/L):移取5.36 mL浓硫酸至1000 mL容量瓶中,用水稀释至刻度。

(4)标准氢氧化钠溶液(≈0.1 mol/L):称取2 g氢氧化钠溶解于500 mL煮沸后冷却的蒸馏水中。

其浓度需要标定。

标定方法:各称取两份0.5000g邻苯二甲酸氢钾(预先在烘箱中105 ℃烘干)于250 mL 锥形瓶中,加100 mL煮沸后冷却的蒸馏水溶解,再加4滴酚酞指示剂,用配制好的氢氧化钠标准溶液滴定至淡红色。

再用煮沸后冷却的蒸馏水做一个空白试验,并从滴定邻苯二甲酸氢钾的氢氧化钠溶液的体积中扣除空白值。

计算公式如下:
式中:W ——邻苯二甲酸氢钾的重量,
V1 ——滴定邻苯二甲酸氢钾消耗的氢氧化钠体积,mL;
V0 ——滴定蒸馏水空白消耗的氢氧化钠体积,mL;
204.23 ——邻苯二甲酸氢钾的摩尔质量,g/mol。

实验步骤
取4只100 mL离心管,分别称出其重量(准确至0.0001 g,下同)。

在其中2只加入1.0 g 污灌区表层风干土壤样品,其余2只加入1.0 g深层风干土壤样品,并作标记。

向各管中加入20 mL氯化钡溶液,用玻棒搅拌4 min后,以3000r/min转速离心至下层土样紧实为止。

弃去上清液,再加20 mL氯化钡溶液,重复上述操作。

在各离心管内加20 mL蒸馏水,用玻棒搅拌1 min后,离心沉降,弃去上清液。

称出离心管连同土样的重量。

移取25.00 mL 0.1 mol/L硫酸溶液至各离心管中,搅拌10 min后,放置20 min,离心沉降,将上清液分别倒入4只试管中。

再从各试管中分别移取10.00 mL上清液至4只100 mL锥形瓶中。

同时,分别移取10.00 mL 0.1 mol/L硫酸溶液至另外2只锥形瓶中。

在这6只锥形瓶中分别加入10 mL蒸馏水、1滴酚酞指示剂,用标准氢氧化钠滴定,溶液转为红色并数分钟不褪色为终点。

计算公式
按下式计算土壤阳离子交换量(CEC):
式中:CEC ——土壤阳离子交换量,cmol/kg;
A ——滴定0.1 mol/L硫酸溶液消耗标准氢氧化钠溶液体积,mL;
B ——滴定离心沉降后的上清液消耗标准氢氧化钠溶液体积,mL;
G ——离心管连同土样的重量,g;
W ——空离心管的重量;g;
W0 ——称取的土样重,g;
N ——标准氢氧化钠溶液的浓度,mol/L。

相关文档
最新文档