吉林省长春市2020届高三质量检测(一)理科数学(解析版)
(红对勾)2020届高考一轮数学(理数)课时作业本:60 含答案解析

课时作业60随机抽样1.以下抽样方法是简单随机抽样的是(D)A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验解析:选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.2.(2019·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是(B)A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样解析:因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法.3.(2019·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(A)A.100B.150C.200D.250解析:法一:由题意可得70n -70=3 5001 500,解得n =100. 法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n=5 000×150=100.4.(2019·湖南怀化模拟)某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为( B )A .90B .180C .270D .360解析:设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y 320,得y =180.故选B.5.去年“3·15”,某报社做了一次关于“虚假广告”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成公差为正数的等差数列,共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份问卷,则在D 单位抽取的问卷份数是( C )A .45B .50C .60D .65解析:由于B 单位抽取的问卷是样本容量的15,所以B 单位回收问卷200份.由等差数列知识可得C 单位回收问卷300份,D 单位回收问卷400份,则D 单位抽取的问卷份数是B 单位的2倍,即为60份.6.(2019·泉州质检)某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( A )A .36人B .30人C .24人D .18人解析:设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x,3x ,由题意可得3x -x =12,x =6.∴持“喜欢”态度的有6x =36(人).7.(2019·石家庄模拟)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( C )A .16B .17C .18D .19解析:因为从1 000名学生中抽取一个容量为40的样本,所以系统抽样的分段间隔为1 00040=25,设第一组随机抽取的号码为x ,则抽取的第18组编号为x+17×25=443,所以x =18.8.采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( A )A .12B .13C .14D .15解析:根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d =1 00050=20的等差数列{a n },∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C的共有12人.9.(2019·江苏南京联合体学校调研)为检验某校高一年级学生的身高情况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为210的样本,已知每个学生被抽到的概率为0.3,且男女生的比是4∶3,则该校高一年级女生的人数是 300 .解析:抽取的高一年级女生的人数为210×37=90,则该校高一年级女生的人数为90÷0.3=300,故答案为300.10.(2019·湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为 3 .解析:系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.11.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是 76 .解析:由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.12.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为 50 ;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为 1 015 小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.13.(2019·安徽安庆一中模拟)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于 ( D )A .12B .18C .24D .36解析:根据分层抽样方法知n 960+480=24960,解得n =36. 14.(2019·安徽淮北模拟)某单位员工按年龄分为A ,B ,C 三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是145,则该单位员工总数为( B )A .110B .100C .900D .800解析:∵员工按年龄分为A ,B ,C 三组,其人数之比为5∶4∶1,∴从中抽取一个容量为20的样本,则抽取的C 组人数为11+4+5×20=110×20=2,设C 组员工总数为m ,则甲、乙二人均被抽到的概率为C 22C 2m=2m (m -1)=145,即m (m -1)=90,解得m =10.设员工总数为x ,则由10x =15+4+1=110,可得x =100,故选B.15.为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y ,z ,依次构成等差数列,且6,y ,z +6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为( C )A .8B .6C .4D .2解析:∵6,y ,z 依次构成等差数列,且6,y ,z +6成等比数列,∴⎩⎪⎨⎪⎧ 6+z =2y ,y 2=6(z +6),解得⎩⎪⎨⎪⎧y =12,z =18.若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为126+12+18×12=4,故选C. 16.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为 36 .解析:根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.。
2020届高三11月联考数学(理)试题(解析版)

2020届高三11月联考数学(理)试题一、单选题1.复数312112ii i +++-的模为( )A .1BCD .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案.【详解】 根据题意,31211211212i i i i i i +++++=+-+(12)(1)122i i i+-+=+3122i i++=+2i =+,所以|2|i +==故选:C.【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð( )A .{|0}x x ≤B .{|2 3 0}x x x ≤≤≤或C .{|23}x x ≤≤D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案.【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð.故选:B.【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r 能否得到1λ=,从而得到答案.【详解】因为向量(3,4)a =r,所以5a ==r因为1λ=,所以可得5a a λλ==r r ,所以1λ=是||5a λ=r的充分条件. 因为||5a λ=r ,所以||||5a λ= ||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件.故选:A.【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题. 4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( ) A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案.【详解】 根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<.即12x -<<所以不等式()1g x <的解集为(1,2)-.故选:C.【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题.5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图A .43-B .23-C .32-D .34- 【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积.【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上,所以DE ⊥平面ACD ,所以113E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 11)3=1=,所以几何体的体积为2. 故选:C.【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题.6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( )A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案.【详解】 由题意,22()(1)f x x '=--, 221(3)(31)2f '∴=-=--, 所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =. 故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭12548= 故选:D.【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题.7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5B .4C .2D .1 【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1n a +的通项和前n 项和n S ,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+, 所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列,所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 12111n n T S S S =++⋅⋅⋅+ 11111212231n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2.故选:C.【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m的取值范围为( )A .[2,)+∞B .(1,0)(2,)-+∞UC .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围.【详解】 根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点,所以10m -<<,所以实数m 的取值范围为(1,0)-.故选:D.【点睛】本题考查画分段函数的图像,函数与方程,属于简单题.9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n+的最小值为( ) A .92 B .2 C .1 D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m --=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】 因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m --=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭ 1452m n n m ⎛⎫=++ ⎪⎝⎭1(52≥+92=, 当且仅当2,3m =43n =时,等号成立. 故选:A.【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题.10.已知sin()1223πα-= 则sin(2)6πα+= ( ) A .710- B .710 C .79- D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解.【详解】21cos()12sin ()61223ππαα-=--=,(2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C. 【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解.11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DH DA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GH k DA AC==,易得∥EH BD ,∥FG BD ,得1AH EH k DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =,所以AC HG P ,同理AC EF P设DH GH k DA AC==(01)k <<, BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =,所以BD HE P ,同理∥FG BD所以1AH EH k DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-,在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B.【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题.12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( ) A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞- ⎪⎝⎭ 【答案】C 【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围.【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==,所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭, 求导得2()3(4)2g x x m x '=++-,令()0g x '=,23(4)20x m x ∴++-=, 2(4)240m ∆=++>, 由12203x x =-<, 知()0g x '=有一正一负的两个实根.又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立, 又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C.【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小, 由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩ 所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF = 所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角),因为AE =OA =OE =在三角形AEO 中,根据余弦定理,可知222cos 22EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题.16.已知函数()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭14cos sin 2x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 2cos 1x x x ωωω=+-sin 22x x ωω=+2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z .因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和nT.【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比2q =,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题. 18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+,因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大, 由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =-- 代入120,440,a b a b ++≤⎧⎨-+≤⎩可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:x (,)b -∞ b(,1)b 1(1,)+∞ ()h x '+-+()h xZ极大值32111623b b -+- ]极小值12b -要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b b b b ⎧---<⎪⎨<⎪⎩解得1b <,而1215>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =.(1)求角C 的大小; (2)若3PB =,sin 38BAP ∠=,求ABC V 的面积. 【答案】(1)3C π=;(2【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案. 【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C =所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠, 即2357sin 3ABπ=,所以19AB =. 所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =, 所以11353sin 252222ABC S CA CB C =⋅⋅=⨯⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,12AA =,且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD 内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值.【答案】(1)证明见解析;(2 【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ , 所以平面EFQ ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H ,所以11242OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,,222A ⎛-- ⎝⎭,所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭, 设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧--=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题.21.已知函数1()1ln1mxf x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由;(3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值. 【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭, 当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94≥= 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m =, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数, 又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a =. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。
精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)

故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
长春市普通高中2020届高三质量监测(二)理科综合生物答案

长春市2020届高三质量监测(二)理综生物参考答案与评分细则一、选择题1.【命题立意】以细胞结构的相关知识为载体,考查理解能力(生命观念)。
【试题解析】内质网能形成囊泡将分泌蛋白等物质转移到高尔基体进一步加工,高尔基体能形成囊泡将物质返回到内质网或者运输到细胞膜。
细胞膜则是在胞吞的时候形成囊泡。
【参考答案】 D2.【命题立意】以染色体相关实验为载体,考查实验与探究能力(科学探究)。
【试题解析】有丝分裂的各个时期,染色体的形态、位置和数目各有不同,所以能根据这些特点来确定细胞所处的分裂时期,A正确。
分化程度高的细胞,一般分裂能力弱。
而要观察染色体则一定需要分裂期才能看到,因此要选择分化程度低的细胞,它们分裂旺盛,容易找到分裂期的细胞,B错误;卡诺氏液不是染色剂,它是固定剂,C错误;教材中观察染色体的实验中,因为解离、固定等原因,细胞均处于死亡状态,所以无法观察动态行为,D错误。
【参考答案】 A3.【命题立意】以细胞呼吸相关知识为载体,考查创新能力(生命观念)。
【试题解析】乳酸菌是厌氧菌,A错误;两种生物都能进行呼吸作用,有氧呼吸和无氧呼吸的第一阶段相同,均是葡萄糖氧化分解产生丙酮酸和还原氢,B正确;乳酸菌无氧呼吸产生乳酸,不产生气体,所以不会导致涨袋。
涨袋的原因有可能是酵母菌无氧呼吸在不消耗气体的情况下,产生了二氧化碳导致的,C错误;酸奶中的酸性物质主要是乳酸菌无氧呼吸产生的乳酸,酵母菌不能产生,D错误。
【参考答案】 B4.【命题立意】以免疫的相关知识为载体,考查解决问题能力(生命观念)。
【试题解析】病毒只能寄生在活细胞内,不能在血浆中繁殖,A错误;效应T细胞可裂解靶细胞,不能直接裂解流感病毒,B错误;T细胞接受刺激后分泌淋巴因子作用于B细胞,C项正确;记忆细胞不能分泌抗体,要分化为浆细胞才能产生抗体,D错误。
【参考答案】 C5.【命题立意】以鸟类遗传及基因自由组合定律的相关知识为载体,考查解决问题能力(科学思维)。
2020届高考数学(理)一轮必刷题 专题64 随机抽样(解析版)

考点64 随机抽样1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167【答案】C【解析】初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40 B .36 C .30 D .20 【答案】C【解析】利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90,解得n =30.4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( ) A .5,10,15,20,25,30 B .2,4,8,16,32,48 C .5,15,25,35,45,55 D .1,12,34,47,51,60【答案】C【解析】从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为606=10,只有C 选项中导弹的编号间隔为10.5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32 D .3,9,13,27,36,54【答案】B【解析】由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23 B .09 C .02 D .16【答案】D【解析】从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9 【答案】B【解析】由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.故选B.8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 成等差数列,则二车间生产的产品数为( ) A .800 B .1 000 C .1 200D .1 500【答案】C【解析】因为a 、b 、c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.故选C.9.从一个容量为N 的总体中抽取一个容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p 1=p 2=p 3.10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 45 0744 38 15 51 00 13 42 99 66 02 79 54第9行A .07B .25C .42D .52【答案】D【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D. 11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( ) A .9 B .8 C .10 D .7【答案】A【解析】由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( ) A .7,11,18 B .6,12,18 C .6,13,17 D .7,14,21【答案】D【解析】因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( ) A .660 B .720 C .780 D .800【答案】B【解析】由已知可得,抽样比为13780=160,从而35600+780+n =160,解得n =720.14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( ) A .480 B .481 C .482 D .483 【答案】C【解析】根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500.所以n ≤20.72,故最大编号为7+25×(20-1)=482.15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n 的样本.已知从讲师中抽取的人数为16,那么n =________. 【答案】72【解析】依题意得,80120+100+80+60=16n,由此解得n =72.16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________. 【答案】40【解析】在系统抽样中,确定分段间隔k ,对编号进行分段,k =Nn (N 为总体的容量,n 为样本的容量),所以k =N n =1 20030=40.17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =8,则在第8组中抽取的号码是________. 【答案】76【解析】由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.18.一汽车制造厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆,则z 的值为________. 【答案】400【解析】设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400.19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________. 【答案】1 211【解析】由题意知,抽样比为k =3 000150=20,又第一组抽出的号码是11,则11+60×20=1 211,故第六十一组抽出的号码为1 211.20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. 【答案】45【解析】分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生. 【答案】32【解析】从高一年级抽取的学生人数为80×44+3+3=32.22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 【答案】12【解析】抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N *.∴24120≤k +x 020≤36.∵x 020∈⎣⎡⎦⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12.23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________. 【答案】2【解析】系统抽样的间隔为186=3.设抽到最小编号为x ,则x +(3+x )+(6+x )+(9+x )+(12+x )+(15+x )=57.解得x =2.24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人. 【答案】36【解析】根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36(人).25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程. 【解析】按1∶5的比例抽样,295÷5=59.第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,…,依次类推,第59组是编号为291~295的5名学生.第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k (1≤k ≤5).第三步,从以后各段中依次抽取编号为k +5i (i =1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k 的学生,得到一个容量为59的样本.26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.根据统计图所提供的信息,解答下列问题:(1)本次共调查了________名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.【答案】(1)2 000.(2)(3)96(万)【解析】(1)本次共调查的市民人数为800÷40%=2 000.(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400. 将条形统计图补充完整,如图所示.(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).。
2019—2020年吉林省长春市普通高中高三上学期质量监测(一)(含听力)英语试题(教师版)

长春市普通高中2020届高三质量检测(一)英语本试卷共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2. 选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字迹工整,笔记清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一部分听力(1—20小题)在笔试结束后进行。
第二部分阅读理解(共两节, 满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
ABackcountry for beginners: the best destinations in Canada When carried out safely, your first backcountry trip will leave you lifelong memories, opening a getaway into nature. But the leap from car camping to backcountry requires preparation and learning. Here are some recommended trips for backcountry beginners:Grundy Lake Provincial ParkThe park’s 9 backcountry site s are a 30-minute paddle (划船) away. Grundy Lake is motor-boat free. Your sites are quiet enough for a true backcountry trip. Each site comes equipped with a fire pit (坑) and a picnic table.Bon Echo Provincial ParkMany visitors don’t know about the 25 canoe-in campsites located on Joeperry and Pearson Lakes. A short canoe trip of 30-minute will get you to your campsite. At each campsite, you willfind a picnic table, tent space and a toilet nearby.Charleston Lake Provincial ParkExperience the best of the Canadian Shield, and hike or paddle your way to 10 backcountry campsites. Travel time can range from 10 minutes to 2 hours. All sites come equipped with elevated tent platforms, a picnic table, a fire grill, and a toilet.Murphys Point Provincial ParkPaddle through Big Rideau Lake (part of the historic Rideau waterway) to access 14 backcountry campsites. Most are located 5-45 minutes away from the boat launch. You’ll find a picnic table, tent space, and a pit toilet nearby each site. Paddle back to visit Murphys’ piece of living history: the Mica Mine!Remember: backcountry travel requires careful consideration of packing, route planning, meal planning, safety, and your skill level.1. You can do the followings at Grundy Lake Provincial Park EXCEPT _______.A. Paddling.B. Having a picnic.C. Cooking.D. Taking a motor-boat.2. Which park has the most campsites?A. Grundy Lake Provincial Park.B. Bon Echo Provincial Park.C. Charleston Lake Provincial Park.D. Murphys Point Provincial Park.3. In which section of a newspaper can you probably find this passage?A. Health.B. Travel.C. Education.D. Science.【答案】1. D 2. B 3. B【解析】本文是一篇应用文,介绍了加拿大的四个野外旅游地。
【高考数学大题精做】专题06 三角形中的最值问题(第一篇)(解析版)

1 / 18第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=Q 0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭Q .(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭2 / 181sin sin 26A A A A π⎛⎫=+=+ ⎪⎝⎭, 2,032A B A Q ππ+=<<,62A ππ∴<<,2,36362A sin A ππππ⎛⎤⎛⎫∴<+<∴+∈ ⎥ ⎪ ⎝⎭⎝⎦,32y ⎛∴∈ ⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++=Q ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈Q sin 0C ∴≠ 1cos 2B ∴=()0,B π∈Q 3B π∴= 23AC π∴+=2sin sin 23A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin3B π==2sin sin sin a c bA C B∴====3 / 182sin c C ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--2sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=Q 203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 32224S bc A =≤⨯⨯=(b c =时取等号).4 / 18【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-u r ,(2,0)n =r. (1)若23B π=,求m u r 与n r 的夹角θ; (2)若||1,m b ==r,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m u r .根据平面向量数量积的坐标运算求得m n ⋅u r r ,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =r 及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以322m ⎛⎫= ⎪ ⎪⎝⎭u r ,因为(2,0)n =r ,20m n ⋅==u r r ∴ ,又||m ==u r ||2n =r ,1cos 2θ==∴,3πθ∴=,(2)因为||1m =u r,即||1m ===r,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a c a c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为5 / 18方法2.由正弦定理可知,2sin sin sin a c bA C B===, 2sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,6 / 18在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,0cos 6cos 6ADAF DAFπθπθ⎛⎫∴==<< ⎪∠⎛⎫⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC V 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 22A C C=⋅⋅-,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a cb B ac +-==,3B π=;7 / 18(2)由正弦定理2sin sin sin 2a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-2sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<.8 / 18在ABC ∆中,由正弦定理得sin sin c bC B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,. 因为D 为BC 中点,所以1()2AD AC AB =+u u u r u u u r u u u r,所以221()4AD AC AB =+u u u r u u u r u u u r 21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A Bπ===,a A b B ==9 / 18∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+- ⎪⎥⎝⎭⎦2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC V 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC V 的面积取得最大值时,求ABC V 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC V 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC V 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立.10 / 18因为ABC V的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC V 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC V的周长为53. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=- ⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 622B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,11 / 18又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r, 等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,12 / 18∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-r ,(1,cos cos )n a C c A =+r,且//m n r r.(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n r r得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.13 / 18(1)求A C +;(2)设ABD △、CBD V 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=3sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据14 / 18A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=, 所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =u u u r u u u u r,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC V 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =u u u r u u u r得6bc =,15 / 18所以222222cos 6266a b c bc A b c bc =+-=+--=… 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.16 / 18【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+u u u r u u u r u u u r,利用向量的模和基本不等式可求BD u u u r的取值范围,即可得到BD 的最小值.解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A C a b a +=, 即(cos cos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+u u u r u u u r u u u r ,所以2221(2)4BD BA BC BA BC u u u r u u u r u u u r u u u r u u u rg =++,即222111(2cos )(2)3444BD c a ac B ac ac ac u u u r =++≥-==,当且仅当a c ==“=”,所以BD u u u r≥BD.11. ABC ∆中,60,2,B AB ABC ==∆o的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=o ,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABC AB B S BC =⋅⋅⋅V 求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE V 中,利用正弦定理表示出DE ,在CDF V 中,利用正弦定理表示出DF ,再将DEF V 的面积表示出来,利用三角函数的性质求其最小值.17 / 18解:(1)因为60,2,B AB ==o所以11sin 222ABC AB BC B BC B S C =⋅⋅⋅=⨯=V ,又ABC S =V 4BC =,由余弦定理得:2222212cos 24224122AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以AC =(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE V 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以sin 60DE =+, 在CDF V 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=o ,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFS DE DF EDF θθ︒=⋅⋅⋅∠=+⋅V==,当15θ︒=时,()()min sin 2601,6DEP Sθ︒+===-V18 / 18故DEF V的面积的最小值为6 .。
吉林省四平市2025届高三(最后冲刺)数学试卷含解析

吉林省四平市2025届高三(最后冲刺)数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在R 上的偶函数()f x 满足()()11f x f x +=-,当[]0,1x ∈时,()1f x x =-+,函数()1x g x e --=(13x -≤≤),则函数()f x 与函数()g x 的图象的所有交点的横坐标之和为( ) A .2B .4C .5D .62.正方体1111ABCD A B C D -,()1,2,,12i P i =是棱的中点,在任意两个中点的连线中,与平面11A C B 平行的直线有几条( )A .36B .21C .12D .63.已知全集{},1,2,3,4,U Z A ==()(){}130,B x x x x Z =+->∈,则集合()U A C B ⋂的子集个数为( ) A .2B .4C .8D .164.已知()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,当30,2x ⎛⎫∈ ⎪⎝⎭时, ()()2ln 1f x x x =-+,则函数()f x 在区间[]0,6上的零点个数是( ) A .3B .5C .7D .95.已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )A .24πB .28πC .32πD .36π6.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 的面积是( )A 3B .2C .32 D .347.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若()22cos cos b A a B c +=,3b =,3cos 1A =,则a =( ) A 5B .3C 10D .48.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( ) A .z 的虚部为i -B .2z =C .z 的共轭复数为1i --D .2z 为纯虚数9.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .1110.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,7,3a b c C π+==,则ABC ∆的面积为( )A .332B 3C .33D .2311.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .712.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>二、填空题:本题共4小题,每小题5分,共20分。
2020届高三调研考试卷理科数学(三)(解析附后)

2020届高三调研考试卷理科数学(三)(解析附后)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-≤,{2}B x =<,则AB =( )A .{|31}x x -≤≤B .{|01}x x ≤≤C .{|31}x x -≤<D .{|10}x x -≤≤2.已知复数122z =+,则||z z +=( )A .12 B .12-- C .32 D .32+3.已知1sin 4x =,x 为第二象限角,则sin2x =( )A .316-B .C . D4.在等比数列{}n a 中,若2a ,9a 是方程260x x --=的两根,则56a a ⋅的值为( )A .6B .6-C .1-D .1 5.设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .2-C .2019D .2019-6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多7.已知实数x ,y 满足不等式10320x y x y x y -+≥⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为( )A .4-B .5C .4D .无最小值8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A .0031 B .1043C .27D .18 9.已知向量(1,2)a =-,(1,)b m =,则“12m <”是,a b <>为钝角的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知A 为椭圆2229x y +=的左顶点,该椭圆与双曲线22221x y a b-=的渐近线在第一象限内的交点为B ,若直线AB 垂直于双曲线的另一条渐近线,则该双曲线的离心率为( )A .2 B .5C .2D 11.如图,正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -,及抛物线2(1)y x =-+和2(1)y x =-,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影部分区域的概率是( )A .23 B .13 C .16 D .1212.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞- C .(,2]-∞- D .(,3]-∞-二、填空题:本大题共4小题,每小题5分.13.设某总体是由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为__________.1818079245441716580979838619第1行 6206765003105523640505266238第2行14.51(2)2x y -的展开式中23x y 的系数为__________.15.设()sin 22f x x x =+,将()f x 的图像向右平移(0)ϕϕ>个单位长度,得到()g x 的图像,若()g x 是偶函数,则ϕ的最小值为__________.16.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有种 .三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,sin (2)b A a B =. (1)求角B 的大小;(2)D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACD BC 的长.18.(12分)如图,在三棱锥P ABC -中,AC =,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45︒.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值.19.(12分)某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(1)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(2)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(3)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=),20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为长为半径的圆与直线0x y -+=相切,过点(4,0)P 的直线l 与椭圆C 相交于A ,B 两点. (1)求椭圆C 的方程;(2)若原点O 在以线段AB 为直径的圆内,求直线l 的斜率k 的取值范围.21.(12分)设函数2()(,)xx ax bf x a R b R e++=∈∈. (1)若1x =-是函数()f x 的一个极值点,试用a 表示b ,并求函数()f x 的减区间;(2)若1a =,1b =-,证明:当0x >时,1()(21)f x x e≤-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4−4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l的参数方程为322x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的极坐标方程为ρθ=.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)设圆C 与直线l 交于A ,B 两点,若点P的坐标为,求||||PA PB +.23.(10分)【选修4-5:不等式选讲】 已知函数()|||31|f x x m x m =----. (1)若1m =,求不等式()1f x <的解集;(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围.2020届高三调研考试卷理科数学(三)解析版一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-≤,{2}B x =<,则AB =( )A .{|31}x x -≤≤B .{|01}x x ≤≤C .{|31}x x -≤<D .{|10}x x -≤≤ 【答案】B【解析】{|31}A x x =-≤≤,{|04}B x x =≤<, 所以{|01}AB x x =≤≤.故选B .2.已知复数122z =+,则||z z +=( )A .122- B .122-- C .322- D .322+【答案】C【解析】因为复数12z =+,所以复数z 的共轭复数12z =-,||1z ==,所以13||12222z z +=-+=-,故选C . 3.已知1sin 4x =,x 为第二象限角,则sin2x =( )A .316-B .C . D【答案】B【解析】因为1sin 4x =,x 为第二象限角,所以cos 4x ===-,所以1sin 22sin cos 2(4x x x ==⨯⨯=,故选B . 4.在等比数列{}n a 中,若2a ,9a 是方程260x x --=的两根,则56a a ⋅的值为( ) A .6 B .6- C .1- D .1 【答案】B【解析】因为2a 、9a 是方程260x x --=的两根, 所以根据韦达定理可知296a a ⋅=-,因为数列{}n a 是等比数列,所以5629a a a a ⋅=⋅,566a a ⋅=-,故选B .5.设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .2-C .2019D .2019- 【答案】B【解析】因为2sin cos ()x x xf x ax +=,所以22sin()cos()sin cos ()()x x x x x xf x f x ax ax ---+-==-=-,因此函数()f x 为奇函数,又(2019)2f -=,所以(2019)(2019)2f f =--=-. 故选B .6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 【答案】D【解析】A .由互联网行业从业者年龄分布饼状图可知,90后占了56%,故A 选项结论正确; B .由90后从事互联网行业岗位分布图可知,技术所占比例为39.65%,故B 选项结论正确; C .由互联网行业从业者年龄分布饼状图可知,在互联网行业从业者中90后明显比80前多,故C 选项结论正确;D .在互联网行业从业者中90后与80后的比例相差不大,故无法判断其技术岗位的人数是谁多,故D 选项结论不一定正确. 故选D .7.已知实数x ,y 满足不等式10320x y x y x y -+≥⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为( )A .4-B .5C .4D .无最小值 【答案】C【解析】绘制不等式组表示的平面区域如图所示,目标函数即1122y x z =-+,其中z 取得最小值时, 其几何意义表示直线系在y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程320x y x y +=⎧⎨-=⎩,可得点的坐标为(2,1)A ,据此可知目标函数的最小值为min 2224z x y =+=+=. 故选C .8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A .0031 B .1043C .27D .18 【答案】B【解析】由题意几何体原图为正四棱台,底面的边长分别为2和6,高为2,所以几何体体积1104(436233V =+⨯=.故选B .9.已知向量(1,2)a =-,(1,)b m =,则“12m <”是,a b <>为钝角的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B【解析】因为(1,2)a =-,(1,)b m =,所以12a b m ⋅=-+,则cos ,||||5a b a b a b ⋅<>==⋅,若12m <,则cos ,0||||5a b a b a b ⋅<>==<⋅, 但当2m =-时,a ,b 反向,夹角为180︒; 所以由12m <不能推出,a b <>为钝角; 反之,若,a b <>为钝角,则cos ,0a b <><且2m ≠-,即12m <且2m ≠-, 能推出12m <; 因此,“12m <”是,a b <>为钝角的必要不充分条件. 10.已知A 为椭圆2229x y +=的左顶点,该椭圆与双曲线22221x y a b-=的渐近线在第一象限内的交点为B ,若直线AB 垂直于双曲线的另一条渐近线,则该双曲线的离心率为( )A .2 B .5C .2D 【答案】D【解析】因为直线AB 垂直于双曲线的另一条渐近线,所以直线AB 的方程为(3)ay x b=+, 联立(3)ay x b b y x a⎧=+⎪⎪⎨⎪=⎪⎩,可得交点2222233(,)a abB a b a b ----, 代入椭圆方程整理得224b a =,即有225c a =.11.如图,正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -,及抛物线2(1)y x =-+和2(1)y x =-,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影部分区域的概率是( )A .23 B .13 C .16 D .12【答案】B【解析】∵(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -, ∴正方形的ABCD 的面积224S =⨯=,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:122310012[1(1)]2()|3S x dx x x =--=-⎰1242[(1)0]2333=--=⨯=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是41343=.故选B .12.不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( ) A .(,1]e -∞- B .2(,2]e -∞- C .(,2]-∞- D .(,3]-∞- 【答案】D【解析】题意即为3ln 1x a x x e x -≤--对(1,)x ∀∈+∞恒成立,即31ln x x e x a x ---≤对(1,)x ∀∈+∞恒成立,从而求31ln x x e x y x---=,(1,)x ∈+∞的最小值,而33ln 3ln 3ln 1x x x x x x e e e e x x ---==≥-+, 故313ln 113ln x x e x x x x x ---≥-+--=-,即313ln 3ln ln x x e x x x x----≥=-.当3ln 0x x -=时,等号成立,方程3ln 0x x -=在(1,)+∞内有根,故3min 1()3ln x x e x x---=-,所以3a ≤-,故选D .二、填空题:本大题共4小题,每小题5分.13.设某总体是由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为__________.1818079245441716580979838619第1行 6206765003105523640505266238第2行【答案】19【解析】由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为18,07,17,16,09,19,,故选出来的第6个个体编号为19.14.51(2)2x y -的展开式中23x y 的系数为__________.【答案】20-【解析】由二项式定理可知,展开式的通项为5151()(2)2r r rr T C x y -+=-,要求解51(2)2x y -的展开式中含23x y 的项,则3r =,所求系数为32351()(2)202C -=-.15.设()sin 22f x x x =+,将()f x 的图像向右平移(0)ϕϕ>个单位长度,得到()g x 的图像,若()g x 是偶函数,则ϕ的最小值为__________.【答案】512π【解析】()sin 22sin(2)3f x x x x π==+,将()f x 的图像向右平移(0)ϕϕ>个单位长度得到()2sin(22)3g x x πϕ=-+,因为函数()g x 是偶函数,所以232k ππϕπ-+=+,122k ππϕ=-+,k ∈Z ,(0)ϕ>, 所以min 512πϕ=,故答案为512π.16.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有种 . 【答案】60【解析】每个城市投资1个项目有3343C A 种, 有一个城市投资2个有212423C C C 种, 投资方案共3321243423243660C A C C C +=+=种. 三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,sin (2)b A a B =. (1)求角B 的大小;(2)D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACD BC 的长.【答案】(1)6B π=;(2)BC =【解析】(1)因为sin (2)b A a B =,所以sin sin sin (2)B A A B =,解得sin 2B B =,所以sin()13B π+=,因为(0,)B π∈,所以4(,)333B πππ+∈,32B ππ+=,解得6B π=.(2)因为锐角三角形ACD所以1sin 2AC CD ACD ⋅⋅∠=sin 4ACD ∠=,因为三角形ACD 为锐角三角形,所以1cos 4ACD ∠==, 在三角形ACD 中,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-⋅⋅∠,所以4AD =,在三角形ACD 中,sin sin CD AD A ACD=∠,所以sin A =,在三角形ABC 中,sin sin BC ACA B=,解得BC =18.(12分)如图,在三棱锥P ABC -中,AC =,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45︒.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值.【答案】(1)见解析;(2)5.【解析】(1)因为AC =,2AB BC =,所以2222)4AB BC BC =+=, 所以ABC ∆是直角三角形,AC BC ⊥;在Rt ABC ∆中,由AC =,30CAB ∠=︒,不妨设1BD =,由3AD BD =得,3AD =,2BC =,AC = 在ACD ∆中,由余弦定理得222222cos30323cos30CD AD AC AD AC =+-⋅︒=+-⨯⨯︒3=,故CD =所以222CD AD AC +=,所以CD AD ⊥;因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD CD ⊥, 又PDAD D =,所以CD ⊥平面PAB ,又CD ⊂平面PCD ,所以平面PAB ⊥平面PCD .(2)因为PD ⊥平面ABC ,所以PA 与平面ABC 所成的角为PAD ∠,即45PAD ∠=︒,可得PAD ∆为等腰直角三角形,PD AD =,由(1)得3PD AD ==,以D 为坐标原点,分别以DC ,DB ,DP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则(0,0,0)D,C ,(0,3,0)A -,(0,0,3)P . 则(0,0,3)DP =为平面ACD 的一个法向量. 设(,,)x y z =n 为平面PAC 的一个法向量, 因为(0,3,3)PA =--,(3,0,3)PC =-,则由00PC PA ⎧⋅=⎪⎨⋅=⎪⎩n n ,得30330z y z -=--=⎪⎩,令1z=,则x =1y =-,则1,1)=-n 为平面PAC 的一个法向量,故cos ,DP <>==n故二面角P AC D --的平面角的余弦值为5. 19.(12分)某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(1)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(2)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(3)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=),【答案】(1)80.2;(2)30万元;(3)见解析.【解析】(1)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯=.(2)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)0.25x >=,(7478P x <≤或8286)0.45x <≤=,(7882)0.3P x <≤=,设生产一件产品的利润为X 元,则(100)0.20.250.40.450.60.30.41P X ==⨯+⨯+⨯=,(60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=,(100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=,所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元,所以一条流水线一年能为该公司带来利润的估计值是30万元.(3)374μσ-=,78μσ-=,82μσ+=,386μσ+=,设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=,(60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=,(100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=,所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元,增加收入55.23020 5.2--=万元,综上,应该引入该设备.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为长为半径的圆与直线0x y -+=相切,过点(4,0)P 的直线l 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的方程;(2)若原点O 在以线段AB 为直径的圆内,求直线l 的斜率k 的取值范围.【答案】(1)22143x y +=;(2)(35k ∈-. 【解析】(1)由12c e a ==可得2243a b =,又b ==24a =,23b =. 故椭圆的方程为22143x y +=. (2)由题意知直线l 方程为(4)y k x =-. 联立22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,得2222(43)3264120k x k x k +-+-=. 由2222(32)4(43)(6412)0Δk k k =--+->,得214k <.① 设11(,)A x y ,22(,)B x y ,则21223243k x x k +=+,2122641243k x x k -=+. ∴22212121212(4)(4)4()16y y k x k x k x x k x x k =-⋅-=-++.当原点O 在以线段AB 为直径的圆内时,∴22212121212(1)4()16OA OB x x y y k x x k x x k ⋅=+=+-++2222222264123287(1)416250434343k k k k k k k k -=+-⋅+=-<+++,②.由①②,解得55k -<<.∴当原点O 在以线段AB 为直径的圆内时,直线l 的斜率(k ∈. 21.(12分)设函数2()(,)x x ax b f x a R b R e++=∈∈. (1)若1x =-是函数()f x 的一个极值点,试用a 表示b ,并求函数()f x 的减区间;(2)若1a =,1b =-,证明:当0x >时,1()(21)f x x e≤-.【答案】(1)23b a =-,当4a <时,函数()f x 的减区间为(,1)-∞-,(3,)a -+∞,当4a >时,函数()f x 的减区间为(,3)a -∞-,(1,)-+∞;(2)见解析. 【解析】(1)由222(2)()(2)()x x x xx a e x ax b e x a x a b f x e e +-++-+-+-'==, 有(1)(12)0f a a b e '-=-+-+-=,得23b a =-. 此时有22(2)(23)(2)3()x x x a x a a x a x a f x e e-+-+---+--+'== (1)[(3)][(1)][(3)]x x x x a x x a e e++-----=-=-. 由1x =-是函数()f x 的一个极值点,可知31a -≠-,得4a ≠.①当31a ->-,即4a <时,令()0f x '<,得3x a >-或1x <-,函数()f x 的减区间为(,1)-∞-,(3,)a -+∞.②当4a >时,函数()f x 的减区间为(,3)a -∞-,(1,)-+∞.(2)由题意有21()x x x f x e+-=,要证1()(21)(0)f x x x e ≤->, 只要证:2(21)(1)0(0)x x e e x x x --+-≥>令2()(21)(1)(0)x g x x e e x x x =--+->有()(21)(21)(21)()x x g x x e e x x e e '=+-+=+-.则函数()g x 的增区间为(1,)+∞,减区间为(0,1),则min ()(1)0g x g ==. 故不等式1()(21)f x x e≤-成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4−4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l的参数方程为32x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的极坐标方程为ρθ=.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)设圆C 与直线l 交于A ,B 两点,若点P的坐标为,求||||PA PB +.【答案】(1)直线l的普通方程为3y x =-++圆C的直角坐标方程为22(5x y +=;(2)【解析】(1)由直线l的参数方程32x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数)得直线l的普通方程为3y x =-++.由ρθ=,得220x y +-=,即圆C的直角坐标方程为22(5x y +-=.(2)将直线l 的参数方程代入圆C的直角坐标方程,得22(3)()522-+=,即240t -+=,由于2440Δ=-⨯>,故可设1t ,2t是上述方程的两个实根,所以12124t t t t ⎧+=⎪⎨=⎪⎩ 又直线l过点P ,故1212||||||||PA PB t t t t +=+=+=23.(10分)【选修4-5:不等式选讲】已知函数()|||31|f x x m x m =----.(1)若1m =,求不等式()1f x <的解集;(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围.【答案】(1)(,3)-∞;(2)1123m -≤≤. 【解析】(1)()|1||4|1f x x x =---<,所以11(4)1x x x <⎧⎨---<⎩或141(4)1x x x ≤≤⎧⎨---<⎩或4141x x x >⎧⎨--+<⎩. 解之得不等式()1f x <的解集为(,3)-∞.(2)当31m m +>,12m >-时,由题得2必须在31m +的右边或者31m +重合, 所以231m ≥+;∴13m ≤,所以1123m -<≤;当31m m +=,12m =-时,不等式恒成立; 当31m m +<,12m <-时,由题得2必须在31m +的左边或者与31m +重合, 由题得231m ≤+,13m ≥,所以m 没有解. 综上,1123m -≤≤.。
2019年9月吉林省长春市高2020届高2017级高三质量检测评分细则

长春市2020届高三质量检测(一)化学试题答案1.【参考答案】A2.【参考答案】D3.【参考答案】C4.【参考答案】D5.【参考答案】A6. 【参考答案】B7.【参考答案】D8.【参考答案】B9. 【参考答案】B 10.【参考答案】D11.【参考答案】D 12.【参考答案】C 13.【参考答案】D 14.【参考答案】B二、必做题:(本题共3小题,共43分。
)15.(14分)(除特别标注外,每空2分)(1)C(1分)(2)K a=c(CH3COO-)·C(H+)/ c(CH3COOH)(3)5×10-10(4)①加成反应(1分) ②BD(两个都对给2分,只答B或D给1分,有错不给分)(5)①v(P1)>v(P2)>v(P3) ②30%③该反应为放热反应,在压强不变时升高温度平衡逆向移动,致使产率下降。
16.(15分)(除特别标注外,每空2分)(1)引发铝热反应(或答引发反应)(2)Fe +4 H+ +NO3-= Fe3++NO + 2H2O 硝酸量不足(或铁过量,答案合理即可)(3)①吸收HCl(1分)②氯气在较高温度下与氢氧化钠反应生成KClO3(4) ①19.40 ②89.1% ③偏低17.(14分)(每空2分)(1)强氧化性(或答氧化性)(2)N2H4(l)+2H2O2(l)= N2(g)+4H2O(g) △H= -641.63kJ/mol (数值正确,方程式正确,状态不写扣一分)(3)5H2O2+2CN-+2OH-=N2↑+2CO32-+6H2O(4)H2+O2H2O2(5)①O2+2H++2e-=H2O2 ②6mol。
18.【化学——选修3:物质结构与性质】(15分)(15分,除特殊标注外,其余每空1分)(1)第四周期第VB族球形(2)Mn-(3) ①NO+、C22②C的电负性小于O,对孤电子对吸引能力弱,给出电子对更容易(2分)(4) ①C (2分) ②分子晶体(2分)(5) ①两者均为离子晶体,Cl-半径小于Br-半径,VCl2中晶格能大于VBr2,故VCl2熔点高于VBr2。
吉林省长春市2020届高三质量检测(一)文科数学试题 Word版含解析

长春市2020届高三质量监测(一)文科数学本试卷共4页.考试结束后,将答题卡交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数2z i +=-,则它的共轭复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】试题分析:复数2z i =-+的共轭复数为2z i =--,在复平面内对应点的坐标为,所以位于第三象限.选C 考点:复数的概念及运算2.已知集合{2A x x =≥或}2x ≤-,{}230B x x x =->,则AB =( )A. ∅B. {3x x >或}2x ≤-C. {3x x >或}0x < D. {3x x >或}1x <【答案】B 【解析】 【分析】可以求出集合B ,然后进行交集的运算即可.【详解】解:{}230B x x x =->{|0B x x ∴=<或3}x >,{2A x x =≥或}2x ≤-,{|2AB x x ∴=-或3}x >.故选:B .【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算,属于基础题.3.已知等差数列{}n a 的前n 项和为n S , 515S =,45a = ,则9S =( ) A. 45 B. 63C. 54D. 81【答案】B 【解析】 【分析】根据给出条件求出3a ,利用3a ,4a ,5a 成等差数列计算5a ,再根据前n 项和性质计算9S 的值.【详解】由515S =得33a =,45a =,∴57a = ∴95963S a == 故选B.【点睛】等差数列性质:2(2)m n p q c a a a a a m n p q c +=+=+=+=; 等差数列前n 项和性质:12121()(21)(21)2n n n a a n S n a --+-==-.4.已知条件:1p x >,条件:2q x ≥,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】利用集合间的关系推出p q 、之间的关系.【详解】{|1}x x>{|2}x x ≥,则p 是q 的必要不充分条件,故选B.【点睛】p 成立的对象构成的集合为A ,q 成立的对象构成的集合为B :p 是q 的充分不必要条件则有:A B ;p 是q 的必要不充分条件则有:BA .5.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是( )①公共图书馆业机构数与年份正相关性较强 ②公共图书馆业机构数平均每年增加13.743个 ③可预测 2019 年公共图书馆业机构数约为3192个 A. 0 B. 1C. 2D. 3【答案】D 【解析】 【分析】根据ˆb和2R 确定是正相关还是负相关以及相关性的强弱;根据ˆb 的值判断平均每年增加量;根据回归直线方程预测2019年公共图书馆业机构数.【详解】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确; 由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确. 故选D.【点睛】回归直线方程中的ˆb 的大小和正负分别决定了单位增加量以及相关型的正负;相关系数2R 决定了相关性的强弱,越接近1相关性越强.6.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b =( )A. 3-B. 1C. 3-或1D.52【答案】C 【解析】 【分析】根据直线与圆相切,则圆心到直线的距离等于半径来求解.=∴|1|2b +=∴13b b ==-或 故选C.【点睛】本题考查直线与圆的位置关系中的相切,难度较易;注意相切时,圆心到直线的距离等于半径.7.已知31()3a =,133b =,13log 3c =,则( )A. a b c <<B. c b a <<C. c a b <<D. b c a <<【答案】C 【解析】 【分析】分析每个数的正负以及与中间值1的大小关系.【详解】因为311()()133a <<=,103331>=,1133log 3log 10<=,所以01,1,0a b c <<><,∴c a b <<,【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多情况下都会和1作比较),在比较的过程中注意各函数单调性的使用. 8.已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是( ) ①,a b αα⊥⊥,则//a b ②,αγβγ⊥⊥,则αβ⊥ ③//,//a b αα,则//a b ④//,//αγβγ,则//αβ A. ①②③ B. ②③④C. ①③D. ①④【答案】D 【解析】 【分析】①可根据线面垂直的性质定理判断;②③④可借助正方体进行判断.【详解】①由线面垂直的性质定理可知垂直同一平面的两条直线互相平行,故正确;②选取正方体的上下底面为αβ、以及一个侧面为γ,则//αβ,故错误;③选取正方体的上底面的对角线为a b 、,下底面为α,则//a b 不成立,故错误;④选取上下底面为αβ、,任意作一个平面平行上底面为γ,则有 //αβ成立,故正确.所以说法正确的有:①④. 故选D.【点睛】对于用符号语言描述的问题,最好能通过一个具体模型或者是能够画出相应的示意图,这样在判断的时候能更加直观. 9.函数2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则其解析式为( )A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=-【答案】A【分析】(1)通过(0,1)以及ϕ的范围先确定ϕ的取值,再根据()f x 过点11(,0)12π计算ω的取值. 【详解】由2sin(0)1,||2πωϕϕϕ⋅+=<π,∴=6, 由111111242sin()0,,,002121261211k k Z T πωπϕωππωπωω⋅+=⋅+=∈>>∴<<=∴即2sin(2)6y x π=+,即为()f x 解析式.【点睛】根据三角函数的图象求解函数解析式时需要注意:(1)根据周期求解ω的值;(2)根据图象所过的特殊点求解ϕ的值;(3)根据图象的最值,确定A 的值.10.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为51-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A. (35)π-B. 51)πC. 51)πD.(52)π【答案】A 【解析】 【分析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角.【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比, 设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.11.已知F 是抛物线24y x =的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为( )B. 2C. 3D. 4【答案】C 【解析】 【分析】根据抛物线的焦半径的倾斜角和焦准距的表示形式将||||AF BF 表示出来,然后代入相应值计算即可.【详解】||1cos60p AF =-︒,||1cos60pBF =+︒∴||10.53||10.5AF BF +==-. 【点睛】焦点在x 轴上的抛物线,过抛物线的焦点倾斜角为θ的直线与抛物线交于,A B 两点,且||||AF BF >,则有||1cos p AF θ=-,||1cos p BF θ=+,22||sin pAB θ=. 12.已知函数1(0)()(0)xe xf x x -⎧-≤⎪=>,若存在0x R ∈ 使得00()(1)1f x m x --≤成立,则实数m 的取值范围为( ) A. (0,)+∞B. [1,0)(0,)-+∞ C. (,1][1,)-∞-+∞D.(,-∞-∞1](0,+)【答案】D 【解析】 【分析】数形结合去分析,先画出()f x 的图象,然后根据直线过(1,1)-将直线旋转,然后求解满足条件的m 取值范围.【详解】如图, 直线0(1)1y m x =--过定点(1,1)P -,m 为其斜率,0m >满足题意,当0m <时,考虑直线与函数1xy e -=-相切,此时000(1)11x x m x e m e --⎧--=-⎨=-⎩,解得010m x =-⎧⎨=⎩,此时直线与1x y e -=-的切点为(0,0),∴1m ≤-也满足题意.选D【点睛】分段函数中的存在和恒成立问题,利用数形结合的思想去看问题会更加简便,尤其是直线与曲线的位置关系,这里需要注意:(1)直线过定点;(2)临界位置的切线问题. 二、填空题:本题共4小题. 13.已知1sincos225αα-=,则sin α=_____. 【答案】2425【解析】 【分析】将所给式子平方,找到sin α与sin cos22αα-的关系.【详解】1sincos225αα-=平方得242sin cos 2225αα= ∴24sin 25α=.【点睛】sin cos αα±与sin cos αα的关系:2(sin cos )12sin cos αααα±=±;14.设变量x ,y 满足约束条件03420x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =-的最小值等于______.【答案】8- 【解析】 【分析】作出不等式组对应的平面区域,3z x y =-得1133y x z =-,利用数形结合即可的得到结论. 【详解】解:画出可行域如图,3z x y =-变形为1133y x z =-,过点(2,2)A --,z 取得最大值4, 过点(2,2)C -取得最小值8-. 故答案为:8-.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 15.三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,10PA =2,2AB AC ==,则三棱锥P ABC -的外接球的表面积为_____. 【答案】16π 【解析】 【分析】根据题设位置关系,可知以,,AB AC PA 为长、宽、高的长方体的外接球就是三棱锥P ABC -的外接球,根据这一特点进行计算.【详解】设外接球的半径为R ,则2222(2)16R PA AB AC =++= ∴16S π=【点睛】对于求解多条侧棱互相垂直的几何体的外接球,可考虑将该几何体放入正方体或者长方体内,这样更加方便计算出几何体外接球的半径. 16.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若(,)m b c a b =--,(sin ,sin sin )n C A B =+,且m n ⊥,则A =____;若△ABC 的面积为3ABC 的周长的最小值为_____.【答案】 (1). 3π(2). 6 【解析】【分析】先根据向量垂直得出边角关系,然后利用正、余弦定理求解A的值;根据面积以及在余弦定理,利用基本不等式,从而得到周长的最小值(注意取等号条件).【详解】由m n ⊥得(,)(sin ,sin sin )()sin ()(sin sin )0m n b c a b C A B b c C a b A B ⋅=--⋅+=-+-+=()()()0b c c a b a b -+-+=得222a b c bc =+-,∴2221cos 22b c a A bc +-==∴3A π=;1sin 2S bc A ==4bc =又222224a b c bc b c =+-=+-所以6a b c b c ++=+(当且仅当2b c ==时等号成立) 【点睛】(1)1122(,),(,)a x y bx y ==,若a b ⊥垂直,则有:12120x x y y +=;(2)222(0,0)a b ab a b +≥>>取等号的条件是:a b =.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,考生根据要求作答. (一)必考题:17.已知数列{}n a 中,12a =,1122n n n a a ++=+,设2nn na b =. (Ⅰ)求证:数列{}n b 是等差数列; (Ⅱ)求数列11{}n n b b +的前n 项和n S . 【答案】(Ⅰ)见证明;(Ⅱ)111n S n =-+ 【解析】 【分析】(1)证明1n n b b c --=(c 为常数)即可;(2)将11n n b b +采用裂项的方式先拆开,然后利用裂项相消的求和方法求解n S .【详解】(Ⅰ)证明:当2n ≥时,111121222n n n n n n n n n a a a a b b ------=-== 11b =,所以{}n b 是以为1首项,为1公差的等差数列.(Ⅱ)由(Ⅰ)可知,n b n =,所以+11111n n b b n n =-+,所以1111111122311n S n n n =-+-++-=-++. 【点睛】常见的裂项相消形式: (1)111(1)1n n n n =-++;(2=(3)1111()(21)(21)22121n n n n =--+-+; (4)112311(31)(31)3131n n n n n ++=-----. 18.环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,下表是对100辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;(2)用分层抽样的方法从行车里程在区间[)38,40与[)40,42的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[)40,42内的概率. 【答案】(1)图见解析;中位数在区间[)36,38 (2)35【解析】 【分析】(1)由频率分布表可画出频率分布直方图,由图可求出中位数所在区间.(2)由题意,设从[38,40)中选取的车辆为A ,B ,C ,从[40,42)中选取的车辆为a ,b ,利用列举法从这5辆车中抽取2辆,其中恰有一个新车模型行车里程在[40,42)内的概率. 【详解】(1)由题意可画出频率分布直方图如图所示:由图可知,中位数在区间[)36,38.(2)由题意,设从[)38,40中选取的车辆为A ,B ,C , 从[)40,42中选取的车辆为a ,b ,则从这5辆车中抽取2辆的所有情况有10种,分别为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab ,其中符合条件的有6种,Aa ,Ab ,Ba ,Bb ,Ca ,Cb ,所以所求事件的概率为35. 【点睛】本题考查概率与统计的相关知识,考查频率分布直方图、古典概型、列举法等基础知识,考查运算求解能力,属于基础题.19.在三棱柱111ABC A B C -中,平面ABC 、平面1ACC A 、平面11BCC B 两两垂直.(Ⅰ)求证:1,,CA CB CC 两两垂直;(Ⅱ)若1CA CB CC a ===,求三棱锥11B A BC -的体积. 【答案】(Ⅰ)见证明;(Ⅱ)316a 【解析】 【分析】(1)通过辅助线以及根据面面垂直的性质定理可证1,,CA CB CC 中任意一条直线垂直于另外两条直线构成的平面,即垂直于另外两条直线;(2)采用替换顶点的方式计算体积,计算出高和底面积即可计算体积. 【详解】(Ⅰ)证明:在ABC ∆内取一点P ,作,PD AC PE BC ⊥⊥,因为平面ABC ⊥平面11ACC A ,其交线为AC ,所以PD ⊥平面11ACC A ,1PD CC ⊥, 同理1PE CC ⊥,所以1CC ⊥平面ABC ,11,CC AC CC BC ⊥⊥, 同理AC BC ⊥,故1,,CC AC BC 两两垂直.(Ⅱ)由(Ⅰ)可知,三棱锥11A BCB -的高为11A C a =,1211122BCB S BC BB a ∆=⋅=,所以三棱锥11B A BC -的体积为316a . 【点睛】(1)面面垂直的性质定理:两个平面垂直,一个平面内垂直于交线的直线与另一个平面垂直;(2)计算棱锥的体积时,有时候可考虑采用替换顶点的方式去简化计算.a 20.已知点(1,0),(1,0)M N -,若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程.【答案】(Ⅰ)22143x y +=;(Ⅱ)AOB ∆面积的最大值为,此时直线l 的方程为3x y =±. 【解析】 【分析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用1||2AB d ⨯⨯(d 表示原点到直线AB 的距离)表示面积,最后利用基本不等式求解最值.【详解】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=.(Ⅱ)设直线l的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x可得22(34)30t y +--=,即12234y y t +=+,122334y y t -=+. AOB ∆面积可表示为1211||||22AOB S OQ y y =⋅-=△2216223434t t ===++u =,则1u ≥,上式可化为26633u u u u=++≤当且仅当u=t = 因此AOB ∆l的方程为x y =-【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点(,0),(,0)M c N c -,若点(,)P x y 满足||||2PM PN a +=且22a c >,则P 的轨迹是椭圆;(2)已知点(,0),(,0)M c N c -,若点(,)P x y 满足||||||2PM PN a -=且22a c <,则P 的轨迹是双曲线. 21.设函数1()ln x f x x x+=+. (Ⅰ)求函数()f x 的极值;(Ⅱ)若(0,1)x ∈时,不等式1ln 2(1)xx a x +<--恒成立,求实数a 的取值范围.【答案】(Ⅰ)()2f x =极小值,无极大值;(Ⅱ)01a <≤ 【解析】 【分析】(1)求导后,求解导函数零点,并用列表法分析极值;(2)对所给不等式进行变形,将ln x 分离出来便于求导,同时构造新函数2(1)()ln (01)1a x g x x x x -=-<<+,分析(0,1)x ∈时,()0>g x 恒成立时a 的范围.【详解】解:(Ⅰ)令21()0x f x x-'==,1x =()= (1)2f x f ∴=极小值,无极大值;(II )由题意可知,0a >,则原不等式等价于2(1)ln 01a x x x -->+,令2(1)()ln (01)1a x g x x x x -=-<<+,22((24)1)()(1)x a x g x x x -+-+'=+,①当01a <≤时,2(24)10x a x +-+≥,()0g x '≤,()g x 在(0,1)上单调递减,()(1)0g x g >=,成立;②当1a >时,2000(0,1),(24)10x x a x ∃∈+-+=,使得当0(0,)x x ∈时,()0g x '<,()g x 单调递减,当0(,1)x x ∈时,()0g x '>,()g x 单调递增,故当0(,1)x x ∈时,()(1)0g x g <=,不成立;综上所述,01a <≤.【点睛】根据不等式恒成立求解参数范围的问题常用的方法:(1)分类讨论法(所给不等式进行适当变形,利用参数的临界值进行分析); (2)参变分离法(构造新的函数,将函数的取值与参数结合在一起).(二)选考题:请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=. (Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值.【答案】(Ⅰ)直线l 的普通方程为30x y +-=,圆C 的直角坐标方程为22430x y x +--=.(Ⅱ)2 【解析】 【分析】(1)求直线l 的普通方程,消去参数t 即可;求圆的直角坐标方程利用cos sin x y ρθρθ=⎧⎨=⎩互化即可.(2)根据直线所过定点,利用直线参数方程中t 的几何意义求解||||PA PB ⋅的值. 【详解】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=. (Ⅱ)联立直线l 的参数方程与圆C的直角坐标方程可得22(1)(2)4(1)30++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==.【点睛】(1)直角坐标和极坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩;(2)直线过定点P ,与圆锥曲线的交点为A B 、,利用直线参数方程中t 的几何意义求解:||||||AB PA PB 、,则有12||||AB t t =-,12||||||PA PB t t =.23.已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求+a b 的最小值. 【答案】(Ⅰ)(,5][1,3]-∞--;(Ⅱ)最小值为2 【解析】 【分析】(1)采用零点分段的方法解不等式;(2)计算出()f x 的最大值,再利用基本不等式求解+a b 的最小值.【详解】(Ⅰ)由题意(3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ----<--<-⎧⎧⎪⎪=+---≤≤=+-≤≤⎨⎨⎪⎪+-->>⎩⎩当3x <-时,41x -+≥,可得5x ≤-,即5x ≤-.当31x -≤≤时,221x x ++≥,可得1x ≥-,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤. 综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--.(Ⅱ)由(Ⅰ)可得函数()f x 的最大值4M =,且14ab a b +++=, 即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立, 可得2(2)16a b ++≥,即2a b +≥,因此+a b 的最小值为2.【点睛】(1)解绝对值不等式,最常用的方法就是零点分段:考虑每个绝对值等于零时x 的值,再逐段分析;(2)注意利用||||||x a x b a b -+-≥-,||||||x a x b a b ---≤-求解最值.。
吉林省长春市2023-2024学年高三上学期质量监测(一) 地理试题(含解析)

长春市2024届高三质量监测(一)地理本试卷共6页。
考试结束后,将答题卡交回。
注意事项:l.答卷前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效:在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
珠三角经济圈(下图)包括“广佛肇”“深莞惠”和“珠中江”三大经济圈,共9个广东省内城市,城市间经济互动往来程度高。
近年来,珠三角经济圈积极融入港澳经济,共同打造粤港澳世界级城市群。
据此完成下面小题。
1.推测珠三角三大经济圈的划分标准()A.行政区划B.地理位置C.产业结构D.地域文化2.目前,珠三角经济圈城市间的经济互动最可能表现为()A.各城市均衡发展,产业互补性较强B.各城市以服务业为主导,分工明确C.以广深为核心,周边城市协同发展D.周边城市辐射带动核心城市的发展家庭牧场是以家庭关系为主,辅之以亲朋、邻里关系,实行自主经营、自负盈亏、从事畜牧业商品性生产的、具有一定规模的、相对独立的经济实体。
下图示意我国某地区家庭牧场羊养殖一般性生产活动农事安排。
据此完成下面小题。
3.与大型国营牧场相比,家庭牧场()A.抵御风险能力强B.经营管理更规范C.生产技术水平高D.生产方式更灵活4.该地区家庭牧场净收入最多的时间在()A.1~4月B.4~7月C.7~10月D.10~次年1月秦代形成的任嚣城,乃广州筑城之始,其时的球江,水面宽阔,潮汐涌退。
2000多年来,广州港是我国经久不衰的南方火港。
下图为“古代广州城市空间拓展及港口位置演变图”。
据此完成下面小题。
5.秦代任嚣城取甘溪水而非珠江水为生活水源,主要考虑甘溪()A.水量更大B.水质更佳C.汛期较短D.水流稳定6.导致古代广州港口码头位置不断迁移的决定性因素是()A.城市扩张B.地价上涨C.水陆变迁D.运具扩大7.古代广州港口码头附近区域的主要功能是()A.行政管理B.居住生活C.军事防御D.商业贸易板根(见下图),也被称为板状根,是热带雨林高大乔木常见的根部形态,具有支撑、吸收营养、呼吸、改变微环境等功能,在整个生态系统中发挥着重要作用。
2020年全国1卷 理科数学真题(pdf版含解析)

2020年全国1卷理科数学真题(解析版)一、选择题:(每小题5分,共60分)1.若z=1+i ,则|z 2–2z |=()A.0B.1C.D.2【答案】D【详解】由题得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.考点:复数的运算2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.4【答案】B【详解】由题得:{}2|2A x x -=≤≤,|2a B x x ⎧⎫=≤-⎨⎬⎩⎭∴12a-=,解得:2a =-.故选:B.考点:集合的运算3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.14B.12- C.14+ D.12+【答案】C【详解】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24(210b b a a -⋅-=,解得154b a =(负值舍去).故选:C.考点:正四棱锥4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A.2B.3C.6D.9【答案】C 【详解】设焦点为F ,由题知||122A p AF x =+=,即1292p=+,解得6p =.故选:C.考点:抛物线5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A.y a bx=+ B.2y a bx =+ C.e xy a b =+ D.ln y a b x=+【答案】D 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,.故选:D.考点:散点图与曲线拟合6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A.21y x =--B.21y x =-+ C.23y x =- D.21y x =+【答案】B【详解】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.考点:导数的几何意义与切线方程7.设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A.10π9B.7π6C.4π3D.3π2【答案】C【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 考点:三角函数的图像与性质8.25()x x y xy ++的展开式中x 3y 3的系数为()A.5B.10C.15D.20【答案】C【详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+=故选:C 考点:二项式定理9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A.3B.23C.13D.59【答案】A【详解】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3απα∈∴== .故选:A.考点:三角函数给值求值10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A.64π B.48πC.36πD.32π【答案】A【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据圆截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A考点:外接球11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为()A.210x y --=B.210x y +-=C.210x y -+=D.210x y ++=【答案】D【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以12222PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .考点:解析几何直线与圆12.若242log 42log a ba b +=+,则()A.2a b >B.2a b< C.2a b > D.2a b <【答案】B【详解】设2()2log x f x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+所以()(2)f a f b -=2222log (2log 2)a b a b +-+=22222log (2log 2)b bb b +-+21log 102==-<,所以()(2)f a f b <,所以2a b <.2()()f a f b -=22222log (2log )a b a b +-+=222222log (2log )b b b b +-+=22222log b b b --,当1b =时,2()()20f a f b -=>,此时2()()f a f b >,有2a b >当2b =时,2()()10f a f b -=-<,此时2()()f a f b <,有2a b <,所以C 、D 错误.故选:B.考点:指数与对数二、填空题:本题共4小题,每小题5分,共20分。
吉林省重点高中2020届高三上学期月考(二)数学(理)试题 Word版含解析

2019-2020学年吉林省重点高中高三(上)月考数学试卷(理科)(二)一、选择题(本大题共12小题)1.已知全集,若,3,,则A. B. C. D. 3,2.“,”的否定是A. ,B. ,C. ,D. ,3.若角的终边过点,则的值是A. B. C. D.4.已知某扇形的面积为,若该扇形的半径r、弧长l满足,则该扇形圆心角大小的弧度数是A. B. 5 C. D. 或 55.函数的一个零点所在区间为A. B. C. D.6.如图,若,,,B是线段AC靠近点C的一个四等分点,则下列等式成立的是A. B.C. D.7.若,且为第三象限角,则的值等于A. B. C. D. 78.若函数的图象与直线一个交点的坐标为,则A. B. 1 C. D. 无法确定9.已知在矩形ABCD中,,,若E,F分别为AB,BC的中点,则A. 8B. 10C. 12D. 1410.已知中,角A,B,C的对边分别为a,b,c,,,,则外接圆的面积为A. B. C. D.11.为捍卫国家南海主权,我海军在南海海域进行例行巡逻.某天,一艘巡逻舰从海岛A出发,沿南偏东的方向航行40海里后到达海岛然后再从海岛B出发,沿北偏东的方向航行了海里到达海岛若巡逻舰从海岛A出发沿直线到达海岛C,则航行的方向和路程单位:海里分别为A. 北偏东,B. 北偏东,C. 北偏东,D. 北偏东,12.若函数在区间上有两个不同的零点,则实数a的取值范围是A. B. C. D.二、填空题(本大题共4小题)13.若,,则______ .14.已知平面向量,,若,则实数______.15.化简:______.16.已知奇函数在定义域上单调递增,若对任意的成立,则实数m的最小值为______.三、解答题(本大题共6小题)17.已知,求下列各式的值:;.18.已知函数.求函数的单调递增区间;当时,求函数的最小值.19.已知平面向量,若,,求实数x的值;求函数的单调递减区间.20.已知函数图象两条相邻的对称轴间的距离为.求的值;将函数的图象沿z轴向左平移个单位长度后,再将得到的图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数的图象,求的值.21.已知函数若函数是偶函数,求实数a的值;若函数,关于x的方程有且只有一个实数根,求实数a的取值范围.22.已知函数.求函数的图象在点处切线的方程;讨论函数的极值;若对任意的成立,求实数m的取值范围.答案和解析1.【答案】A【解析】解:1,2,3,4,,,3,,1,3,,.故选:A.可以求出集合U,然后进行补集、交集的运算即可.考查描述法、列举法的定义,以及交集和补集的运算.2.【答案】C【解析】解:依题意,“,”的否定是:,,故选:C.“,”的否定为“,”.本题考查了命题的否定,要注意命题的否定和否命题的区别.本题属于基础题.3.【答案】B【解析】解:根据题意,可得.故选:B.由三角函数的定义可求得t a na的值.本题考查任意角的三角函数的定义,属于基础题.4.【答案】D【解析】解:由题意可得,解得,或,可得,或5.故选:D.由已知利用扇形的面积公式可求半径和弧长,利用弧长公式可求扇形圆心角大小的弧度数.本题主要考查了扇形的弧长公式,面积公式的应用,考查了方程思想,属于基础题.5.【答案】A【解析】解:,令,,,利用零点判定定理得出的一个零点所在区间为.故选:A.,令,利用函数的解析式求出,的值,利用零点判定定理得出结论.本题考察了函数的零点问题,零点判定定理的应用,是一道基础题.6.【答案】C【解析】解:,,,则.故选:C.根据平面向量的线性表示与运算法则,用、表示即可.本题考查了平面向量的线性表示与应用问题,是基础题.7.【答案】D【解析】解:若,且为第三象限角,则,,,故选:D.由题意利用同角三角函数的基本关系求得的值,再利用两角和的正切公式,求得的值.本题主要考查同角三角函数的基本关系,两角和的正切公式的应用,属于基础题.8.【答案】B【解析】解:由题意,,.故选:B.由已知可得,代入,利用诱导公式化简求值.本题考查函数零点的应用,考查三角函数的恒等变换与化简求值,是基础题.9.【答案】B【解析】解:由题可得:,;;.故选:B.根据题意,利用平面向量的线性运算即可直接求解.本题考查了平面向量的线性运算以及数量积的运算问题,是基础题目.10.【答案】B【解析】解:,,,解得:,由余弦定理可得:,解得:,设外接圆的半径为R,则由正弦定理可得:,解得,外接圆的面积.故选:B.由已知利用三角形面积公式可求c,由余弦定理可得a的值,设外接圆的半径为R,则由正弦定理可解得R,即可得解外接圆的面积.本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了运算求解能力和转化思想,属于基础题.11.【答案】C【解析】解:根据题意画出图形,如图所示:在中,,,;根据余弦定理得:,;又,解得,又为锐角,,此船航行的路程是海里,航行的方向为北偏东.故选:C.根据题意画出图形,结合图形利用余弦定理求得AC的值,进而根据正弦定理可求,结合为锐角,可求,可得航行的方向为北偏东,即可得解.本题考查了解三角形的应用问题,考查了计算能力和数形结合思想,属于中档题.12.【答案】A【解析】解:根据题意,得到关于x的方程在区间上有两个不同的交点,引入函数,所以,当时,,所以函数在上单调递减.当时,,所以函数在上单调递增.所以函数在时取得最大值.即.由于关于x的方程在区间上有两个不同的实根,所以,且,解得.故.故选:A.首先对函数的零点和方程的根进行转换,进一步引入新函数,再利用函数的导数的应用求出函数的单调区间,进一步利用函数的最值求出参数的取值范围.本题考查的知识要点:函数的性质的应用,函数零点和方程的根的关系式的应用,函数的导数的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.13.【答案】6【解析】解:,,,,故答案为:6.根据对数的运算性质和定义计算即可本题考查了对数的运算性质和定义,属于基础题.14.【答案】【解析】解:,,解得.故答案为:.根据可得出,进行数量积的坐标运算即可求出x的值.考查向量垂直的充要条件,向量数量积的坐标运算.15.【答案】【解析】解:故答案为:直接利用三角函数的诱导公式化简求值.本题考查利用诱导公式化简求值,是基础的计算题.16.【答案】【解析】解:因为在定义域上单调递增且为奇函数,所以对任意的成立对任意的成立.对任意的成立.令,故当时,,只需即可,故答案为:可得对任意的成立对任意的成立.对任意的成立.令,求得的最小值即可.本题考查了函数的性质、恒成立问题的处理方法,属于中档题.17.【答案】解:,,;.【解析】由已知求得,然后利用同角三角函数基本关系式化弦为切求解;利用诱导公式及同角三角函数基本关系式化弦为切求解.本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是中档题.18.【答案】解:由题意,,当时,;当时,;当时,.所以,函数的单调递增区间为和.当x变化时,,的变化情况如下表所以,当,.当时,函数的最小值为.【解析】先求导函数,利用导数大于0,可得函数的单调增区间;导数小于0,可得函数的单调增区间;令导数等于0,确定函数的极值点,再考虑端点的函数值,从而确定函数的最值.本题以函数为载体,考查函数的单调性,考查函数的最值,关键是正确运用导数工具,是中档题.19.【答案】解:,,.即.;,.由题得:令;;函数的单调递减区间为:.【解析】直接根据向量共线的结论即可求解;先求出其数量积,再结合三角函数的性质即可求出结论.本题考查了数量积运算性质、三角函数的性质,考查了推理能力与计算能力,属于中档题.20.【答案】解:函数,由于函数图象两条相邻的对称轴间的距离为,所以,解得.由得函数的图象沿z轴向左平移个单位长度后,再将得到的图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数的图象,所以.【解析】直接利用三角函数关系式的变换和正弦型函数的性质的应用求出结果.利用函数的图象的平移变换和伸缩变换的应用求出函数的关系式,进一步求出函数的值.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.21.【答案】解:因为是偶函数,所以对任意成立所以对任意的成立,所以对任意成立,所以;因为,,所以所以,设,则有关于t的方程,若,即时,则需关于t的方程有且只有一个大于的实数根,设,则,所以,所以成立,所以满足题意;若,即时,解得,不满足题意;若,即时,,且,所以,当时,关于t的方程有且只有一个实数根,,不满足题意,综上,所求实数a的取值范围是.【解析】因为是偶函数,所以对任意成立,所以对任意成立,进而求解;因为,,所以,设,则有关于t的方程,进而求解.考查偶函数的性质,定义;复合函数的理解应用;转化思想,分类讨论思想.22.【答案】解:Ⅰ求导函数,可得,,,曲线在点处的切线方程即.函数,,令,解得,当时,解得,函数在单调递增,由,解得,函数在单调递减,故函数在上单调递增,在上单调递减,当时,函数有极小值,极小值为,无极大值,,成立,即,令,,当,0'/>,在单调递增,又,所以,这与对任意的恒成立矛盾,当,,,若,即,,单调递减,又,所以当时,,满足题意,若,解得,此时对应方程,有两个实数根,其中,,又分析知,函数在区间上单调递增,,所以当时,,不符合题意,综上,m的取值范围为.【解析】求导函数,然后求解切线的斜率,求切点坐标,进而可求切线方程;先求导函数,再根据导数和函数单调性关系即可求出单调区间和极值;构造函数,对m分类讨论,判断m的范围.本题考查导数的运用:求单调区间,注意运用构造函数的方法判断单调性,考查运算能力,属于中档题。
2020届高三高中毕业生五月质量检测数学(理科)试卷(含答案)

2020届高中毕业生五月质量检测理科数学 2020.5.25 本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自已的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足,i i i z +=++12,则复数z= A .2+i B .1 +2i C .3 +i D .3-2i2.已知集合⎭⎬⎫⎩⎨⎧≤+-=031x x x A ,{}2<=x x B ,则A∩B= A .{}12<<-x x B .{}23<<-x x C .{}12≤<-x x D .{}12≤≤-x x3.设等比数列{}n a 的前n 项和为n S ,21=a ,02432=++a a a ,则5S =A .2B .0C . -2D . -44.若某几何体的三视图如下,则该几何体的体积为A .2B .4C .24D .D .34 5.在某项测量中,测量结果ξ服从正态分布)0)(,1(2>σσN ,若ξ在(0,2)内取值的概率为0.8,则ξ在),0(+∞内取值的概率为A .0.9B .0.1C .0.5D .0.46.已知函数)22)(3cos()(πϕπϕ<<-+=x x f 图象关于直线185π=x 对称,则函数f (x )在区间[0,π]上零点个数为A .1B .2C .3D .47.已知向量,是互相垂直的单位向量,向量满足1=⋅,1=⋅=A .2B .5C .3D .78.已知等差数列{}n a 满足:82521=+a a ,则21a a +的最大值为 A .2 C .4 B .3 D .59.已知直线21-=x y PQ :与y 轴交于P 点,与曲线)0(:2≥=y x y C 交于M Q ,成为线段PQ 上一点,过M 作直线t x =交C 于点N ,则△MNP 面积取到最大值时,t 的值为A .161B .41C .1D .45 10.已知函数)(1)(1R a eax e x f x ∈--=-的图象与x 轴有唯一的公共点,则实数a 的取值范围为 A .{}0≤a a B .⎭⎬⎫⎩⎨⎧=≤e a a a 10,或 C .{}e a a a =≤,或0 D .{}10=≤a a a ,或 11.已知A ,B 分别为双曲线1322=-Γy x :实轴的左右两个端点,过双曲线Γ的左焦点F 作直线PQ 交双曲线于P ,Q 两点(点P ,Q 异于A ,B ) ,则直线AP ,BQ 的斜率之比BQ AP k k :=A .31-B .3-C .32-D .23- 12.在四棱锥ABCD P -中,2=PA ,7===PD PC PB ,7==AD AB ,2==CD BC ,则四棱锥ABCD P -的体积为A .32B .3C .5D .3二、填空题:本题共4小题,每小题5分,共20分13.函数ln 1x y x =+在点P (1,0)处的切线方程为 . 14.一种药在病人血液中的量保持1500 mg 以上才有疗效;而低于500 mg 病人就有危险。
高考数学《平面解析几何》练习题及答案

平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
2022届吉林省长春市高三上学期质量监测(一)数学(理)试题(解析版)

因为平面 平面 ,平面 平面 , 面 ,
所以 平面 ,
因为 面 ,所以 ,
又因为 是正三角形, 是 的中点,
所以 ,所以 平面 .
因为 ,所以 平面 ;
(2)过 在平面 内作 的垂线 ,知 与 , 两两垂直,
以 为坐标原点, , , 分别为 轴,建立空间直角坐标系,设 ,
有 , , , , ,
设平面 法向量为 ,
则 ,即 ,令 , , ,
所以 ;
设平面 的法向量为 , , ,
则 ,即 ,
所以 ,令 ,可得 ,
所以 ;
设二面角 的平面角为 ,
,
所以 ,所以 ,
所以二面角 的正弦值为 .
19.水立方、国家体育馆、五棵松体育馆、首都体育馆、国家速滑馆是2022冬奥会的比赛场馆.现有8名大学生报名参加冬奥会志愿者比赛场馆服务培训,其中1人在水立方培训,3人在国家体育馆培训,4人在五棵松体育馆培训.
详解1sin3cos33??????q1sincoscossin3cos333?????????131sincos3cos223???????131sincos223?????1cos63?????2217sin2sin2cos22cos1216626639???????????????????????????????????故选
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
【分析】根据复数除法运算化简可得.
【详解】 , 对应点 在第三象限.
故选:C.
3.下列关于函数 的说法中,正确的是()
A.函数 是奇函数B.其图象关于直线 对称
C.其图象关于点 对称D.函数 在区间 上单调递增
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则AB =A. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 13.743 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (3π-B. 1)π C. 1)π D. 2)π7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④ //,//αγβγ,则//αβ A. ① ② ③ B. ② ③ ④ C. ① ③ D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S = A. 44 B. 44- C. 88 D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=-10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为A.B. 2C. 3D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+,则BP BC ⋅=_________. 15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________.16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = ,n a =__________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => .(Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围. 18. (本小题满分 12 分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AD DC ⊥,22AB AD DC ===,E 为PB 中点.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)若4PA =,求平面CDE 与平面ABCD 所成锐二面角的大小. 19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确 的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望. 20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为12x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值. 23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求a b +的最小值.长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B ={|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】 由圆心到切线的距离等于半径,得22211=+∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则512αβ-=,又2αβπ+=,解得(35)απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确8. A 【解析】 2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式. 10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值]11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60p AF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-. 12. C 【解析】21()(2)ex f x x -'=-∴()f x 在(1,2)上递减,在(2,)+∞上递增,当2x >时,()0f x >,又(1)1f =-,(2)1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)rrr r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅- 221248122233332AC AB AC AB =+-⋅=+-⨯⨯= 15. 20π【解析】 取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE中,1OO =,在Rt △1O OA中,1O A =得OA =20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+-211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010L <<+(12分)18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面. (6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系. 可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E , (0,1,0)CD =-,(2,0,2)CE =-,平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||2n n n n θ⋅==⋅. 即平面CDE 与平面ABCD 所成的锐二面角为4π. (12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=.(4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y , 22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12y y+=,122334y y t -=+.AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△2216223434t t ===++u =,则1u ≥,上式可化为26633u u u u=++, 当且仅当u =3t =±时等号成立,因此AOB ∆l的方程为3x y =±. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30-+---=,化简可得220t +-=.则12||||||2PA PB t t ⋅==. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--.(5分)(Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2.(10分)。