专题、勾股定理的证明16种
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的证明
【证法1】(课本的证明)
做8个全等的直角三角形,
设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即
ab
c ab b a 2
142
142
2
2
⨯
+=⨯
++, 整理得 2
22c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角
形的面积等于ab
2
1
. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.
∵ Rt ΔHAE ≌ Rt ΔEBF ,
∴ ∠AHE = ∠BEF .
∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的
正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴
()2
2
2
14c
ab b a +⨯
=+. ∴ 2
22c b a =+.
【证法3】(赵爽证明)
以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角
三角形的面积等于ab
2
1
. 把这四个直角三
角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE,
∴ ∠HDA = ∠EAB .
∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.
∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2
a b -.
∴
()2
2
2
14c
a b ab =-+⨯
.
∴ 2
22
c b a =+.
【证法4】(1876年美国总统Garfield 证明)
以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角
形的面积等于ab
21
. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点
在一条直线上.
∵ Rt ΔEAD ≌ Rt ΔCBE ,
∴ ∠ADE = ∠BEC .
∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠D EC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,
它的面积等于2
21
c
.
又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .
∴ ABCD 是一个直角梯形,它的面积等于()2
2
1
b a +.
∴ ()2
2
2
12
122
1
c
ab b a +
⨯
=+.
∴ 2
22c b a =+.
B A
【证法5】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .
∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD , ∴ ∠EGF = ∠BED ,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c ,
∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.
∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a .
∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则
,
2
122
2
ab S b
a ⨯
+=+
ab
S c
2
122
⨯
+=,
∴ 2
2
2
c b a =+.
【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P .
过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º,
∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .
同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).