微积分_经济数学_吴传生第五章_(3)
《经济数学微积分》教学大纲
![《经济数学微积分》教学大纲](https://img.taocdn.com/s3/m/99e62fb3af1ffc4fff47acb3.png)
《经济数学微积分》教学大纲课程英文名称:课程代码:课程类别:专业基础课开课时间:1、2总学时:70+54总学分:4.5+3.5考核方式:平时考核(30%)+期中考核(20%)+期末考核(50%)先修课程:中学数学适用专业:经济、管理类本科专业开课单位:一、课程概述本课程是高等学校经济、管理类本科各专业学生的一门重要的专业基础课,其内容在经济和社会领域有着广泛的应用。
本课程的内容建立在中学数学的基础上,为学习后续数学课程和专业课程的打下必要的数学基础。
主要内容包括函数、极限和连续、一元函数微积分、多元函数微积分、微分方程和差分方程、无穷级数六章,共124学时,分(一)(必修70学时)和(二)(选修54学时)两学期开设。
本课程的考核成绩由平时(包括作业(网络教学)、考勤、课堂提问、单元考核)(占30%)、期中(占20%)和期末(占50%)三部分考核成绩构成。
二、课程目标(一)知识目标使学生获得函数、极限与连续、一元函数微积分学、多元函数微积分学、微分方程与差分方程、无穷级数等方面的基本概念、基本运算技能和基本思想方法。
(二)能力目标培养学生具有一定的数学运算能力、推理能力、分析问题和解决问题的能力,利用高等数学的思想方法处理实际问题的能力。
培养学生自主学习的能力、反思和质疑的能力。
(三)素质目标培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
激发学生对数学的兴趣,调动学生学习数学的积极性,引发学生的数学思考,提高对数学价值的认识。
培养学生的理性思维,鼓励学生的创造性思维。
激发学生的自信心,培养学生克服困难的勇气和毅力。
三、课程内容与要求1. 学时分配表2. 教学内容和要求第一章函数、极限与连续教学内容:第一节函数的概念和性质第二节反函数与复合函数第三节常用的经济函数介绍第四节数列、函数的极限第五节无穷小与无穷大第六节极限的运算法则第七节极限存在准则与两个重要极限第八节函数的连续性教学要求:1. 理解函数的概念,掌握函数的几何性质,会求函数的定义域,会建立应用问题的函数关系。
(完整版)《高等数学B(经管类)》课程教学大纲
![(完整版)《高等数学B(经管类)》课程教学大纲](https://img.taocdn.com/s3/m/8238e4d6804d2b160b4ec09f.png)
《高等数学B(经管类)》课程教学大纲(Advanced Mathematics B(Economics and Management))课程编号:161990172学分:10学时:160 (其中:讲课学时:160 实验学时:0 上机学时:0 )先修课程:无后续课程:线性代数、概率论与数理统计适用专业:经管类专业本科生开课部门:理学院一、课程的性质与目标本课程属于经管类公共基础必修课。
本课程的任务是使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数与常微分方程等方面的基本概念、基本理论、基本方法和运算技能,以及在经济管理中的一些简单应用,为学习后继课程奠定必要的数学基础,同时培养学生思维能力、推理能力、自学能力、解决问题的能力。
二、课程的主要内容及基本要求第1章函数(4学时)[知识点]集合、函数的基本性质、复合函数与反函数、基本初等函数与初等函数、函数关系的建立、经济学中的常用函数[重点]函数概念,基本初等函数;经济学中的常用函数[难点]建立函数关系[基本要求]1、识记:函数的基本性质;复合函数、反函数的概念及其运算;2、领会:基本初等函数的类型,理解初等函数的概念;3、简单应用:简单问题中函数关系的建立;4、综合应用:经济学中的常用函数关系的建立[考核要求]回顾中学相关知识,介绍有关函数的新知识,为后续学习打下基础第2章极限与连续(18学时)[知识点]数列的极限、函数极限、无穷小与无穷大、极限运算法则、极限存在准则、两个重要极限、连续复利、无穷小的比较、函数的连续性、闭区间上连续函数的性质[重点]极限运算法则,求极限的方法,无穷小的比较、函数的连续性[难点]求极限的方法;函数的间断点的判定[基本要求]1、识记:数列极限的定义和性质;函数极限的定义和性质;无穷小的定义、性质及其与无穷大的关系;函数连续性、间断点的概念;闭区间上连续函数的性质2、领会:理解极限运算法则,掌握求极限的方法;理解极限存在准则,掌握两个重要极限,;掌握等价无穷小及其在求极限中的应用方法;3、简单应用:等价无穷小及其在求极限中的应用;4、综合应用:经济学中的连续复利问题[考核要求]要求学生能直观理解极限的含义,掌握求极限的方法,明确本章的重要地位。
课程标准
![课程标准](https://img.taocdn.com/s3/m/3ded473deefdc8d376ee32d5.png)
《高等数学》课程标准《高等数学》课程是本科非数学类各理科专业的重要专业基础课,在大学教育及高素质人才的培养过程中占有十分重要的地位。
随着时代的发展、科学的进步、经济的腾飞,数学科学已与自然科学、社会科学并列为三大基础科学,数学地位的巨大变化必将影响到高等数学课程在整个高等教育中的地位与作用。
同时,《高等数学》课程还担负着培养学生严谨的思维、求实的作风、创新的意识等任务。
因此,《高等数学》不仅要向学生传授数学知识,更要注重培养学生的数学修养。
但是,不同学科和专业对高等数学知识的需求不同,同时,为了满足我校学生将来考研的需要,根据专业需求的特点和考研《数学一》至《数学三》的要求,将《高等数学》课程划分为如下三个层次。
《高等数学I》(第一层次)一、课程说明:《高等数学I》由微积分、线性代数和概率论与数理统计三部分构成,本课程是物理教育专业和计算机等专业的一门必修的基础课程,也可供将来考研时需要考《数学一》的其它专业同学选修。
课程总学时为276学时,分四个学期行课,其中,第一学期78学时,4学分,第二学期90学时,5学分,第三学期54个学时,3学分,第四学期54个学时,3学分,共15学分。
1.参考专业:物理教育和计算机等专业。
2.课程类别:专业基础课3.参考教材与参考书目教材:1 《高等数学》第六版,同济大学高等数学教研室编,高等教育出版社,2007年。
2 居余马等编著,线性代数(第2版),北京,清华大学出版社,2002年9月第2版3 盛骤等,概率论与数理统计(第二版),北京:高等教育出版社,1989。
参考书目:1 四川大学数学系高等数学教研室编,高等数学(第一、二、三、四册),北京,高等教育出版社,1997。
2 同济大学应用数学系编,线性代数(第4版)北京,高等教育出版社,2003年7月。
3 高世泽,概率统计引论,重庆:重庆大学出版社,2000年。
4.课程教学方法与手段以教师讲授为主,学生自学为辅的教学方式进行教学,课堂上的教学以启发式的方式进行讲授,学生作适当的课内练习。
经济数学微积分-吴传生10-5
![经济数学微积分-吴传生10-5](https://img.taocdn.com/s3/m/3302a493bceb19e8b8f6baef.png)
定理 5
* 1 * 2
设非齐次方程(2) 的右端 f ( x ) 是几个函
数之和, 如 y P ( x ) y Q ( x ) y f 1 ( x ) f 2 ( x ) 而 y 与 y 分别是方程,
y P ( x ) y Q( x ) y f 1 ( x )
定理 3 设 y 是二阶非齐次线性方程
*
y P ( x ) y Q( x ) y f ( x )
*
( 2)
的一个特解, Y 是与(2) 对应的齐次方程(1) 的 通解, 那么 y Y y 是二阶非齐次线性微分 方程(2) 的通解.
定 理 4 设 y1,y 2 是 非 齐次 方程 (2) 的解 , 那么 y1 y2 就是非齐次方程(2) 所对应的齐次方程(1 e 2 x
四、二阶常系数非齐次线性微分方程
二阶常系数非齐次线性方程 y py qy f ( x ) 对应齐次方程 通解结构 常见类型
y py qy 0,
y Y y ,
Pm ( x ), Pm ( x )e
r1, 2 1 2i ,
y e x (C1 cos 2 x C2 sin 2 x ).
故所求通解为
例 4 求微分方程
y 2 y 8 y 0
的通解
解 特征方程为
r 2r 8 ( r 4)(r 2) 0
2
解得
r1 4, r2 2
实根 r1
y C1e r x C 2 e r x
1 2
y (C 1 C 2 x )e r1 x
y ex (C1 cos x C 2 sin x )
3.二阶常系数非齐次线性微分方程
微积分 经济数学 吴传生第四章 (3)
![微积分 经济数学 吴传生第四章 (3)](https://img.taocdn.com/s3/m/575e8c44852458fb770b5691.png)
定理3(第二充分条件) 设 f ( x ) 在x0 处具有二阶导
证 (1) f ( x0 ) lim f ( x0 x ) f ( x0 ) 0, x 0
x 故f ( x0 x ) f ( x0 )与x异号,
当x 0时,有f ( x0 x ) f ( x0 ) 0, 当x 0时,有f ( x0 x ) f ( x0 ) 0,
(等号仅在个别点成立!!!!!)
所以f x x sinx在x ,单调增加
3.利用单调性证明不等式
例4 当x 0时, 试证x ln(1 x )成立.
x . 证 设f ( x ) x ln(1 x ), 则 f ( x ) 1 x
f ( x )在[0,)上连续, 且(0,)可导,f ( x ) 0,
2.单调区间(monotonical interval)求法
问题: 如上例,函数在定义区间上不是单调的, 但在一些部分区间上单调. 定义: 若函数在其定义域的某个区间内是单调 的,则该区间称为函数的单调区间. 导数等于零的点和不可导点,可能是单调 区间的分界点.
方法: 用 方 程 f ( x ) 0 的 根 及 f ( x ) 不 存 在 的
解方程f ( x ) 0 得, x1 1, x2 2.
当 x 1时, f ( x ) 0, 在(,1]上单调增加; 当1 x 2时,
f ( x ) 0, 在[1,2]上单调减少;
当2 x 时, f ( x ) 0, 在[2,)上单调增加;
例1 判断曲线 y x 3 的凹凸性.
解 y 3 x 2 ,
点 注意: 可导函数 f ( x ) 的极值点必定是它的驻 , 但函数的驻点却不一定 是极值点.
第五章 定积分---教参
![第五章 定积分---教参](https://img.taocdn.com/s3/m/40bf04272f60ddccda38a0f6.png)
第五章 定积分一、本章的教学目的1.了解定积分的定义,函数()f x 在[,]a b 上可积的充分条件。
2.掌握定积分的性质,理解定积分中值定理。
3.掌握积分上限函数的求导方法及其应用。
4.熟练掌握微积分公式、定积分的换元积分法及分部积分法。
5.掌握用定积分计算平面图形的面积和求旋转体体积的计算公式。
主要内容1.定积分的概念与性质曲边梯形,曲边三角形;分割,黎曼和,黎曼和的极限;()f x 在[,]a b 上可积,()f x 在[,]a b ]上的定积分;定积分的几何意义;定积分的基本性质.关于函数可积性的几个重要结论: (1)可积函数必有界;(2)有限区间[,]a b 上的连续函数可积;(3)在有限区间[,]a b 上只有有限个间断点的有界函数可积. 2.微积分基本定理变上限积分,变限积分的求导公式:()()()xaf t dt f x '=⎰微积分基本公式:()()()()bbaaf x dx F x F b F a ==-⎰,其中()F x 是()f x 在[,]a b 上的一个原函数. 3.定积分的换元积分法与分部积分法定积分的换元积分法;对称区间[,]a a -(0)a >上奇偶函数定积分的性质:(()f x 是奇函数);()2()aaaf x dx f x dx -=⎰⎰ (()f x 是偶函数); 周期函数定积分的性质:()()a T Taf x dx f x dx +=⎰⎰ (T 为()f x 的周期); 定积分的分部积分公式:()()()()()()bbbaaau x v x dx u x v x v x u x dx ''=-⎰⎰.4.定积分的应用由x a =,x b =,()y f x =,()y g x =所围成的平面图形的面积()()baS f x g x dx =-⎰;微元法;由x a =,x b =,x 轴及()y f x =所围成的平面图形绕x 轴旋转一周所得旋转体体积2[()]bx aV f x dx π=⎰;由y c =,(0)y d d c =>≥,y 轴及()x y ϕ=所围成的平面图形绕y 轴旋转一周所得旋转体体积2[()]dy cV y dy πϕ=⎰二、本章教学的重点和难点1.教学重点:定积分的性质,微积分基本公式,定积分的换元法与分部积分法定积分的应用。
微积分经济数学吴传生第四章(4)
![微积分经济数学吴传生第四章(4)](https://img.taocdn.com/s3/m/0dc0d90e2f60ddccda38a0ba.png)
问 要 使 平 均 成 本 最 小 , 应 生 产 多 少 产 品 ? 如 果 每 件 产 品 以 5 0 0元 售 出 , 要 使 利 润 最 大 , 应 生 产 多 少 产 品 ?
解:
C ( x ) 25000 x C ( x ) 200 x x 40 25000 1 C ( x ) 2 40 x
则全年的采购费用为 a ab bN b X X
用 C 表示一个单位货物库存 一年所需费用 CX 则全年的库存费用为 ,因此,总费用 2 ab CX E (X ) X 2
a 又 X ,故总费用也可表示 N 的函数 N ac a aC E ( N ) a /( ) b ( )( ) bN 2 2 N N N 2 C ab CX 2 ab 由 E ( X ) 2 , x 0 2 2X 2 X 2 ab 令 E ( X ) 0 , 得 E ( X ) 的唯一驻点 X 0 c 2 ab 又 E (X ) 3 0 ( a ,b ,X0 ), X 故 X 为最小值点 0
2 L ( X ) R ( X ) C ( X ) 5 X 0 . 01 X 200
L ( X ) 5 0 . 02 X
L ( X ) 0 . 02 0
令 L ( X ) 0 ,解得 5 ( 万元 ) 为极大值,也就是 值 .
( 1) 求P 在 何 范 围 变 化 时 , 使 相 应 销 售 额 增 加 或 减 少 ? ( 2) 要 使 销 售 额 最 大 , P应 取 何 值 , 最 大 销 售 额 是 多 少 ?
a 解 ( 1 ) 销售额 R ( P ) PQ P ( C ) P b 2 ab C ( P b ) R ( P ) 2 ( P b ) ab b 令 R ( 0 ) 0 , 得 P b (a bc ) 0 c c 由 题a 设 bc , P 0 ,
经济数学微积分
![经济数学微积分](https://img.taocdn.com/s3/m/4bb9a5aff9c75fbfc77da26925c52cc58bd690b6.png)
在积分部分,本书介绍了积分的定义、计算方法和积分在经济学中的应用,如总成本曲线、总收 益曲线等。
在级数和常微分方程部分,本书介绍了级数的定义、计算方法和级数在经济学中的应用,如经济 增长模型、人口增长模型等。本书也介绍了常微分方程的定义、解法和常微分方程在经济学中的 应用,如经济增长模型、人口增长模型等。
阅读感受
在阅读《经济数学微积分》这本书的过程中,我深感其内容的深度和广度, 以及它如何将数学与经济学巧妙地结合在一起。这本书不仅为我揭示了微积分的 魅力,也让我理解了它如何被广泛应用于经济学中。
这本书的结构和内容非常出色。它以一种清晰、直接的方式介绍了微积分的 基本概念,例如函数、导数和积分,以及它们在经济学中的应用。通过大量的例 子和练习题,作者吴传生让我更好地理解了微积分的原理和应用。书中的图表和 解释也使微积分的学习变得相对容易。
定积分是微积分中的另一个重要概念,它描述了函数在一定区间上的总值。 这一部分介绍了定积分的概念、性质和计算方法,同时还介绍了定积分在实际问 题中的应用,如面积、体积的计算等。
这一部分介绍了多元函数的微分学和重积分,包括偏导数、全微分、多重积 分等概念和计算方法。这些概念和技巧在实际问题中的应用也非常广泛,如空间 几何、物理学、经济学等领域。
经济数学微积分
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
关键字分析思维导图
介绍
极限数学方法ຫໍສະໝຸດ 帮助知识分析
经济
微积分
经济学 应用
掌握
经济数学微积分课件
![经济数学微积分课件](https://img.taocdn.com/s3/m/faec0c21af1ffc4fff47ac1b.png)
例4 证明 limx212. x1 x1
证 函数在点x=1处没有定义. f(x)Axx2112 x1 任给 0, 要f(使 x )A , 只要取 ,
当 0xx 0 时 ,就有xx2112,
x2 1 lim 2.
x1 x1
例5 证 :当 x 明 0 0 时 ,x l x i0 m x x 0 .
x0
x0
x0 x
点 x0的去 邻 心 ,域 体x接 现x0 近 程.度
① 定 义 1 设 函 数 f (x) 在 点 x0的 某 一 去 心 邻 域 内 有 定 义 , 对 于 任 意 给 定 的 正 数 (不 论 它 多 么
小 ),总 存 在 正 数 ,使 得 当 x 满 足 不 等 式
记 作 lim f ( x ) A 或 f ( x ) A(当 x ) x
"X"定义limf(x)A x
0 , X 0 , 使 x X 时 , 恒 当 f ( x ) A 有 .
2. 另两种情形:
10.x 情形 : limf(x)A x
0 , X 0 , 使 x X 时 , 恒 当 f ( x ) A 有 .
定 : x l x 0 if 理 ( m x ) A f ( x 0 ) f ( x 0 ) A .
例6 验证limx 不存.在 x0 x
y
证 limxlimx
x x x0
x0
lim (1)1 x 0
1
o
x
1
x lim
limx
lim11
x x x0
x0
x0
左右极限存在但不相等, limf(x)不存. 在 x0
《微积分》考试大纲
![《微积分》考试大纲](https://img.taocdn.com/s3/m/d3075c257cd184254b35353e.png)
《微积分》考试大纲一、考试题型1、填空题2、选择题3、计算题4、综合题二、考试参考用书经济数学——《微积分》,吴传生编,高等教育出版社,2006年,第二版。
三、考试内容第一章函数1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2、了解函数的有界性、单调性、周期性和奇偶性;3、理解复合函数及分段函数的概念,了解反函数的概念;4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
第二章极限与连续1、了解数列极限和函数极限(包括左极限与右极限)的概念;2、了解极限的性质;3、了解极限的四则运算法则;4、掌握极限存在的两个准则;5、掌握利用两个重要极限求极限的方法;6、理解无穷小量的概念和基本性质;7、掌握无穷小量的比较方法,会用等价无穷小求极限;8、了解无穷大量的概念及其与无穷小量的关系;9、理解函数连续性的概念(含左连续与右连续);10、会判别函数间断点的类型;11、了解连续函数的性质和初等函数的连续性;12、理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第三章导数、微分、边际与弹性1、理解并掌握导数的概念,会用定义求点导数;2、掌握函数可导性与连续性之间的关系;3、了解导数的几何意义;4、会求平面曲线的切线方程和法线方程;5、掌握基本初等函数的导数公式;6、熟练掌握导数的四则运算法则及复合函数的求导法则;7、会求分段函数的导数;8、会求反函数与隐函数的一阶、二阶导数;9、了解高阶导数的概念,会求简单函数的高阶导数;10、了解微分的概念、掌握导数与微分之间的关系11、了解函数一阶微分形式的不变性,熟练地求函数的微分。
第四章中值定理及导数的应用1、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解费马引理,泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用;2、掌握洛必达法则的使用条件和使用方法,熟练地用洛必达法则求极限;3、掌握函数单调性的判别方法;4、了解函数极值的概念;5、掌握函数取到极值的必要条件和充分条件,会求函数的极值;6、会求函数的最大值和最小值,并会解决实际问题的最值;7、掌握凹凸性的定义,会用导数判断函数图形的凹凸性;8、会求函数图形的拐点和渐近线;9、了解泰勒公式,会写出简单函数的泰勒公式。
《微积分教案》word版
![《微积分教案》word版](https://img.taocdn.com/s3/m/55eed388195f312b3069a555.png)
分类举例、重点练习、图形结合
参考文献
《微积分》吴赣昌,学习辅导与习题解答,经管类 简明版,第三版
《数学分析》陈传璋等,第二版,上册,复旦大学数学系
习题作业
P64:2,4 、 P65:6
P69:2
P72:36
内容
第一章函数、极限与连续 习题课
学时
1学时
教学目标及
要求
教学内容要点
教学重点难点
教学方法
学时
2学时
教学目标及
要求
1.理解函数连续性概念、函数间断的概念
2.理解判别间断点的条件、掌握间断点的分类
3.掌握讨论函数在某一点处连续性方法
4.了解连续函数的算术运算、复合函数、初等函数的连续性
5.了解闭区间上连续函数的性质及简单应用
教学内容要点
函数增量的概念
函数在某一点处的连续的定义(用增量表示)
6.掌握复合函数的极限运算法则并会求极限
教学内容要点
无穷小的定义
存在的充分必要条件—定理1
无穷小运算性质:定理2、定理3、推论1、推论2
无穷大的概念
无复合函数的极限运算法则
教学重点难点
初等函数带值法
一些 、 、 待定型的初等求法
分析极限类型的方法,例 ,求 、
函数在某一点处的连续的等价定义,定义3
左连续右连续
函数在某一点处的连续的充分必要条件,定理1
连续函数与连续区间、连续函数的几何意义
函数间断的概念
判别间断点的条件、间断点的分类
连续函数的算术运算
复合函数的连续性
初等函数的连续性
闭区间上连续函数的性质
教学重点难点
分段函数连续性的讨论
利用函数连续性(复合函数、初等函数)求极限
经济数学-微积分吴传生10-3
![经济数学-微积分吴传生10-3](https://img.taocdn.com/s3/m/581940ec0242a8956bece44f.png)
3 3 即成本时间函数为 y e 5t . 10 10
பைடு நூலகம்
t 3
4.公司的净资产分析
例6 某公司的净资产在运营过程中,像银行的存款 一样,以年5%的连续复利产生利息而使总资产增加, 同时,公司还必须以每年200百万元人民币的数额连续 地支付职工的工资。 (1) 列出描述公司净资产W的微分方程; (2) 假设公司的初始净资产为W0,求净资产W(t); (3) 描绘出当W0分别为3000,4000,5000时的解曲线.
dy1 率正比于过渡需求,为 0.3(C1 I1 y1 ), dt 已知 t=0 时,流动收入 y0 5(亿元) ,若流动收 入的均衡值 y 4 (亿元) ,试求流动收入函数 y ( t ),并求 t=2 时的流动收入。
10.设某牧场现有 1000 只羊,如果每瞬时羊的只 数变化率与当时羊的只数成正比,若 10 年内该 牧场羊群达到 2000 只,试确定该羊群只数 a t 与 时间 t 的函数关系。 11.某企业成本控制部门发现,随企业规模扩大 面向办公室提供的平均月费用 y 与办公室人员 x
解:(1) 净资产增长速率=利息盈取速率-工资支付速率
dW 0.05W 200 就是净资产所满足的微分方程. dt
即
W=4000为平衡解。
(1) 列出描述公司净资产W的微分方程; (2) 假设公司的初始净资产为W0,求净资产W(t); (3) 描绘出当W0分别为3000,4000,5000时的解曲线.
(a c )e ( b d )dt dt C ( b d ) t ( a c ) ( b d )t e e C (b d )
( b d )dt
微积分经济数学吴传生三
![微积分经济数学吴传生三](https://img.taocdn.com/s3/m/50007d6a336c1eb91a375d9e.png)
( 4 ) A 是与 x 无关的常数 , 但与 f ( x ) 和 x 有关 ; 0
( 5 ) 当 x 很小时 , y dy ( 线性主部 ).
3.可微(differentiable)的条件 定理
数 f(x ) 在点 x 处可导 ,且 A f(x ). 0 0
函数 f(x ) 在点 x 可微的充要条件是 0
(2) 充分性 函数 f ( x ) 在点 x 可导 , 0
y lim f ( x ), 0 x 0 x
y 即 f ( x ) , 0 x
0 ( x 0 ), 从而 y f ( x ) x ( x ), 0
dy y dx f ( u ) g ( x ) dx x 又因为 g ( x ) dx du ,
dy f ( u ) du 或 dy y du ; u
结论: 无 论 u 是自变量还是中 ,函 间数 变量
y f (u ) 的微分形式总 是 dy f ( u ) du
3 例1 求函数 y x 当 x 2 , x 0 . 02 时的 .
3 2 解 dy ( x ) x 3 x x .
2 0 . 24 . dy 3 x xx x 2 2 x 0 . 02 x 0 . 02
通常把自变量 x 的增量 x 称为自变量的微 , 记作 dx , 即 dx x .
d(ax ) ax lnadx
d(ex ) exdx
1 1 d(log dx d(lnx) dx a x) xlna x 1 1 d(arcsin x) dx d(arccos x) dx 2 2 1 x 1 x 1 1 d(arctan x) d(arc cotx) 2 dx 2 dx 1 x 1 x
第三章 导数与微分 《经济数学》PPT课件
![第三章 导数与微分 《经济数学》PPT课件](https://img.taocdn.com/s3/m/2e55f91babea998fcc22bcd126fff705cc175c93.png)
03
第3章 导数与 微分
PART
03
3.1
导数
导数是数学中的一个分支——微积分的两个基本概念之一,它
表示一个函数的因变量相对于自变量的变化的快慢程度,即因变 量关于自变量的变化率.事物总是在不断地运动和变化的,而描述 这种运动和变化离不开变化率,导数就是对现实生活中各种各样 的变化率的一种统一的数学抽象.导数是微积分以及实际生活中 应用极其广泛的概念,其应用范围包括函数性态的描述、曲线的 描绘、最优化问题的讨论以及变化率的分析等.
,
即函数在点x=0处的右导数不存在,所以函数f(x)在点x=0处的导
数不存在.
3. 1. 5
高阶导数
在本小节中,我们将讨论一个量的变化率的变化率.这样的变化率 有很多种,例如,汽车的加速度是它的速度关于时间的变化率,而 速度本身又是路程关于时间的变化率.如果路程的单位是千米,时 间的单位是小时,那么速度(路程关于时间的变化率)的单位是千 米/小时,而加速度(速度的变化率)的单位则是千米/小时2.
上述有关变化率的变化率的问题,在经济上是常用的.例如,在通 货膨胀时期,你可以听到经济部门的报告指出,“尽管通货膨胀率 在增长,但其增长速度在减缓”,就是指物价在上涨,但已经不比 以前那样增长得快了.
3. 1. 5
高阶导数
1) 高阶导数的概念 ➢ 设函数y=f(x)关于x的变化率由其导函数f '(x)给出.类似地,函数f
3.2 1 微分的定义
关于微分定义的几点说明: ➢ (1)函数的微分dy是Δx的一次函数,它不仅与Δx有关,而且与x也
有关.函数的微分dy与Δy只差一个比Δx高阶的无穷小,它是Δy的 主要部分,所以也称微分dy是函数改变量Δy的线性主部. ➢ (2)若函数y=f(x)在x处的改变量Δy可以表示成Δx的线性函数 k(x)Δx与一个比Δx高阶的无穷小之和Δy=k(x)Δx+o(Δx),则称 函数y=f(x)在点x处可微. ➢ (3)由于自变量x的微分dx=(x)'Δx=Δx,故dx可理解为自变量x的 改变量Δx.于是dy=f '(x)Δx=f '(x)dx,即函数的微分等于函数的 导数乘上自变量的微分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
x2 2
x
x 2
dv
d (arctan
x
)
2
2
x2 arctan x
2
x2 2
1
1 x
2
dx
x2
1
1
2 arctan x 2 (1 1 x2 )dx
x2 arctan x 1 ( x arctan x) C .
2
2
例4 求积分 x3 ln xdx.
xf
'
(
x)dx
.
四、设 f ( x)dx F ( x) C , f ( x)可微,且 f ( x)的反
函数 f 1 ( x) 存在,则
f 1 ( x)dx xf 1 ( x) F f 1 ( x) C .
练习题答案
一、1. x cos x sin x C ;
二、 求下列不定积分:
1. x 2 cos2 x dx ;
2
2.
(ln x)3 x2
dx;
3、 e ax cos nxdx ; 5、 cos(ln x)dx ;
4、 e 3 x dx;
6、
xearctan x 3 dx .
(1 x 2 )2
三、已知sin x
x
是
f
(
x)的原函数,求
3.
e ax a2 n2
(a
cos
nx
n sin
nx)
C
4.
3
3e
x
(3
x 2 23
x 2) C ;
5. x [cos(ln x) sin(ln x)] C ; 2
6. x 1 e arctan x C ; 2 1 x2
7. x 2e x xe x e x C . x2
sin(ln
x)dx
x [sin(ln 2
x)
cos(ln
x)]
C.
例6 求积分 e x sin xdx. 解 e x sin xdx sin xdex
e x sin x e xd(sin x)
e x sin x e x cos xdx ex sin x cos xd ex
e x sin x (e x cos x e xd cos x)
e x (sin x cos x) e x sin xdx 注意循环形式
e
x
sin
xdx
ex 2
(sin
x
cos
x)
C.
例7 求积分 x arctan x dx.
1 x2
解 1 x2 x , 1 x2
2. x arcsin x 1 x 2 C ;
3. ln x , x 2dx;
4. e x , cos xdx;
5. arctan x , x 2dx; 6. x , e xdx.
二、1. x 3 1 x 2 sin x x cos x sin x C ; 62
2. 1 [(ln x)3 3(ln x)2 6 ln x 6] C ; x
三、cos x 2sin x C . x
xf ( x)dx xf ( x) f ( x)dx
2x2ex2 e x2 C .
二、小结
合理选择 u, v ,正确使用分部积
分公式
uvdx uv uvdx
思考题
在接连几次应用分部积分公式时, 应注意什么?
思考题解答
注意前后几次所选的 u 应为同类型函数.
x cos xdx xd sin x x sin x sin xdx
x sin x cos x C.
例2 求积分 x2e xdx.
解 u x2 , e xdx de x dv,
x2e xdx x2e x 2 xe xdx
(再次使用分部积分法)u x, e xdx dv
解
u ln x,
x3dx
d
x4 4
dv,
x3
ln
xdx
1 4
x
4
ln
x
1 4
x
3dx
1 x4 ln x 1 x4 C .
4
16
总结 若被积函数是幂函数和对数函数或幂
函数和反三角函数的乘积,就考虑设对数函
数或反三角函数为 u.
例5 求积分 sin(ln x)dx.
例 e x cos xdx
第一次时若选 u1 cos x
e x cos xdx e x cos x e x sin xdx
第二次时仍应选 u2 sin x
练习题
一、填空题:
1. x sin xdx ________________; 2. arcsin xdx _______________; 3. 计算 x 2 ln xdx, 可设 u _____ ,dv ________; 4. 计算 e x cos xdx,可设 u ____ ,dv ________; 5. 计算 x 2 arctan xdx,可设 u ____ ,dv ______; 6、计算 xexdx ,可设 u ______,dv __________ .
解 sin(ln x)dx xsin(ln x) xd[sin(ln x)]
x sin(ln
x)
x
cos(ln
x)
1 x
dx
x sin(ln x) x cos(ln x) xd[cos(ln x)]
x[sin(ln x) cos(ln x)] sin(ln x)dx
x2e x 2( xe x e x ) C.
总结 若被积函数是幂函数和正(余)弦函数
或幂函数和指数函数的乘积, 就考虑设幂函
数为u, 使其降幂一次(假定幂指数是正整数)
例3 求积分 x arctan xdx.
解
x
令 u arctan x , xdx arctan xdx x2 arctan
x arctan x dx 1 x2
arctan xd
1 x2
1 x2 arctan x 1 x2d(arctan x)
1 x2 arctan x
1
x2
1
1 x2
dx
1 x2 arctan x 1 dx 令 x tan t
1 x2
1
1 x2dx
1 sec2 tdt
1 tan2 t
sec tdt
ln(sec t tan t) C ln( x 1 x2 ) C
x
arctan 1 x2
x
dx
1 x2 arctan x ln( x 1 x2 ) C .
第三节 分部积分法
一、基本内容 二、小结 三、思考题
一、基本内容 问题 xe xdx ?
解决思路 利用两个函数乘积的求导法则.
设函数u u( x)和v v( x)具有连续导数,
uv uv uv, uv uv uv,
uvdx uv uvdx, udv uv vdu.
分部积分(integration by parts)公式
例1 求积分 令 u cos x, xdx 1 d x2 dv
2
x cos
xdx
x2 2
cos
x
x2 2
sin
xdx
显然,u,v 选择不当,积分更难进行.
解(二) 令 u x, cos xdx d sin x dv
例 8 已知 f ( x)的一个原函数是ex2 , 求 xf ( x)dx.
解 xf ( x)dx xd f (x) xf ( x) f ( x)dx,
f ( x)dx f ( x),
f ( x)dx ex2 C ,
两边同时对 x求导, 得 f ( x) 2 xex2 ,