立体几何空间向量与立体几何ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
2.空间角的计算 (1)两条异面直线所成角的求法 设直线 a,b 的方向向量为 a,b,其夹角为 θ,则 cos φ=|cos θ|=||aa|·|bb||(其中 φ 为异面直线 a,b 所成的角). (2)直线和平面所成角的求法 如图所示,设直线 l 的方向向量为 e,平面 α 的法向量为 n, 直线 l 与平面 α 所成的角为 φ,两向量 e 与 n 的夹角为 θ,则 有 sin φ=|cos θ|=||ee|·|nn||.
可取 n=(1, 3,0). 设二面角 E-CF-C1 的大小为 θ,于是由 θ 为锐角可得 cos θ=||mm|·|nn||= 3×6 2= 22,所以 θ=45°. 即所求二面角 E-CF-C1 的大小为 45°.
4
考点整合
1.直线与平面、平面与平面的平行与垂直的向量方法 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2).平面 α、β 的法向量分别为 μ=(a3,b3,c3),v=(a4,b4, c4)(以下相同). (1)线面平行 l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0. (2)线面垂直 l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3. (3)面面平行 α∥β⇔μ∥v⇔μ=kv⇔a3=λa4,b3=λb4,c3=λc4. (4)面面垂直 α⊥β⇔μ⊥v⇔μ·v=0⇔a3a4+b3b4+c3c4=0.
1
(2)解 在△CEF 中,由(1)可得 EF=CF= 6, CE=2 3, 于是有 EF2+CF2=CE2,所以 CF⊥EF. 又由(1)知 CF⊥C1E,且 EF∩C1E=E, 所以 CF⊥平面 C1EF. 又 C1F⊂平面 C1EF,故 CF⊥C1F. 于是∠EFC1 即为二面角 E-CF-C1 的平面角. 由(1)知△C1EF 是等腰直角三角形,所以∠EFC1=45°,即所求 二面角 E-CF-C1 的大小为 45°.
6
(3)二面角的求法 ①利用向量求二面角的大小,可以不作 出平面角,如图所示,〈m,n〉即为所 求二面角的平面角. ②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可 以利用这两个平面的法向量的夹角来求. 如图所示,二面角 α-l-β,平面 α 的法向量为 n1,平面 β 的法向 量为 n2,〈n1,n2〉=θ,则二面角 α-l-β 的大小为 θ 或 π-θ.
§3 空间向量与立体几何 真题热身
(2011·湖北)如图,已知正三棱柱 ABC-A1B1C1 的
底面边长为 2,侧棱长为 3 2,点 E 在侧棱 AA1 上,点 F 在侧棱 BB1 上,且 AE=2 2,BF= 2.
(1)求证:CF⊥C1E; (2)求二面角 E-CF-C1 的大小.
方法一 (1)证明 由已知可得
7源自文库
分类突破
一、利用向量证明平行与垂直 例 1 如图所示,已知直三棱柱 ABC—A1B1C1
中,△ABC 为等腰直角三角形,∠BAC= 90°,且 AB=AA1,D、E、F 分别为 B1A、 C1C、BC 的中点. 求证:(1)DE∥平面 ABC; (2)B1F⊥平面 AEF.
8
证明 如图建立空间直角坐标系 A—xyz, 令 AB=AA1=4, 则 A(0,0,0),E(0,4,2),F(2,2,0), B(4,0,0),B1(4,0,4). (1)取 AB 中点为 N,连结 CN, 则 N(2,0,0), C(0,4,0),D(2,0,2),
11
变式训练 1 如图,在多面体 ABCDEF 中,四边形 ABCD 是正方形,EF∥ AB,EF⊥FB,AB=2EF,∠BFC =90°,BF=FC,H 为 BC 的中点. (1)求证:FH∥平面 EDB; (2)求证:AC⊥平面 EDB.
(2)解 C→E=(0,-2,2 2),设平面 CEF 的一个法向量为 m=(x,
y,z),
由 m⊥C→E,m⊥C→F,得mm··CC→ →EF= =00, ,
即-2y+2 2z=0, 3x-y+ 2z=0,
解得yx==0.2z,
3
可取 m=(0, 2,1).
设侧面 BC1 的一个法向量为 n,由 n⊥C→B,n⊥C→C1, 及C→B=( 3,-1,0),C→C1=(0,0,3 2),
CC1=3 2,CE=C1F= 22+(2 2)2=2 3, EF2=AB2+(AE-BF)2,EF=C1E= 22+( 2)2= 6, 于是有 EF2+C1E2=C1F2,CE2+C1E2=CC21,
所以 C1E⊥EF,C1E⊥CE.
又 EF∩CE=E,所以 C1E⊥平面 CEF.
又 CF⊂平面 CEF,故 CF⊥C1E.
∴D→E=(-2,4,0),N→C=(-2,4,0), ∴D→E=N→C,
∴DE∥NC,又∵NC⊂平面 ABC, DE⊄平面 ABC.故 DE∥平面 ABC.
9
(2)B→1F=(-2,2,-4), E→F=(2,-2,-2),A→F=(2,2,0). B→1F·E→F=(-2)×2+2×(-2)+(-4)×(-2)=0, B→1F·A→F=(-2)×2+2×2+(-4)×0=0. ∴B→1F⊥E→F,B→1F⊥A→F,即 B1F⊥EF,B1F⊥AF,
又∵AF∩FE=F,∴B1F⊥平面 AEF.
10
归纳拓展 (1)证明线面平行须证明线线平行,只需证明这条直 线与平面内的直线的方向向量平行.可用传统法也可用向量法, 用向量法更为普遍. (2)证明线面垂直的方法:可用直线的方向向量与平面的法向量 共线证明;也可用直线的方向向量与平面内两条相交直线的方 向向量垂直证明. (3)证明面面垂直通常转化为证线面垂直,也可用两平面的法向 量垂直来证明.
2
方法二 建立如图所示的空间直角坐标系,
则由已知可得,A(0,0,0),B( 3,1,0),
C(0,2,0),C1(0,2,3 2),E(0,0,2 2),F( 3,1, 2).
(1)证明 C→1E=(0,-2,- 2), C→F=( 3,-1, 2),C→1E·C→F=0+2-2=0.
所以 CF⊥C1E.
2.空间角的计算 (1)两条异面直线所成角的求法 设直线 a,b 的方向向量为 a,b,其夹角为 θ,则 cos φ=|cos θ|=||aa|·|bb||(其中 φ 为异面直线 a,b 所成的角). (2)直线和平面所成角的求法 如图所示,设直线 l 的方向向量为 e,平面 α 的法向量为 n, 直线 l 与平面 α 所成的角为 φ,两向量 e 与 n 的夹角为 θ,则 有 sin φ=|cos θ|=||ee|·|nn||.
可取 n=(1, 3,0). 设二面角 E-CF-C1 的大小为 θ,于是由 θ 为锐角可得 cos θ=||mm|·|nn||= 3×6 2= 22,所以 θ=45°. 即所求二面角 E-CF-C1 的大小为 45°.
4
考点整合
1.直线与平面、平面与平面的平行与垂直的向量方法 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2).平面 α、β 的法向量分别为 μ=(a3,b3,c3),v=(a4,b4, c4)(以下相同). (1)线面平行 l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0. (2)线面垂直 l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3. (3)面面平行 α∥β⇔μ∥v⇔μ=kv⇔a3=λa4,b3=λb4,c3=λc4. (4)面面垂直 α⊥β⇔μ⊥v⇔μ·v=0⇔a3a4+b3b4+c3c4=0.
1
(2)解 在△CEF 中,由(1)可得 EF=CF= 6, CE=2 3, 于是有 EF2+CF2=CE2,所以 CF⊥EF. 又由(1)知 CF⊥C1E,且 EF∩C1E=E, 所以 CF⊥平面 C1EF. 又 C1F⊂平面 C1EF,故 CF⊥C1F. 于是∠EFC1 即为二面角 E-CF-C1 的平面角. 由(1)知△C1EF 是等腰直角三角形,所以∠EFC1=45°,即所求 二面角 E-CF-C1 的大小为 45°.
6
(3)二面角的求法 ①利用向量求二面角的大小,可以不作 出平面角,如图所示,〈m,n〉即为所 求二面角的平面角. ②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可 以利用这两个平面的法向量的夹角来求. 如图所示,二面角 α-l-β,平面 α 的法向量为 n1,平面 β 的法向 量为 n2,〈n1,n2〉=θ,则二面角 α-l-β 的大小为 θ 或 π-θ.
§3 空间向量与立体几何 真题热身
(2011·湖北)如图,已知正三棱柱 ABC-A1B1C1 的
底面边长为 2,侧棱长为 3 2,点 E 在侧棱 AA1 上,点 F 在侧棱 BB1 上,且 AE=2 2,BF= 2.
(1)求证:CF⊥C1E; (2)求二面角 E-CF-C1 的大小.
方法一 (1)证明 由已知可得
7源自文库
分类突破
一、利用向量证明平行与垂直 例 1 如图所示,已知直三棱柱 ABC—A1B1C1
中,△ABC 为等腰直角三角形,∠BAC= 90°,且 AB=AA1,D、E、F 分别为 B1A、 C1C、BC 的中点. 求证:(1)DE∥平面 ABC; (2)B1F⊥平面 AEF.
8
证明 如图建立空间直角坐标系 A—xyz, 令 AB=AA1=4, 则 A(0,0,0),E(0,4,2),F(2,2,0), B(4,0,0),B1(4,0,4). (1)取 AB 中点为 N,连结 CN, 则 N(2,0,0), C(0,4,0),D(2,0,2),
11
变式训练 1 如图,在多面体 ABCDEF 中,四边形 ABCD 是正方形,EF∥ AB,EF⊥FB,AB=2EF,∠BFC =90°,BF=FC,H 为 BC 的中点. (1)求证:FH∥平面 EDB; (2)求证:AC⊥平面 EDB.
(2)解 C→E=(0,-2,2 2),设平面 CEF 的一个法向量为 m=(x,
y,z),
由 m⊥C→E,m⊥C→F,得mm··CC→ →EF= =00, ,
即-2y+2 2z=0, 3x-y+ 2z=0,
解得yx==0.2z,
3
可取 m=(0, 2,1).
设侧面 BC1 的一个法向量为 n,由 n⊥C→B,n⊥C→C1, 及C→B=( 3,-1,0),C→C1=(0,0,3 2),
CC1=3 2,CE=C1F= 22+(2 2)2=2 3, EF2=AB2+(AE-BF)2,EF=C1E= 22+( 2)2= 6, 于是有 EF2+C1E2=C1F2,CE2+C1E2=CC21,
所以 C1E⊥EF,C1E⊥CE.
又 EF∩CE=E,所以 C1E⊥平面 CEF.
又 CF⊂平面 CEF,故 CF⊥C1E.
∴D→E=(-2,4,0),N→C=(-2,4,0), ∴D→E=N→C,
∴DE∥NC,又∵NC⊂平面 ABC, DE⊄平面 ABC.故 DE∥平面 ABC.
9
(2)B→1F=(-2,2,-4), E→F=(2,-2,-2),A→F=(2,2,0). B→1F·E→F=(-2)×2+2×(-2)+(-4)×(-2)=0, B→1F·A→F=(-2)×2+2×2+(-4)×0=0. ∴B→1F⊥E→F,B→1F⊥A→F,即 B1F⊥EF,B1F⊥AF,
又∵AF∩FE=F,∴B1F⊥平面 AEF.
10
归纳拓展 (1)证明线面平行须证明线线平行,只需证明这条直 线与平面内的直线的方向向量平行.可用传统法也可用向量法, 用向量法更为普遍. (2)证明线面垂直的方法:可用直线的方向向量与平面的法向量 共线证明;也可用直线的方向向量与平面内两条相交直线的方 向向量垂直证明. (3)证明面面垂直通常转化为证线面垂直,也可用两平面的法向 量垂直来证明.
2
方法二 建立如图所示的空间直角坐标系,
则由已知可得,A(0,0,0),B( 3,1,0),
C(0,2,0),C1(0,2,3 2),E(0,0,2 2),F( 3,1, 2).
(1)证明 C→1E=(0,-2,- 2), C→F=( 3,-1, 2),C→1E·C→F=0+2-2=0.
所以 CF⊥C1E.