水稻叶色突变体及其基因定位、克隆的研究进展

水稻叶色突变体及其基因定位、克隆的研究进展
水稻叶色突变体及其基因定位、克隆的研究进展

彩叶植物的选择与配置(一)

彩叶植物的选择与配置(一) 作者:吴雪梅李荣秋赵庆峰 摘要彩叶树种是指整个生长季节叶片保持非绿色的植物。论述了彩叶树种选择及其在园林与景观绿化中应用时应注意的一些问题,以为城市彩叶树种的应用提供参考。 关键词彩叶树种;选择;配置 随着季节的变化,植物在树形、色彩、叶丛疏密和颜色等方面也会发生变化,这些变化在园林中可形成丰富的景观效果,在感觉、视觉、观赏上给游人增添游兴。彩叶树木是指整个生长季节叶片保持非绿色的植物。其叶色常因季节的不同发生明显变化,这些变化在园林造景中起着举足轻重的作用。 一个优良的彩叶树种,应具备以下3个基本条件1]:第一,叶片色变醒目、亮丽,明显不同于其他观赏期的颜色,观赏价值较高;第二,生长势较强,有较厚的叶幕层,最好是乡土树种;第三,落叶与常绿相结合,色叶期较长。但目前除少数彩色树木已被利用外,大都处于野生或无意识的利用状态。随着人类文明的不断进步,人类对周围环境的需求越来越高,更着重的是城市园林景观的观赏性、长效性以及对人类的宜居效果。城市绿化景观强调乔、灌、花、草的有机相结合,讲求林种季相、林相、色相的多重效果。然而由于气候的原因,江苏省苏北地区植物材料相对缺乏、品种单一、林相单纯、观赏期较短,因此彩叶植物以其色彩艳丽、观赏期长、营造园林景观稳定性强、色相变化明显等无可比拟的优越性在

园林行业中占有相当大的优势。 1彩叶树种的种类 彩叶树种由自然变异、育种、栽培选育而来,引起植物叶片色彩变化的因素有遗传因素、生理与环境条件、栽培措施和病毒感染等,目前彩叶树种种类大概可分为5大类:①单色叶类。指叶片仅呈现一种色调,如黄栌、黄金榕等。②双色叶类。叶片的上下表面颜色不同,如长柄银叶树、蚌花等。③斑叶类或花叶类。叶片上呈现不规则的彩色斑块或条纹,如彩叶红桑、变叶木、金心黄杨等。④彩脉类。叶脉呈现彩色,如黄脉洋花、金道蚌花、金脉大花等。⑤镶边类。叶片边缘彩色,通常为黄色,如金边铁、金边红桑、银边万年青等。上述各类都包含乔木、灌木、草本等。 2彩叶树种的选择 彩叶树种是园林植物的重要组成部分,它能弥补一般植物的不足,极大丰富城市色彩,具有一般树种无可比拟的优越性。彩色树种不仅用来点缀、配色,更多的是用来布置图案和色块烘托园林气氛,彩色植物已成为立体的“彩色地被”。在城镇绿化中,不但要四季有绿、三季有花,更应注意绿化苗木的色彩多样、富有变化,追求四季景观的不同,因而叶色鲜艳色、彩明快的彩色树种有更为强劲的要求,但是在彩色树种的选择和栽植上要根据地点具体要求和品种的生物学特性来选定彩叶树种,彩叶树种选择好坏直接关系到彩叶植物的配植,也直接影响其整体观赏效果。 2.1符合生态习性的原则

水稻表皮毛性状研究与相关基因的克隆

Open Journal of Nature Science 自然科学, 2018, 6(1), 14-16 Published Online January 2018 in Hans. https://www.360docs.net/doc/ab13725750.html,/journal/ojns https://https://www.360docs.net/doc/ab13725750.html,/10.12677/ojns.2018.61003 Studies on the Rice Trichome and Cloning of Related Gene Caifeng Lv, Shengjian Ma, Huilin Liang, Linqing Pan, Qianmei Li, Guanlong Cai, Xinqi Lin, Yongjian Huang, Huanying Chen, Jingchao Liu School of Life Science and Biotechnology, Lingnan Normal University, Zhanjiang Guangdong Received: Dec. 18th, 2017; accepted: Dec. 28th, 2017; published: Jan. 4th, 2018 Abstract Rice leaf epidermal hair mutants are important research materials for rice improvement. The de-velopment of rice epidermis hair is controlled by multiple genes. It is of great scientific value to study the development of rice epidermal hair and promote the cultivation of Kumito rice. This paper mainly introduces the types of rice epidermis and its related control genes. Keywords Rice, Epidermis Hairs, Glabrous 水稻表皮毛性状研究与相关基因的克隆 吕彩凤,马生健*,梁慧琳,潘琳清,黎倩美,蔡冠龙,林欣琪,黄永健, 陈浣滢,刘景超 岭南师范学院生命科学与技术学院,广东湛江 收稿日期:2017年12月18日;录用日期:2017年12月28日;发布日期:2018年1月4日 摘要 水稻(Oryza sativa L.)叶片表皮毛突变体是进行水稻改良的重要研究材料,水稻表皮毛的发育受多个基因的控制。研究水稻表皮毛发育和推广光身稻的种植具有较大的科学价值。本文主要对水稻表皮毛类型及其相关控制基因进行介绍。 *通讯作者。

t-DNA插入突变体检测

t-DNA插入突变体的鉴定 实验时间:2012年5月18日 摘要T i质粒是上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。将感兴趣的基因改造插入到T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化,得到含有突变的植株。本实验即检测所得植株是否为T-DNA的插入突变体。 1.引言 Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。Ti质粒上的这一段能转移的DNA被叫做T-DNA。若将Ti质粒进行改造,把感兴趣的基因放进T-DNA序列中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。T-DNA插入到植物染色体上的什么位置,是随机的。如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA插入的纯合突变体,杂合突变体,和野生型。在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。 本次实验中,采用液CTAB(或者TSP法)提取拟南芥植株的DNA,然后PCR将所获DNA 扩增,在之后采用琼脂糖凝胶电泳技术,分离处长度不一的DNA带,以确东样品是否为T-DNA 插入突变纯和体。 PCR(Polymerase Chain Reaction), 即聚合酶链式反应是体外核算扩增技术, 具有特异、敏感、产率高、快速、简便、 重复性好、易自动化等突出优点;能在一 个试管内将所要研究的目的基因或某一 DNA片段于数小时内扩增至十万乃至百万 倍,使肉眼能直接观察和判断。(PCR基本 原理如右图) DNA含有PO43-基团,在pH8.0 Buffer (本实验中为TAE)中带负电, 在电场中

整理:20种色叶植物

浙江农林大学 《园林植物学》实习报告 二十种色叶植物 学生姓名:王一帆 学号:201104080126 专业名称:专升本园林 班级:专升本园林111 任课教师:季梦成 日期:2011年 11 月28 日

(1)枫香 Liquidambar formosana Hance.金缕梅科 【形态特征】:落叶乔木,高达30米,树冠广卵形或率扁平,树皮灰褐色,方块状剥落。叶互生,掌状3裂,基部心形或截形,裂片缘有锯齿,幼叶有毛,后渐脱落。果序径长3-4厘米,有花柱和针刺状萼片,宿存。花期3-4月,果10月成熟。 【生态习性】:性喜阳光,幼树稍耐阴,多生于平地,村落附近,及低山的次生林,也能耐干旱瘠薄,但叫不耐水湿。萌蘖能力强可天然更新。深根性,抗风能力强,对二氧化硫、氯气有较强抗性。 【园林用途】:枫香树是我国南方著名的秋色叶树种。可在园林中栽作庭荫树,秋季日夜温差变大后叶变红、紫、橙红等,增添园中秋色。也可于草地孤植、丛植,或于山坡、池畔与其他树木混植。倘与常绿树丛配合种植,秋季红绿相衬,会显得格外美丽。又因枫香具有较强的耐火性和对有毒气体的抗性,可用于厂矿区绿化和行道树。 (2)银杏Ginkgo biloba Linn.银杏科 【形态特征】:落叶大乔木,高达40m,胸径达3m。树冠广卵形。树皮灰褐色,深纵裂。主干分枝斜出,近轮生;枝分长枝和短枝;1年生长枝浅棕色,后变灰白色,短枝密被叶痕。叶扇形,有2叉状叶脉,先端常2裂,基部楔形,有长柄,在长枝上螺旋状散生,在短枝上簇生。雌雄异株,雌雄球花均生于短枝鳞片状叶腋内;每短枝有雄球花4~6个,下垂,呈葇荑花序状,雄蕊多数,螺旋状排列,各有2花药;雌球花有长梗,梗端常分两叉(稀3一5叉),叉端生1具有盘状珠托的胚珠,常1个胚珠发育成发育种子。种核果状,椭圆形至近球形,具长梗,下垂,径长约2cm;成熟时淡黄色或橙黄色,被白粉;外种皮肉质,有臭味,中种皮骨质,内种皮膜质子。花期3~4(5)月,种子9~10月成熟。【生态习性】:阳性树种,喜深厚、肥沃、疏松、湿润而排水良好的土壤,对土壤pH适应范围较宽,pH5.5~8均可良好生长,但不耐积水、耐寒性较强,也能适应高温多雨气候。深根性树种,寿命可达千年以上,幼苗期生长较慢,5年后生长迅速。实生苗15~20年开始结实,果龄可达数百年,嫁接可大大提高结实期限,一般5~7年结实。 【园林用途】:树姿雄伟壮丽,叶形秀美、秋叶金黄,寿命长,病虫害少,适宜作庭阴树、行道树、独赏树,也可做色叶树种配植。

黄化突变体文献综述全解

植物叶色突变体的研究进展 植物叶色的表现受叶绿体中各种色素的综合影响, 正常情况下,由于叶绿素在植物色素总量中占优势而表现为绿色.叶色突变体是植物中突变率较高且易于鉴定的突变性状,往往直接或间接影响叶绿素的合成与降解,导致植株的叶片颜色较正常的绿色发生变化.目前几乎所有的高等植物中都发现了叶色突变体.(陈艳丽)在本世纪三十年代就有关于叶绿素突变体的报道,但叶色变异通常伴随着植株矮小,并影响植株的光合作用造成减产,甚至在生长过程中出现死亡现象,因此叶色突变体常被认为是无意义的突变.直到1949年,Granick对失绿的小球藻突变体的研究并通过此突变解释了叶绿素合成过程[1],人们才认识到叶色突变体对理论研究具有重要的作用。并且最近几年,叶色突变体的研究越来越深入,也受到广泛的关注,已经被用于基础研究和生产实践,也取得了一定的成果。[2] 叶色突变体的来源 除自然突变可产生叶色突变体外,利用人工诱变,插入突变和基因沉默等均可得到叶色突变,其中人工诱变和插入突变的突变频率较高。 自然突变就是在自然条件不经过人工处理情况下发生的突变,比如自然辐射,环境污染等。但是自然突变的频率极低,一般不超过1%(郭龙彪,2006),因此可供直接利用的突变很少。我国著名水稻良种矮脚南特就是在高杆品种南特号稻田里发现的自然突变,水稻的叶色突变体chl1和chl9(zhang et al .2006),棉花中的芽黄突变体(蒋博2012),荠菜型油菜黄化突变体都是自发突变体。 人工诱变 人工诱变导致植物基因产生突变,是选育新品种、创造新种质的有效途径。根据产生诱变的来源,人工诱变分为物理、化学诱变及基因工程引起的突变,物理和化学诱变是主要的诱变方法。 诱发植物发生突变的因素有诱变剂,物理诱变是通过各种射线(紫外线、X射线、、丫射线、p射线、中子等)来处理植物某个器官(如种子、子房、愈伤组织等),诱发植物发生基因突变。种子是最常用的处理材料,其对环境适应能力很强,可以在极度干燥、低温、高温、真空等条件下进行处理,并且操作方便,便于运输和储藏。1934年日本首次利用X射线处理水稻种子,成功得到水稻早熟突变体(阳惠琴,1995)我国于1987年开始航天搭载育种利用空间环境(微重力、高真空、微磁场等)进行诱变,通过地面选育得到有益变异创造出新种质、培育出新品种,已经成功在水稻种选出紫色、红色、茶色等叶色突变体(萨如拉,2009)。 化学诱变是通过烷化剂、叠氮化钠、碱基类似物等对植物进行诱变,其中烷化剂是诱变效率最高和最常用的化学诱变剂。常用的烷化剂又包括甲基黄酸乙酯(EMS)、磺酸二乙酯、乙烯亚铵和亚硝基乙基脲。EMS诱变得到的突变体大多数为点突变,诱变机理:EMS带有1个或多个活性烷基,该基团能够转移到其他电子密度高的分子上去,使碱基许多位置上增加了烷基,可以改变氢键的能力,从而DNA在复制时导致碱基配对错误而引起突变。EMS将鸟嘌呤的O6位置烷基化,在DNA复制过程中由于烷基化的鸟嘌呤与正常的胸腺嘧啶配对,使得碱基发生替换(赵用亮,1996)。EMS诱发的另外一个鸟嘌呤位点是N7位点,该位点是最易起反应的位点几乎可以与所有烷化剂起烷化作用,鸟嘌呤N7位点烷基化后,使核苷键发生水解导致断裂,鸟嘌呤从DNA链上脱落,造成DNA链碱基缺缺失,在复制的时候游离的碱基可能发生错配,以致发生碱基颠换即G:C—A:T,G:C—C:G,G:C—T:A;另外烷基化的鸟嘌呤易离子化,使稳定的酮式变为不稳定的烯醇式,不与胞嘧啶配对而与胸腺嘧啶配对,从而发生G:C—A:T转换。除此之外,EMS还可能使两个鸟嘌呤N7

水稻基因的图位克隆技术

水稻基因的图位克隆技术 吴自明 (江西农业大学,作物生理生态与遗传育种教育部重点实验室,农业部双季稻生理生态与栽培重点实验室,江西省作物生理生态与遗 传育种重点实验室,江西南昌330045) 摘要 综述了水稻图位克隆技术的原理、技术环节及其在水稻基因克隆上的应用,分析了当前存在的主要问题,并对其应用前景作出了展望。 关键词 水稻;图位克隆;基因 中图分类号 S 511 文献标识码 A 文章编号 0517-6611(2008)34-14905-02 Map based C lo ning T echnique of R ice Genes WU Zi m ing (Key Laboratory of C rop Ph ysiology,Ecol ogy and Genetic B reeding,Mi nistry of Ed ucation,Key Laboratory of Ph ysiology,Ecology and C ultivati on of Double C roppin g Rice,Mini stry of Agriculture,Key Lab oratory of Crop Physi ology,Ecology an d Genetic Breedin g of Jian gxi Province,Jiangxi Agricultural Uni versi ty,Nanchang,Jiangxi 330045)Abstract The p rinciple an d tech nical links of m ap based gene cloni ng techniq ue i n rice an d its applications in the gene cloni ng of rice were s um ma rized .And the mai n existing problems at present were analyzed .And its applicati on foregrou nd was p redicted.Key w ords Rice;Map based cloni ng;Gene 基金项目 江西省教育厅项目(GJJ09477);江西农业大学博士启动基 金;江西农业大学校自然科学基金。 作者简介 吴自明(1974-),男,江西鄱阳人,副教授,从事植物分子 生物学研究。 收稿日期 2008 10 06 近年来,水稻基因组研究进展非常迅速,高密度遗传图谱和物理图谱的构建,全基因组序列的公布,数以万计ES T 、全长c DN A 等序列及功能分析数据的释放以及新型水稻分子标记及其高效检测技术的发展等,为基因的图位克隆带来了新的思路和方法。同时,这些新的进展也能够使基因的精细定位和物理图谱构建等相关工作大大简化,使基因的图位克隆朝着更加简便、快速的方向发展。1 图位克隆技术原理 图位克隆(Ma p based Cloning)又称定位克隆(Positional Cloning),1986年首先由剑桥大学的Alan Co ulson 提出[1]。用该方法分离基因是根据目的基因在染色体上的位置进行,无需预先知道基因的D N A 序列,也无需预先知道其表达产物的有关信息,而是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。实现基因图位克隆的关键是筛选与目标基因连锁的分子标记。 近几年来,水稻各种分子标记的日趋丰富和各种数据库的日趋完善,在很大程度上得益于以粳稻日本晴和籼稻9311为代表的基因组测序的完成[2-3]。目前已有几十种技术可用于分子标记筛选,其中最常用的是简单序列长度多态性(SSLPs)、单核苷酸多态性(SNPs)和插入缺失多态性(Inser tio n/Deletio n,InDel)[4-7]。Shen 等利用日本晴和9311基因组序列构建了水稻基因组水平的D NA 多态性数据库,其中包括1703176个单核苷酸多态性(Single Nucleo tide Polymor phis m,SNP)和479406个插入缺失多态性(InDel)[8]。Fe ltus 等通过对除去多重拷贝序列及低质量序列后的日本晴和9311基因组草图的比对分析,得到408898个D N A 多态性,包括SNP 和单碱基I nD el [9],这些差别的核苷酸通常位于非编码区[10]。 目前,常把SNP 多态性转化成基于P CR 的剪切扩增多态性(Cle ave d Amplified P olymorphic Se que nc es,CAPS)或CAPS 衍生的dCAPS 标记[11-12]。CAPS 标记是PCR 反应和酶切相结 合产生的一种分子标记。如果不同材料间在PCR 扩增区域有S NP 位点,且该位点是限制性内切酶作用位点,那么不同 材料的PCR 扩增产物经特定的酶切后,再进行琼脂糖凝胶电泳就会表现多态性。当SNP 恰好位于限制性酶切位点比较少时,这种情况可以在CAPS 标记的基础上通过在扩增引物中引入错配碱基,则可以结合SNP 位点引入新的限制性内切酶作用位点,产生和CAPS 标记类似的多态性,这就是dCAPS 的方法。用CAPS 或dCAPS 的方法则可以将几乎所有的SNP 位点转化成以P CR 为基础的分子标记[12] 。 2 图位克隆技术环节 2.1 构建遗传作图群体 对于基因图位克隆而言,构建特殊的遗传作图群体是筛选与目标基因紧密连锁分子标记的关键环节。常用的作图群体有F 2、近等基因系、重组自交系等群体,水稻常用F 2群体。创建F 2群体应注意优先选择基因组已测序的日本晴、9311和培矮64S 等品种为亲本之一。2.2 基因初定位 一般说来,当标记为显性遗传时,欲获得最大遗传信息量的F 2群体,需借助于进一步子代测验,以分辨F 2中的杂合体。为此,Mic helmo re 等发明分离群体分组分析法(Bulke d Se gre ga nt Ana lysis,BS A)以筛选目标基因所在局部区域的分子标记[13]。其原理是将目标基因的F 2(或BC)代分离群体各个体仅以目标基因所控制的性状按双亲表型分为2群,每一群中各个体D N A 等量混合,形成2个D N A 混合池(如抗病和感病、不育和可育),并且用目的基因附近的所有分子标记对混合D NA 样品池进行分析,根据所有池中包含有交换的DN A 池的比例来确定与目的基因连锁最紧密的分子标记和目的基因附近所有分子标记的顺序。混合样品作图可以极大提高分子标记分析效率,减小D NA 提取工作量。 2.3 基因精细定位 一旦把目标基因初步定位在2个标记之间后,就可以从国际水稻基因组测序计划(IRG SP)公布的序列中下载这2个标记区域的部分P AC/BAC 克隆序列。利用软件SSRI T 搜索克隆序列中的微卫星序列,然后选择合适的微卫星序列进行特异PCR 引物的设计。也可以直接借助于公共数据库的序列进行比较,如寻找R GP 基因组数据库(粳稻)与中国华大基因组数据库(籼稻)的单核苷酸多态性(SNP)序列差异,设计CAPS 或dCAPS 标记和插入/缺失多态 安徽农业科学,J ou rn al of An hui Agri.Sci.2008,36(34):14905-14906 责任编辑 张彩丽 责任校对 张士敏

拟南芥突变体购买流程-完全图解

最近要购买一批拟南芥突变体,想请教有经验的虫友购买拟南芥突变体的具体流程,例如我需要一个APETALA1的突变体,应到哪个网站进行搜索,怎样进行选择订购,越具体越好,有截图就更好了,谢谢大家了! Step 1. 打开NCBI主页:https://www.360docs.net/doc/ab13725750.html,/ 打开的页面如下: 如下 得到如下页面:

进一步获得该基因在NCBI里面的基因信息,到此我为什么要做这一步呢,主要是想获得该gene在拟南芥中的系统名,见下图: 记住这个名称:AT1G69120这个就是APETALA1(AP1)基因 接下来开始查找APETALA1(AT1G69120)的突变体,拟南芥突变体库世界上有很多,公开的没有公开私用的都有,突变的方法也不尽相同,有DS的,T-DNA插入的,Tos17,EMS方法突变的等等。。。。。。 但是,我们通常用美国SALK研究所的突变体库,这个突变体库比较权威,从这里可以找到几乎现有的所有拟南芥突变体,包括T-DNA插入,RIKEN FST等等各种不同的突变类型,而且有详细的突变位点介绍和购买方法 它的搜索界面一目了然,使用也很方便。 下面介绍SALK突变体库的使用方法: Step 2:打开SALK主页:https://www.360docs.net/doc/ab13725750.html,/ 点击T-DNA Express 进入(红圈处点击),如下显示:

显示如下,所有信息全在如下窗口中 从上述窗口中可以获得很多不同group制得的突变体,有SALK T-DNA,CSHL FST(冷泉港实验室的)等等,我个人建议使用SALK 的突变体,订购比较方便,听同学说好像一百美元一个,上图中,蓝色下划线的那两个,以SALK_冠名的那个,两个显示的是不同的插入位置,和T-DNA插入方向(看在图中的位置和箭头方向) 点击其中一个进入信息页,比如点击SALK_056708,得到如下页面:

玉米叶色突变体遗传分析及基因定位

植物遗传资源学报2018,19(6):1205?1209Journal of Plant Genetic Resources DOI:10.13430/https://www.360docs.net/doc/ab13725750.html,ki.jpgr.20180326001 玉米叶色突变体遗传分析及基因定位 王 飞,段世名,李 彤,王荣纳,陶勇生 (河北农业大学农学院/国家玉米改良中心河北分中心/华北作物种质资源教育部重点实验室,保定071001) 收稿日期:2016?03?26 修回日期:2018?04?09 网络出版日期:2018?09?20URL :http ://https://www.360docs.net/doc/ab13725750.html, /kcms /detail /11.4996.S.20180920.1435.001.html 基金项目:河北农业大学创新创业项目(2017096);国家粮食丰收增收科技创新专项(2017YFD0300901?04) 第一作者研究方向为玉米遗传育种三E?mail :462188997@https://www.360docs.net/doc/ab13725750.html, 通信作者:陶勇生,研究方向为玉米遗传育种三E?mail :yshtao2016@https://www.360docs.net/doc/ab13725750.html, 摘要:玉米叶色与叶绿体及结构相关,调控光合产量,因而对调控叶色基因的遗传研究或克隆将有助于玉米光合产量的 遗传改良和植物光合作用理论机制的解析三本研究以玉米W22::Mu 介导的综31为遗传背景的导入系群体为材料,获得了 细胞核单隐性基因控制二叶绿体结构和数目异常二色素缺失和PSII 显著降低的叶色突变体三使用覆盖B73基因组的SSR 标记将突变位点定位于约2.95Mb 区间(bnlg1863~umc2075)三基于区段标记开发和1200单株分离群体将突变位点精细定位于约900kb 区间(B73RefGen_V4;S1~S7区间),经区段内基因表达和功能分析获得了候选基因Zm00001d010000,该基因编码硫氧还蛋白,与突变体表型形成相关三该研究将为光合产量的遗传改良和植物光合作用理论机制解析提供重要的基因或标记资源三 关键词:玉米;叶色;突变体;基因定位 Fine Mapping and Candidate Gene Analysis of Leaf Color Mutant in Maize WANG Fei,DUAN Shi?ming,LI Tong,WANG Rong?na,TAO Yong?sheng (College of Agronomy ,Hebei Agricultural University /Hebei Sub?center of National Maize Improvement Center / North China Key Laboratory for Crop Germplasm Resources of Education Ministry ,Baoding 071001) Abstract :The leaf color of maize is associated to the content and structure of chloroplast,which is the com? partment and of importance in photosynthesis.Genetic analysis and isolation of genes that control the leaf color will provide insights in the genetic improvement for photosynthetic yield and exploration of the theoretical mechanism.In this study,by screening for maize mutants generated by W22::Mu in introgression lines with genetic back?ground of Z31,we obtained a leaf color mutant with the abnormal chloroplast,lack of pigment and the reduction of PSII,which was controlled by a single recessive locus.By the low?resolution genetic mapping using the SSR mark?ers,this mutation locus was mapped to a 2.95Mb interval(B73RefGen_V4;bnlg1863?umc2075).Furthermore, this locus was finely mapped to a ~900kb interval(B73RefGen_V4;S1?S7)by 1200individuals plants from BC 6F 2and developed SSR.Taking advantage of gene annotation and expression analysis,we identified a strong candidate gene Zm00001d010000that encodes for thioredoxin.Thus,the study could provide genetic material and the selection markers that become valuable in theoretical and applied research for increasing photosynthetic yield. Key words :maize;leaf color;mutant;fine mapping 玉米是重要的粮食和饲料作物,也是遗传学和育种学理论与实践应用的模式作物,因而对玉米叶 色突变体进行遗传研究或基因克隆将为禾谷类作物光合产量的提高和遗传改良提供有益信息三叶色变

色叶植物分类

色叶植物分类 一、秋季色相植物 1 、秋色叶 ①红色/紫色:(黄栌、乌桕、漆树、卫矛、连香木、黄连木、地棉、五叶地棉、小檗、樱花、盐肤木、野漆、南天竹、花楸、百华花楸、红槲、山楂以及槭树类植物等。)②金黄色/黄褐色:(银杏、白蜡、鹅掌秋、加杨、柳、梧桐、榆、槐、白桦、复叶槭、紫荆、栾树、麻栎、栓皮栎、悬铃木、胡桃、水杉、落叶松、楸树、紫薇、榔榆、酸枣、猕猴桃、七叶树、水榆花楸、腊梅、石榴、黄槐、金缕梅、无患子、金合欢等。) 2、春色叶 ①春叶、红色/紫色:(臭椿、五角枫、红叶石楠、黄花柳、卫矛、黄连木、枫香、漆树、鸡爪槭、茶条槭、南蛇腾、红栎、乌桕、火炬树、盐肤木、花楸、南天竹、山楂、枫杨、小檗、爬山虎等。) ②新叶特殊色彩:(云杉、铁力木、红叶石楠。) 二、常色叶植物 1、彩缘 ①银边:(银边八仙花、镶边锦江球兰、高加索常春藤、银边常春藤等。) ②红边:(红边朱蕉、紫鹅绒等。) 2、彩脉 ①红色/银色: (银脉虾蟆草、银脉凤尾厥、银脉爵床、白网纹草、喜阴花等。) ②黄色:(金脉爵床、黑叶美叶芋等。) ③多种色彩:(彩纹秋海棠等。)

④白色或红色叶片、绿色叶脉:(花叶芋、抢刀药等。) 3、斑叶 ①点状:(洒金一叶兰、细叶变叶木、黄道星点木、洒金常春藤、白点常春藤等。) ②线状:(斑马小凤梨、斑马鸭趾草、条斑一条兰、虎皮兰、虎纹小凤梨、金心吊兰等。) ③块状: (黄金八角金盘、金心常春藤、锦叶白粉腾、虎耳秋海棠、变叶木、冷水花等。) ④彩斑:(三色虎耳草、彩叶草、七彩朱蕉等。) 4、彩色 ①红色/紫色:(美国红栌、红叶小檗、红叶景天等。) ②紫色:(紫叶小檗、紫叶李、紫叶桃、紫叶欧洲槲、紫叶矮樱、紫叶黄栌、紫叶榛、紫叶梓树等。) ③黄色/金黄色:(金叶女贞、金叶雪松、金叶鸡爪槭、金叶圆柏、金叶连翘、金山绣线菊、金焰绣线菊、金叶接骨木、金叶皂角、金叶刺槐、金叶六道木、金钱松、金叶风香果等。) ④银色:(银叶菊、银边翠(高山积雪)、银叶百里香等。) ⑤叶两面颜色不同:(银白杨、胡颓子、栓皮栎、青紫木。) ⑥多也是品种:(叶子花有紫色、红色、白色或红白两色等多个品种。) 植物花色、花期配置

水稻苗期叶片白化转绿性状研究进展

水稻苗期叶片白化转绿性状研究进展 摘要:白化转绿突变体在基础理论研究和实际应用研究方面均具有重要意义。介绍了国内外在水稻白化转绿突变体材料的发掘、生理生化特性、性状遗传、基因定位及克隆、分子作用机理和作为标记性状基因应用等方面的研究进展。 关键词:水稻(oryza sativa);突变体;白化转绿;基因;标 记性状 中图分类号:s511;q343.1 文献标识码:a 文 章编号:0439-8114(2012)23-5241-07 research advances on green revertible albino mutants of rice leaves in seeding stage dong hua-lin,fei zhen-jiang,wei lei,wu xiao-zhi,zhou peng (institute of food crop research of hubei academy of agriculture sciences / hubei key laboratory of food crop germplasm and genetic improvement, wuhan 430064,china)abstract: the gra(green revertible albino) mutant is very important in theoretical research and practical applications. the research advances both at home and abroad in aspects of mutant’s discovering, characters of physiology and biochemistry, hereditary of trait, gene mapping and cloning,

两个新的水稻叶色突变体形态结构与遗传定位研究

中国农业科学 2010,43(2):223-229 Scientia Agricultura Sinica doi: 10.3864/j.issn.0578-1752.2010.02.001 两个新的水稻叶色突变体形态结构与遗传定位研究 张力科1,李志彬2,刘海燕1,李如海2,陈满元1,陈爱国2,钱益亮1,华泽田2, 高用明1, 朱苓华1,黎志康1,3 (1中国农业科学院作物科学研究所,北京 100081;2辽宁省稻作研究所,沈阳 110101;3 International Rice Research Institute, DAPO Box7777, Metro Manila, Philippines) 摘要:【目的】对2个新的水稻叶色突变体进行形态结构与遗传分析,并且初步定位这2个突变基因。【方法】在水稻育种材料中分别发现了一株白色条纹叶突变体和一株黄叶突变体,经多代自交已形成稳定的突变系。对突变体的主要形态特征与叶绿素组分等进行分析,观察叶绿体的超微结构,并以这2个突变系杂交产生的F2群体作为定位群体,应用SSR标记对突变基因进行初定位。【结果】与其野生型相比,白色条纹叶突变体的单株穗数减少 12.86%,生育期延长11.27%,黄色叶突变体的株高降低31.08%,千粒重减少14.55%,生育期延长17.86%,并且 2种突变体的叶绿素含量都显著低于其野生型。电镜观察结果表明:2种突变体的类囊体结构异常,与野生型水稻相比,黄色叶突变体的类囊体片层数变少,白色条纹叶中条纹部分的类囊体片层结构几乎消失,正常绿色部分的类囊体结构没有变化。遗传分析表明:这2种突变性状均受1对隐性核基因控制,位于不同染色体上,将突变基因暂时命名为st9(t)(stripe)、chl12(t) (chlorophyll-deficit)。将st9(t)定位到第一染色体短臂最末端,与分子标记RM1331相距9.6 cM,且与标记RM3252等共分离;将chl12(t)定位到第三染色体短臂,与分子标记RM411、RM8208之间的遗传距离分别是1.2、5.1 cM。【结论】发现了2个叶色突变新基因,为下一步的基因克隆与功能分析奠定了基础。 关键词:水稻;白条叶突变体;黄色叶突变体;遗传分析;基因定位 Study on Morphological Structure and Genetic Mapping of Two Novel Leaf Color Mutants in Rice ZHANG Li-ke1, LI Zhi-bin2, LIU Hai-yan1, LI Ru-hai2, CHEN Man-yuan1, CHEN Ai-guo2, QIAN Yi-liang1, HUA Ze-tian2, GAO Yong-ming1, ZHU Ling-hua1, LI Zhi-kang1,3 (1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081; 2Liaoning Rice Research Institute, Shenyang 110101; 3International Rice Research Institute, DAPO Box7777, Metro Manila, Philippines) Abstract: 【Objective】 The objective of this study is to analyze the morphological structure, chlorophyll components, chloroplast ultrastruture and map genes underlying the two novel leaf color mutants in rice. 【Method】A white stripe leaf mutant and a yellow leaf mutant were found in rice breeding materials. The main agronomic character and chloroplast ultrastructure of the mutants were observed. The mutant genes was mapped with SSR markers and F2 mapping population of the cross between the two mutant lines. 【Result】Compared to their wild-type, the panicles per plant of the white stripe leaf mutant decreased by 12.86%, and the growth duration increased by 11.27%; the plant height of yellow leaf mutant decreased by 31.08% and the growth duration increased by 17.86%, and the photosynthetic pigment contents of both mutants were significantly lower than their wild-type. The result of electron microscope observation showed that the grana structures were unnormal in both mutants. The genetic analysis indicated that the white stripe leaf mutant was controlled by a recessive nuclear gene located on the tip of the short arm of rice 收稿日期:2009-05-15;接受日期:2009-06-12 基金项目:国际先进农业科学技术计划(“948”计划)项目(2006-G1(A)) 作者简介:张力科,硕士研究生。共同第一作者李志彬,硕士研究生。通信作者高用明,研究员,博士。E-mail:irriygao@https://www.360docs.net/doc/ab13725750.html,。华泽田,研究员,博士。E-mail:hzetian@https://www.360docs.net/doc/ab13725750.html,

13个水稻WRKY基因的克隆及其表达谱分析1

第49卷 第18期 2004年9月 论 文 1860 https://www.360docs.net/doc/ab13725750.html, 13个水稻WRKY 基因的克隆及其表达谱分析 仇玉萍①②* 荆邵娟①②* 付 坚①②* 李 璐① 余迪求①? (①中国科学院西双版纳热带植物园昆明分部, 昆明 650223; ②中国科学院研究生院, 北京 100039. * 同等贡献. ? 联系人, E-mail: ydq@https://www.360docs.net/doc/ab13725750.html,) 摘要 转录调控因子WRKY 蛋白拥有高度保守的氨基酸序列WRKYGQK 和Cys 2His 2或Cys 2HisCys 锌指型结构. 利用WRKY 蛋白质的保守结构域, 搜索了整个水稻基因组编码WRKY 蛋白质的基因, 鉴定了97个WRKY 基因, 并从4℃胁迫的水稻植株cDNA 文库中获得13个WRKY 基因全长cDNA 克隆. Northern blotting 分析结果显示, 其中10个WRKY 基因的表达受到NaCl, PEG, 低温(4℃)和高温(42℃)等4种非生物逆境因子胁迫的影响, 但其诱导表达模式不论在逆境因子种类还是在诱导时间上均存在着很大的差异, 这种基因诱导表达模式的差异可能体现于它们之间的生物学功能的差异. 关键词 水稻 转录调控因子WRKY 基因 非生物逆境因子 基因表达谱 转录调控因子WRKY 基因家族是植物特有的超级基因家族, 在其编码蛋白的N-端含有高度保守的氨基酸序列WRKYGQK 和Cys 2His 2或Cys 2HisCys 锌指型结构[1,2]. WRKY 蛋白特异地结合靶基因启动子区域的特异序列(T)TGACC(A/T)(W 盒)来调节靶基因的表达[3]. 许多研究工作证实, WRKY 基因调控植物许多重要的生命活动. 首先, WRKY 基因调控植物抗病反应的建立[4~10]. 比如, 拟南芥WRKY 基因家族第3组WRKY 基因成员分别参与植物不同保护信号转导途径的抗病反应[8]. 拟南芥RRS1-R(WRKY16) 蛋白拥有抗病基因产物典型的核苷结合位点(NBS)、富含亮氨酸重复序列(LRR)结构域特征以及WRKY 基因产物典型的入细胞核信号及DNA-结合结构域(WRKY)特征. 因此, WRKY16基因既作为典型的抗病基因参与拟南芥植株抵抗病原菌Ralstonia so-lanacearum 的侵入, 又作为典型的WRKY 基因参与拟南芥植株的抗病信号转导[9], 并将植物保护反应的战场扩展至细胞核[11]. 拟南芥WRKY70蛋白质激活水杨酸介导的植株抗病信号转导途径而抑制茉莉酸介导的植株抗病信号转导途径, 是此二条抗病信号转导途径的调控交叉点[10]. 其次, WRKY 蛋白质还调控植株非生物抗逆性反应的建立和部分形态建成[12~14]. 比如, 拟南芥WRKY6蛋白质通过特异地结合到衰老诱导受体样激酶(SIRK)基因启动子区域的W 盒序列而调节植物衰老和植物抗病性建立[12], 但拟南芥WRKY53参与拟南芥叶片衰老早期发生[13]. 拟南芥 WRKY44蛋白质调控叶片表皮毛和种子外表皮的发育[14]. 另外, 马铃薯WRKY 基因与马铃薯抗病性数量性状的形成有关, 并受晚疫病病原菌诱导表达[15,16]; 豆科WRKY 基因参与豆科植物抗旱性的建 立和种子休眠的形成[17]; 大麦SUSIBA2(WRKY )基因产物通过特异地结合到异构淀粉酶1(iso1: isoamy-lase1)基因启动子区域的SURE (sugar responsive)和W 盒序列而调控糖代谢信号转导[18]. 水稻是重要的农作物. 有关水稻WRKY 基因家簇的基因功能研究, 目前尚未有详细的文献报道. 随着水稻基因组核苷酸序列测定完成, 通过搜索水稻基因组核苷酸序列, 已鉴定出77个WRKY 基因, 并证实水稻WRKY71蛋白是糊粉层细胞内的赤霉素信号转导途径的转录抑制因子[19]. 在本研究中, 我们重新搜索了整个水稻基因组核苷酸序列, 鉴定了20多个额外的WRKY 基因, 并综合汇总所有水稻WRKY 基因的信息(表1). 在此基础上, 通过综合利用RT-PCR 和cDNA 文库筛选等分子生物学技术, 从水稻基因组中克隆获得13个WRKY 基因全长cDNA. 为了阐明WRKY 基因的分子生物学功能, 我们首先开展所获得的13个基因表达谱分析, 其中10个WRKY 基因受不同的非生物逆境因子诱导表达. 1 材料与方法 (ⅰ) 材料. 滇旬8号水稻种子由云南农业大学水稻研究所提供. [32P]dATP(>3000 Ci/mmol)购自北京福瑞生物工程公司. cDNA 合成和文库构建试剂盒购自Clontech 公司. 其他化学试剂购自上海生工公司和大连TaKaRa 生物工程公司. (ⅱ) 序列分析. 燕麦(Avena sativa )的AsWRKY3作为外类群, 用Megalign 5.01的Cluster method 的方法形成矩阵[20]. 同时, 用PAUP4.0b10进行系统发生重建分析[21], 采用邻接法搜索形成系统树, 对分支的可靠性评价采用了靴带分析(Bootstrap). 通过上述系统的分析研究, 我们获得水稻WRKY 蛋白质家族97

相关文档
最新文档