脱硫效率低的原因分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱硫效率低的原因分析 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
1号机组脱硫系统效率低的报告分析一、脱硫添加剂的试验影响
添加剂的试验目的:促进石灰石的溶解和SO2的吸收,增加溶液的反应活性,总反应速度得到提高。添加剂具有分散作用,可以增强石灰石的表面活性,增加石灰石的分散性,降低其沉降速度,增大有效传质面积,减少设备的结垢。
4月22日-4月24日进行的脱硫添加剂提高脱硫效率试验,其中添加剂的主要成分:复合硫质催化剂、CP活性剂、含羧基类盐。复合硫质催化剂的作用:缓冲作用,促进SO2吸收和CaCO3溶解。CP活性剂:增加浆液反应活性,提高总反应速率。含羧基类盐:促进SO2的溶解。
试验过程:4月23日向1号JBR地坑注入吨添加剂,搅拌均匀后23日8时按照试验要求进行参数调整,10:30基本到位,效率%、负荷500MW以上、PH值—之间,10:40开始开用地坑泵加药,打入吸收塔,23号加药后至25号期间负荷在300MW以上效率最高上至%,PH值在23号加药有降低现象,后调整至—,24号上午调至,下午调回;于24号上午补充添加剂至地坑15袋,9时开始打入吸收塔,24号下午参数开始有运行人员自行掌握。
数据分析:
1、在同等条件下(负荷500MW,ph值—,入口1200mg/nm3左右,JBR液位在100mm以下),与添加前效率起始值%比较,可认为提高3%--4%的。
23日11:00—12:00,%;
14:00—16:00,94%;
19:00—20:00,%;
2、1#系统在使用添加剂后,系统效率提升有改善,之前效率基本在95%以下,现在可轻松维持在96%以上。
结论及建议:
1、脱硫添加剂有提效作用,但由于机组目前运行状况较好,燃煤含硫量较低,添加前效率运行在94%左右,致使添加剂提效作用效果缩水(添加剂的最好使用效果是含硫量超设计值30%以内)。
2、再做试验前,应储存适量的超设计值含硫量的燃煤,如在%—%之间,确实使系统的脱硫效率降下来,再使用添加剂,效果会更好。
入口SO2浓度与负荷因素
浓度
2
根据双膜理论,入口SO2浓度的升高,使烟气中的SO2分压增大,降低了气相传质阻力,有利于SO2吸收,但在SO2浓度增大的同时吸收浆液的碱性并未随之增大,这就使得吸收反应的增强因子减小。但后一种作用的影响更为明显,这两种作用的综合结果使得传质单元数减小从而降低了脱硫效率。
从上图中红色区域我们可以看到,在升负荷期间FGD入口含硫量逐渐增大脱硫效率降低,必然要提高PH值来维持脱硫效率,此时进入JBR的石灰石浆液量及石膏浆液浓度随之增加,然而脱硫效率并为提高,PH值接近后石灰石浆液的利用率反而会降低脱硫效果也不明显,脱硫效率下降到了最低点,经调整此时PH值为,但是石灰石浆液供给量还在逐渐增加,因为石灰石浆液量与脱硫系统入口烟气流量和进口烟气SO2含量进行前馈控制,与JBR的pH值进行反馈控制。
在机组降负荷(上图中蓝色区域)达到脱硫效率,但是FGD入口含硫量还是偏高。
上图中粉红色区域为一组再次升负荷参数,经调整PH值后脱硫效率仍然达不到,且石灰石浆液浓度降低。
上图中海绿色区域也是一组升负荷参数,在没有什么调整的情况下能够达到脱硫效率,跟前两次升负荷不同的是FGD入口含硫量不高,但是石灰石浆液随着流量的增加浆液密度在下降。
上图中褐色同样还是一组升负荷参数,这时的FGD入口含流量增加,调整PH值脱硫效率没有达到要求,石灰石浆液浓度随流量的增加而降低。
为什么脱硫系统在机组满负荷的情况下脱硫效率很难达标:由于台电1、2脱硫系统设计煤含硫量为%,当含硫量增加,带给脱硫运行有两个最大的问题:一是石灰石制浆、石膏脱水出力能否满足,二是脱硫效率能否维持在95%以上。
入炉煤含硫量与SO2浓度对应表
根据上表所示我们可以计算出9号到10号之间S中的含硫量,在这两天中FGD的入口含硫量平均值为
S平均增长所对应的SO
2
:
1661-830 =(mg/Nm3)
x +=
计算得出9号到10号之间S中的含硫量接近1、2脱硫系统设计煤含硫量%将近达到了饱和状态,、所以脱硫效率一直低的原因。
通过钙硫摩尔比方程式粗略计算:
S CaCO
3 CaSO
4
32 100 136
-=-=-
x y
x=(×100×)/32=h(按照95%脱硫滤计算,并且是按照石灰石纯度为100%来计算,所以当石灰石纯度再降低时,制浆系统更不能供给足够的石灰石浆液。)设计中:单台球磨机的制浆量为 t/h,共2台球磨机。
通过反推法:计算出石灰石制浆系统最大出力连续运行,并且石灰石纯度为100%时条件下,脱硫率按照95%计算,所能容许的最大含硫量为%,实际我们石灰石纯度不足60%,这算后所能容许的最大含硫量为为%。
随着机组升降负荷时,带入的热量增大,导致吸收塔整体浆液温度上升,从而影响SO2也石灰石的化学反响。其次机组负荷上升机组的烟气量也将随之变化,脱硫系统的容纳烟气量是一定的,当机组满负荷时,这时烟气量达到最大值,那么这是烟气在系统里停留的时间也是最短的,这也是为什么机组满负荷脱硫效率为什么较低的原因之一。吸收塔浆液位与PH值
浆液的pH值是石灰石湿法烟气脱硫工艺中的重要运行参数。浆液pH值升高,降低了液相的传质阻力, 将随之增大,进而K G和NTU也随之增大,有利于SO2的吸收。
还可以从烟气中SO2与吸收塔浆液接触后发生的一系列化学反应中可以看出:
S O
2吸收:SO
2
+ H
2
O= H
2
SO
3
→H
2
SO
3
=H+ + HSO
3
-
石灰石溶解:CaCO3 + H2O = Ca2+ + HCO3- + OH-
氧化: HSO3- + 1/2O2 = H+ + SO42-
沉淀: Ca2+ + SO42- + 2H2O = CaSO4·2H2O
高PH的浆液环境有利于SO2的吸收,而低PH则有助于Ca2+的析出,二者互相对立,因此选择一合适的PH值对烟气脱硫反应至关重要。在一定范围内随着吸收塔浆液
PH的升高,脱硫率一般也呈上升趋势,因为高PH意味着浆液中存在有较多的CaCO
3
,对脱硫当然有益,理论上PH>6后脱硫率不会继续升高,反而降低,原因是随着H+浓度的降低,Ca2+的析出越来越困难,显然此时SO2与脱硫剂的反应不彻底,既浪费了石灰石,又降低了石膏的品质。PH下调时,CaSO4·2H2O含量又回升,CaCO3用量也随之降低。因此,浆液PH值既不能太高又不能太低。因此,选择合适的PH值,对FGD系统的良好