水热合成法演示课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
10
5.2 水热法制备BaTiO3薄膜
• 利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少 的,在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多 晶薄膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
• 制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
• 在衬底上形成稳定结晶相薄膜
11
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
TEM image and ED pattern of CdS / ZnO nanoparticles
8
五、水热合成法的具体应用
• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
9
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
华) • 水热法制备功能材料(百度PPT) • 水热法制备薄膜技术( 黄晖; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
13
谢谢!
欢迎大家提问
14
MexOy+Hz——xMe+yHzO 其中Me为银、铜等
• 5)水热分解:某些化合物在 水热条件下分解成新的化合 物 , 进 行 分 离 而 得 单 一 化 合6
三、具体过程
• 基本设备:水热合成反应釜
• 具体流程:
(1)选择反应前驱物,确定反 应前驱物的计量比。
(2)摸索前驱物加入顺序,混 料搅拌。
• 2)水热沉淀:某些化合物在 通常条件下无法或很难生成 沉淀,而在水热条件下却生 成新的化合物沉淀。 例如: KF+MnCI2——KMnF2
• 3)水热合成:可允许在很宽 的范围内改变参数,使两种
• 4)水热还原:一些金属类氧 化物、氢氧化物、碳酸盐或 复盐用水调浆,无需或只需 极少量试剂,控制适当温度 合氧分压等条件,即可制得 超细金属粉体。例如:
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
12
附:资料来源
• 百度百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
水热合成法 Hydrothermalsynthesis
无机 1
1
原理
2
分类
目录
3
过程
5
具体应用
4
与核壳结构 的关系
2
沉淀法
水解法
来自百度文库
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
3
一、原理:水热合成是什么?
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
4
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
(3)装釜、封釜、置入烘箱。
(4)确定反应温度、时间、状 态进行反应。
(5)取釜、冷却(空气冷或水
7
四、水热合成法与核壳结构
• 水热法合成 CdS /ZnO核壳结构纳米微粒 • 具体合成过程:以半胱氨酸镉配合物为前驱体 , 采用水热法合成 CdS纳米微
粒 , 再以 ZnO 对其进行表面修饰 , 形成具有核/壳结构的 CdS /ZnO 半导体纳 米微粒。CdS纳米微粒表面经 ZnO 修饰后 , 其带边发射大大增强。透射电镜 显示 , 110℃下反应 4 h所得的 CdS / ZnO 颗粒尺寸约为 20 nm, 电子衍射表明 其结构为六方相。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
5
水热合成法分类
• 1)水热氧化:高温高压水、 水溶液等溶剂与金属或合金 可直接反应生长性的化合 物。 例如:M+[0]——MxOy
相关文档
最新文档