古典概型练习题

古典概型练习题
古典概型练习题

古典概型练习题

2.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为()

A.1

3

B.

1

2

C.

2

3

D.

3

4

3.“序数”指每个数字比其左边的数字大的自然数(如1258),在两位的“序数”中任取一个数比56大的概率是()

A.1 2

B.

4 3

C.

3

4

D.

4

5

4.如图,一面旗帜由A,,C三块区域构成,这三块区域必须涂上不同的颜色,现有红、黄、蓝、黑四种颜色可供选择,则A区域是红色的概率是()

A.1

3

B.

1

4

C.

1

2

D.

3

4

5.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,则两次取出的球颜色不同的概率是()

A.2

9

B.

1

3

C.

2

3

D.

8

9

6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队则需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()

A.3

4

B.

3

5

C.

2

3

D.

1

2

7.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于9的概率为

A.1

3

B.

5

18

C.

2

9

D.

11

36

8.将一根绳子对折,然后用剪刀在对折过的绳子上任意一处剪断,则得到的三条绳子的长度可以作为三角形的三边形的概率为()

A.1

6

B.

1

4

C.

1

3

D.

1

2

9.把一枚硬币连续抛掷两次,事件A“第一次出现正面”,事件B“第二次出现正面”,则P B| A()

A.1

2

B.

1

4

C.

1

6

D.

1

8

10.4张卡片上分别有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()

A.1

3

B.

1

2

C.

2

3

D.

3

4

11.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为()

A.1B.

1

16

C.

1

4

D.

1

2

12.据人口普查统计,育龄妇女生男女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是()

1

123

A.1

2

B.

1

3

C.

1

4

D.

1

5

13.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是()

A.60% B.30% C.10% D.50%

14.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是()

A.1

2

B.

1

3

C.

1

6

D.

1

4

15.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()

A.2

5

B.

9

25

C.

8

25

D.

1

5

16.同时抛投两枚质地均匀的硬币,则两枚硬币均正面向上的概率为()

A.B.C.D.1

17.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为()

A.B.C.D.

18.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()

A.B.C.D.

19.同时掷3枚硬币,至少有1枚正面向上的概率是

A.7

8

B.

5

8

C.

3

8

D.

1

8

填空题

20.某学校高三年级共有11个班,其中14班为文科班,511班是理科班,现从该校文科班和理科班中各选一个班的学生参加学校组织的一项公益活动,则所选两个班的序号之积为3的倍数的概率为

__________.21.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.

22.投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1、2、3、4、5、6)一次,则两颗骰子向上点数之积等于12的概率为__ ___.

23.一个袋中有12个除颜色外完全相同的球,2个红球,5个绿球,5个黄球,从中任取一球,不放回后再取一球,则第一次取出红球时第二次取出黄球的概率为.

24.已知盒中有大小相同的3个红球和2个白球,若每次不放回的从盒中取一个球,一直到取出所有白球时停止抽取,则停止抽取时恰好取到两个红球的概率为________.

25.某人外出参加活动,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.1,0.4,0.2,他不乘轮船去的概率是

_____________.

26.甲、乙、丙三人将独立参加某项体育达标测试,根据平时训练的经验,甲、乙、丙三人能达标的达标的概率

分别为3 2 3

, ,

4 3 5

,则三人中有人达标但没有全部达标的概率为.

27.甲,乙两人独立地破译1个密码,他们能破译密码的概率分别是和,则这个密码能被破译的概率为.

28.为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,则选择的2天

恰好为连续2天的概率是.

2

29.有一道数学难题,在半小时内甲能解决的概率是1

2

1

,乙能解决的概率为,两人试图独立地在半小时解决,

3

则难题半小时内被解决的概率为________.

30.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.31.从3台甲型彩电和2台乙型彩电中任取3台,其中两种品牌的彩电齐全的概率是________.

32.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于

__________.

33.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是.

3

参考答案1.C

【解析】

试题分析:在第一次取到白球的条件下,盒子中还有3个红球和1个白球,故第二次取到红球的概率为3

4

,故选

C.

考点:条件概率.

2.A

【解析】

试题分析:由题意知本题是一个古典概型,

试验发生包含的事件数是3×3=9种结果,

满足条件的事件是这两位同学参加同一个兴趣小组,

由于共有三个小组,则有3种结果,

根据古典概型概率公式得到P

9 3

考点:古典概型及其概率计算公式

3.A

【解析】

试题分析:两位“序数”共有8765432136个,其中比56大的“序数”有33219个,

所以在两位的“序数”中任取一个数比56大的概率是P

36 4

,故选A.

考点:古典概型.

4.B

【解析】

试题分析:三块区域涂色的所有可能有(红、黄、蓝)、(红、黄、黑)、(红、蓝、黄)、(红、蓝、黑)、(红、黑、黄)、(红、黑、蓝)、(黄、红、蓝)、、(黄、红、黑)、(黄、蓝、红)、(黄、蓝、黑)、(黄、黑、红)、(黄、黑、蓝)、(蓝、红、黄)、(蓝、红、黑)、(蓝、黄、红)、(蓝、黄、黑)、(蓝、黑、红)、(蓝、黑、黄)、(黑、红、黄)、(黑、红、蓝)、(黑、蓝、红)、(黑、蓝、黄)、(黑、黄、红)、(黑、黄、蓝),共24种,其中A区域是红

色的有6种,故所求概率P

244

,故选B.

考点:古典概型.

5.C

【解析】

试题分析:由题意,知基本事件总数n C3C3 9,能两次取出的球颜色不同包含的基本事件个数m C3C2 6,

所以能两次取出的球颜色不同的概率为P

n 9 3

考点:古典概型.

6.A

【解析】

,故选C.

试题分析:若只进行一局比赛甲队获得冠军,则概率为P1

41

2

,若进行两局比赛甲队获得冠军,则概率为

3 1

9 1

6 1

1 1 1 1

m 6 2

P 2

2

2 4

,以上两事件互斥,根据互斥事件概率加法公式,甲队获得冠军的概率为 P P 1 P 2 3 4 。

考点:互斥事件概率。

7.B 【解析】 试题分析:一共 6

6 36 种情况,其中满足条件的有

4,5

5,4

3,6

6,3

5,5

4,6,6,4, 5,6

6,5

6,6

共10种情况,所以概率P

36

5 18

,故选 B . 考点:古典概型 8.D 【解析】

试题分析:三边要能成为三角形,那么两边之和大于第三边,所以应在对折过的绳子的中点处和对折点之间的任

意位置剪短,所以能构成三角形的概率 P

1 2

,故选 D. 考点:几何概型 9.A 【解析】

试题分析:连续抛掷两次硬币的结果有(正正),(正反),(反反),(反正),共四种.其中第一次是正面的情况有(正正),

(正反)两种;在此前提下,第二次是正面的只有(正正)一种情况,故 P B | A 1 2

,应选 A.

考点:条件事件的概率公式及运用.

【易错点晴】条件概率是在事件 A 发生的前提下,事件 B 发生的概率.求解的方法有两种:其一是定义法.这种方法 是先将所有事件都列举出来,然后依据条件考虑在事件 A 发生的前提下所有可能的情况,再找出事件 B 发生的所有

情形,最后算出其概率.方法二是运用公式 P ( B | A )

P ( AB ) P ( A )

求其概率.本题在求解时运用了方法一进行求解的. 10.C

【解析】

试题分析:从这 4 张卡片中随机抽取 2 张,共有 6 种不同取法,其中取出的 2 张卡片上的数字之和为奇数有 4 种

不同取法,故所求概率为

4 2 = 6 3 ,选 C. 考点:古典概型概率

【方法点睛】古典概型中基本事件数的探求方法 (1)列举法.

(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目, 常采用树状图法.

(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. 11.C 【解析】

试题分析:甲、乙两人选择卡片的所有基本事件为 (1,1), (1, 2), (1,3), (1, 4), (2,1), (2, 2), (2,3), (2, 4) , (3,1),

(3, 2) , (3,3), (3, 4), (4,1), (4, 2), (4,3), (4, 4) ,共 16 个基本事件,选择同一张卡片的有 4 个,所以他们选择同一

1 1 1 10

4 1

,故选C.

张卡片的概率为P

16 4

5

考点:古典概型. 12.C 【解析】

试题分析:所有基本事件有: (男,男),(男,女),(女,男),(女,女),两胎均是女孩的基本事件

只有(女,女),两胎均是女孩的概率 p

1 4

,故选 C. 考点:古典概型. 13.D 【解析】

试题分析:甲、乙两人下和棋的概率 P 90% 40% 50% ,故选 D . 考点:互斥事件. 14.A 【解析】

试题分析:每个个体被抽到的概率是 p

n N

6 2

,故选 A. 考点:简单随机抽样. 15.A 【解析】

试题分析:从甲乙等 5 名学生中随机选出 2 人,基本事件总数为 n

C 5 10 ,甲被选中包含的基本事件的个数

m C 1C 4 4 ,所以甲被选中的概率为 p

n 5

,故选 A . 考点:古典概型及其概率的计算. 16.A

【解析】解:由题意知本题是一个等可能事件的概率, 同时掷两枚质地均匀的硬币一次,

共有正正、反反、正反、反正四种等可能的结果, 两枚硬币都是正面朝上的有一种, ∴两枚硬币都是正面朝上的概率 ,

故选:A .

【点评】本题考查了用列举法求概率的方法:先利用列举所有等可能的结果 n ,然后找出某事件出现的结果数 m , 最后计算 P= .属于基础题.

17.C

【解析】解:袋中有 9 个大小相同的球,从中任意取出 1 个,共有 9 种取法, 4 个白球,现从中任意取出 1 个,取出的球恰好是白球,共有 4 种取法,

故取出的球恰好是白球的概率为 .

故选:C .

【点评】本题考查等可能事件的概率,考查学生的计算能力,确定基本事件的概率. 18.B

【解析】解:由题意知本题是一个等可能事件的概率,

试验发生包含的事件是从 4 个不同的数中随机的抽 2 个,共有 C 4 2 =6 种结果,

满足条件的事件是取出的数之差的绝对值等于 2,有 2 种结果,分别是(1,3),(2,4),

6

3 1 2

1 1 m 2

∴要求的概率是 = .

故选 B .

【点评】本题考查等可能事件的概率,是一个基础题,本题解题的关键是事件数是一个组合数,若都按照排列数 来理解也可以做出正确的结果.

19.A 【解析】

试题分析:由题意知本题是一个等可能事件的概率, 试验发生包含的事件是将一枚硬币连续抛掷三次共有 2

8 种结果,

满足条件的事件的对立事件是三枚硬币都是正面,有 1 种结果,

∴至少一次正面向上的概率是1

8 8

考点:等可能事件的概率;互斥事件与对立事件 20.

13 28 【解析】

试题分析:某学校高三年级共有 11 个班,其中1 4 班为文科班, 5 11 班是理科班,现从该校文科班和理科班 中各选一个班的学生参加学校组织的一项公益活动,共有 4 7=28 种,所选两个班的序号之积为 3 的倍数的,从 理科班可抽 3 的倍数班 6,9,文科班有 4 种取法,共有 8 种取法时;文科班取 3 班时,理科班有 7 种选法;除去重 复的两种,总共有 13 种取法,所以所选两个班的序号之积为 3 的倍数的概率 13 28

考点:古典概型概率公式的应用.

【方法点睛】(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用 古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到 不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典 概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性. 21.

8 9 【解析】 试题分析:两个箱子各取一个球全是白球的概率 P 1 1

C 3C 3 9

,至少有一个红球的概率为1 P 1 9 9 .

考点:组合;对立事件;古典概型.

【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂

问题中基本事件数的探求.另外在确定基本事件时, ( x , y ) 可以看成是有序的,如 1,2

2,1

不同;有时也可

以看成是无序的,如 (1,2)(2,1) 相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比 较繁琐时,考虑其反面,即对立事件,应用 P ( A )

1P ( A ) 求解较好.

22.

1

9 【解析】

试题分析:由题意知本题是一个等可能事件的概率, 试

3

1 7

1 1 1 8

验发生包含的事件是掷两颗骰子有6×6=36个结果,

7

满足条件的事件是两颗骰子向上点数之积等于 12,有(2,6)、(3,4)、(4,3)、(6,2)共 4 种结果, ∴要求的概率是

4 1

36 9

考点:古典概型及其概率计算公式

5 23. .

11 【解析】

试题分析:根据题意,第一次取出红球后不放回,剩余球的总个数为 11 个,黄球的个数为 5 个,再根据概率公式 解答即可,所以其概率为 5 11

故答案为: 5

11

.

考点:等可能事件的概率. 24.

3 10

【解析】

试题分析:由题分析可得有三种情况;需取出 4 个球且分别为;红白红白,白红红白,红红白白。

它们的概率为;

5 4 3 2 5 4 3 2 5 4 3 2 10

考点:相互独立事件及互斥事件的概率算法。

25. 0.9 . 【解析】

试题分析:不乘轮船去的对立事件,包括三种情况,可以用三种情况的概率公式相加得到结果,也可以用对立事 件的概率得到结果.设乘火车去开会为事件 A ,乘轮船去开会为事件 B ,乘汽车去开会为事件 C . 乘飞机去开会为事件 D .这四个事件是互斥事件, P 1P (B )10.1 0.9 . 故答案为: 0.9 .

考点:互斥事件的概率加法公式. 26.

2 3 【解析】

试题分析:三人中有人达标但没有全部达标,即为三人中有一人或两人达标,其概率为

1 43 5 4 3 5 3

考点:对立事件的概率.

27.

【解析】

试题分析:密码被译出的对立事件是密码不能被译出,而密码不能被译出的情况是:两个人同时不能破译这个密 码,由此利用对立事件概率计算公式能求出密码被译出的概率. 解:两人独立地破译一个密码,他们能译出的概率分别为 , ,

密码被译出的对立事件是密码不能被译出,

而密码不能被译出的情况是:两个人同时不能破译这个密码, ∴密码被译出的概率:p=1﹣(1﹣ )(1﹣ )= ,

故答案为: .

8

3 2 2 1 2 3 2 1 3 2 2 1 3

3 2 3 1 1 2 2

28.

2 5

【解析】

试题分析:考查古典概型的计算公式及分析问题解决问题的能力.

从 5 个元素 a , b , c , d , e 中选 2 个的所有可能有

10 种,其中连续有 ab , b c , cd , de 共 4 种,故由古典概型的计算公式可知恰好为连续 2 天的概率是 P 考点:古典概型的计算公式及运用. 2 29.

3

【解析】

4 2

10 5

.

试题分析:甲和乙都没有解决的概率是 2 .

3

1 2 1

2 3 3 ,那么难题在半小时内被解决的概率就是 P 1 3 3 ,故填:

考点:独立事件同时发生的概率 30.

1 3 【解析】

试题分析:设一、二等奖各用 A , B 表示,另1张无奖用 C 表示,甲、乙两人各抽取1张的基本事件有

AB , AC , BA , BC , CA , C B 共 6 个,其中两人都中奖的有 AB , BA 共 2 个,故所求的概率 P 6 3

. 所以答案应

填: 1 3

考点:互斥事件的概率加法公式. 31. P

9 10

【解析】

试题分析:由题为古典概型。则:5 台电视取 3 台共有 10 种取法,要求两种品牌的彩电齐全,可找它的立事件,

即取到的是一种品牌有对 1 种,则概率为: P 1

10 10

考点:古典概型的算法。

1 32.

5 【解析】

试题分析:由树状图可得:从 3 男 3 女共 6 名同学有 15 种基本事件,2 名都是女同学由 3 种基本事件,故其概率

1 为 5 .

考点:古典概型. 33.

1 3 【解析】

试题分析:从1,2,3,4 四个数中任取两个数共有 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) 六种可能,其中一个数是另一个的

9

1 2 2 1 1 9

两倍的可能只有(1,2),(2,4)一种,所以其概率为p 考点:列举法、古典型概率公式及运用.2 1

6 3

1

,即概率是.

3

10

概率知识点总结

概率知识点总结 随机现象:在一定条件下可能发生也可能不发生的现象。 随机试验:对随机现象进行的观察或实验统称为随机试验。 样本点:随机试验的每个可能出现的实验结果称为这个试验的一个样本 样本空间:所有样本点组成的集合称为这个试验的样本空间。 随机事件:如果在每次试验的结果中,某事件可能发生,也可能不发生, 则这一事件称为随机事件。 &必然事件:某事件一定发生,则为必然事件。 9、不可能事件:某事件一定不发生,则为不可能事件。 10、基本事件:有单个样本点构成的集合称为基本事件。 11、任一随机事件都是样本空间的一个子集,该子集中任一样本点发生, 则该事件发生。利用集合论之间的关系和运算研究事件之间的关系和运算。 事件的包含A 互不相容事件(互斥事件) AI B 1、 确定性现象:在一定条件下必然出现的现象。 2、 3、 概率论:是研究随机现象统计规律的科学。 4、 5、 占 八 6、 7、 事件的并(和) AUB 事件的交(积) AI B 事件的差A B A A B A B

(7)完备事件组:事件A,A 2,L ,A n 两两互不相容,且AUAUL U A n (8)事件之间的运算规律:交换律、结合律、分配率、 De Morgan 定理 12、概率 P( ) 1 , P( ) 0 如果 A I ,A 2,L ,A n 两两互不相容,则 P (AUAUL U A n ) P (A i ) P(A 2)L P (AJ 如果A,B 是任意两个随机事件,则P(A B) P(A) P(AB) P (AUB) P(A) P (B) P (AB) n P(A)P(A j )P(A k ) L ( 1)n1 P(A ,A 2L A n ) 1 i j k n 12、古典概型 每次试验中,所有可能发生的结果只有有限个,即样本空间是有限集 每次试验中,每一个结果发生的可能性相同 P(A) A 包含的基本事件数 I 丿试验的基本事件总数 13、条件概率:P HB)篇为事件B 发生的条件下’事件A 发生的条件 概率 力口法公式:P (AUB) P (A) P (B) P (AB),若 A, B 互斥,贝 Jp( AUB) P (A) P(B) (6)对立事件(互逆事件) AUB AI B ,记 B A 如果 B A ,贝J P(A B) P(A) P(B) P (AUBUC) P (A) P (B) P(C) P (AB) P (AC) P (BC) P (ABC) n P(A 1 UAUL U AJ P(A) i 1 1 i j P(A) P(A j )

古典概型练习题(有详细答案).

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是 A.3个都是正品 B.至少有一个是次品 ( ) C.3个都是次品 D.至少有一个是正品 2.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x 为某一实数时可使20x <”是不可能事件 ③“明天要下雨”是必然事件 ④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( ) A. 0 B. 1 C.2 D.3 3.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为 A. 15 B. 25 C. 35 D. 45 ( ) 4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为 A. 37 B. 710 C. 110 D. 310 ( ) 5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这 2 张纸片数字之积为偶数的概率为 ( ) A. 12 B. 718 C. 1318 D. 1118 6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( ) A. 715 B. 815 C. 35 D. 1 7.下列对古典概型的说法中正确的个数是 ( ) ①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A 包含k 个基本事件,则()k P A n =; ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( ) ⑴至少有一个白球,都是白球; ⑵至少有一个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球; ⑷至少有一个白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是 ( ) A.一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分 C.播种菜籽100粒,发芽90粒与发芽80粒 D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次, 设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示 向上的一面出现的点数不小于4,则 ( ) A .A 与 B 是互斥而非对立事件 B .A 与B 是对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件 11.下列说法中正确的是 ( )

高二数学古典概型知识点

2019学年高二数学古典概型知识点 古典概型是一种概率模型,是概率论中最直观和最简单的模型,小编准备了高二数学古典概型知识点,具体请看以下内容。 知识点总结 本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。其中主要是理解和掌握古典概型的概率计算公式,这个并不难。 1、古典概型 (1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。 (2)特点:①试验结果的有限性②所有结果的等可能性 (3)古典概型的解题步骤; ①求出试验的总的基本事件数 ; ②求出事件A所包含的基本事件数 ; 2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能 事件除外)。 常见考法 本节在段考中,一般以选择题、填空题和解答题的形式考查

古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。 误区提醒 在求试验的基本事件时,有时容易计算出错。基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。 【典型例题】 例1 如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率. 解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有433=36(种)涂法.②若△AOB与△COD不同色,它们共有43=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4322=48(种)涂法.故相邻三角形均不同色的概率 例2 盒中有6只灯泡,其中2只次品,4只正品,有放回地

《古典概型》练习题(有祥细解答)

《古典概型》练习题(有祥细解答) 重庆南川中学罗光军 2016.5.30 一、选择题 1.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( ) A.1 2 B. 1 3 C. 1 4 D.无法确定 解析:我们将两个房间分为A和B, (甲住A、乙住B)、(甲住B,乙住A)、(甲、乙都住A)、(甲、乙都住B)共四种情况,其中甲、乙各住一间房的情况有两种,所以选A.答案:A 2.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.1 2 B. 1 3 C. 1 4 D. 1 6 解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种 不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为1 3 ,故选B.答案:B 3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足log2x y=1的概率为( ) A.1 6 B. 5 36 C. 1 12 D. 1 2 解析:由log 2x y=1得2x=y.又x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},所以满足题意的有x= 1,y=2或x=2,y=4或x=3,y=6,共3种情况.所以所求的概率为 3 36 = 1 12 ,故选C.答案:C 4.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( ) A.1 8 B. 3 16 C. 1 4 D. 1 2 解析:由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4), (2,4),(3,4),共4个,所以所求概率为1 4 .答案:C 5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.2 3 B. 2 5 C. 3 5 D. 9 10

古典概型,几何概型深刻复习知识点和综合知识题

知识点一:变量间的相关系数 1.两变量之间的关系 (1)相关关系——非确定性关系 (2)函数关系——确定性关系 2.回归直线方程:∧ ∧ ∧ +=a x b y ?? ??????? -=--=---=∧∧====∧∑∑∑∑x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ,)())((1 2 21 121 例题分析 例1:某种产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有一组对应数据如下表所示,变量y 和x 具有线性相关关系: x (百万元) 2 4 5 6 8 y (百万元) 30 40 6 50 70 (1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。 针对练习 1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图右. 由这两个散点图可以判断( )

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( ) (1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数 24 34 39 51 63 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+ 知识点二:概率 一、随机事件概率: 事件:随机事件:可能发生也可能不发生的事件。 确定性事件: 必然事件(概率为1)和不可能事件(概率为0) (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈

高考数学(人教a版,理科)题库:古典概型(含答案)

第4讲 古典概型 一、选择题 1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次5点向上的概率是( ) A.5216 B.25216 C.31216 D.91216 解析 抛掷3次,共有6×6×6=216个事件.一次也不出现5,则每次抛掷都有5种可能,故一次也未出现5的事件总数为5×5×5=125.于是没有出现一次5点向上的概率P =125216,所求的概率为1-125216=91216 . 答案 D 2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是 ( ). A.15 B.3 10 C.2 5 D.12 解析 基本事件有C 25=10个,其中为同色球的有C 23+C 2 2=4个,故所求概率 为410=25. 答案 C 3.甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是 ( ). A.12 B.1 3 C.1 4 D.15 解析 (甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P =24=12. 答案 A 4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )

A.3 18 B. 418 C. 5 18 D. 618 解析 正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,所以概率等于518. 答案 C 5.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( ). A.112 B.110 C.325 D.1125 解析 小正方体三面涂有油漆的有8种情况,故所求其概率为:81 000=1125. 答案 D 6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为 ( ). A.18 B.3 16 C.1 4 D.12 解析 由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为1 4. 答案 C 二、填空题 7.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________. 解析 由题意得到的P (m ,n )有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=1 3.

古典概型和几何概型专题训练[答案解析版]

古典概型与几何概型专题训练 1.在集合{} 04M x x =<≤中随机取一个元素,恰使函数2log y x =大于1的概率为( ) A .1 B. 14 C. 12 D. 34 答案及解析:1.C 2.考虑一元二次方程2 0x mx n ++=,其中,m n 的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为( ) A. 3619 B.187 C.94 D.36 17 答案及解析:2.A 3.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形, 直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则 小花朵落在小正方形内的概率为 A . 117 B .217 C .317 D .4 17 答案及解析:3.B . 因为大正方形的面积是34,所以大正方形的边长是34,由直角三角形的较短边长为 3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4.所以 小花朵落在小正方形内的概率为42 3417 P = =.故选B . 【解题探究】本题考查几何概型的计算. 几何概型的解题关键是求出两个区间的长度(面积或体积),然后再利用几何概型的概率计算公式 ()= A P A 构成事件的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) 求解.所以本题求小花朵落在小正 方形内的概率,关键是求出小正方形的面积和大正方形的面积. 4.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率论和数理统计知识点总结[超详细版]

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

古典概型练习题(有详细标准答案)

古典概型练习题(有详细答案)

————————————————————————————————作者:————————————————————————————————日期:

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是 A.3个都是正品 B.至少有一个是次品 ( ) C.3个都是次品 D.至少有一个是正品 2.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x为某一实数时可使20 x<”是不可能事件 ③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( ) A. 0 B. 1 C.2 D.3 3.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为 A. 1 5 B. 2 5 C. 3 5 D. 4 5 ( ) 4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为 A. 3 7 B. 7 10 C. 1 10 D. 3 10 ( ) 5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概 率为( ) A. 1 2 B. 7 18 C. 13 18 D. 11 18 6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( ) A. 7 15 B. 8 15 C. 3 5 D. 1 7.下列对古典概型的说法中正确的个数是 ( ) ①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A包含k个基本事件,则()k P A n =; ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( ) ⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是 ( ) A.一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分 C.播种菜籽100粒,发芽90粒与发芽80粒 D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件 C.B与C是互斥而非对立事件D.B与C是对立事件

古典概型的特征和概率计算公式

《古典概型的特征和概率计算公式》说课稿(1) 《古典概型的特征和概率计算公式》说课稿 一、教材分析: 《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节第一小节的内容。本节课内容是在学生已经学习了随机事件概率的概念基础上的延续和拓展。古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值。它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。因此本节知识在概率论中占有相当重要的地位。 由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型。所以我设计了这节课的重点和难点为: 1.重点:理解古典概型及其概率计算公式 2.难点:古典概型的判断 二、教学目标分析: 基于上述我对教材的地位和内容的剖析,根据新课程标准中发展学生数学应用意识的基本理念,结合学生已有的知识结构与心理特征,我制定了以下的教学目标: 知识与技能: 1.通过试验理解基本事件的概念和特点; 2.在数学建模过程中,抽象出古典概型的两个基本特征,推导概率的计 算公式; 3.掌握用列举法和分类讨论法解决概率的计算问题。 过程与方法: 通过模拟试验让学生理解古典概型的特征,观察类比各个试验,让学生归纳总结出古典概型公式。 情感态度与价值观:

1.用现实意义的实例,激发学生的学习兴趣,培养学生勇于探索、善 于发现的创新精神,发展学生的数学应用意识; 2.经历公式的推导过程,体验由特殊到一般的归纳推理的数学思想方 法,在探究活动中形成锲而不舍的钻研精神和科学态度; 3.培养学生“理论来源于实践并应用于实践”的辩证思想。 三、教法与学法分析: 数学是一门培育人的思维,发展人的思维的主要学科,因此,在教学中,基于这节课的特点我主要采用引导发现法和问题式教学法教学,运用多媒体等手段构造数学模型,激发学生学习兴趣,引导学生进行观察讨论、归纳总结。鼓励学生自做自评。 五、教学过程分析: (一)提出问题,引入新课 课前,老师已布置学生分组完成2个试验: ① 掷一枚质地均匀的硬币试验 ② 掷一枚质地均匀的骰子的试验。 各组学生展示模拟试验方法,并汇总试验结果,教师汇总并提出问题: ①两个试验的结果分别有几个? 设计意图:引出基本事件的概念。 ②在掷骰子的试验中,随机试验“出现偶数点”可以由哪些基本事件 组成? 设计意图:这一环节主要采用学生思考讨论,教师引导和学生归纳的方法,鼓励学生用自己的语言描述基本事件的特点。一方面激发学生的学习兴趣,另一方面,通过分析,加深对事件与基本事件关系的认识,为引出古典概型定义做好铺垫。 (二)思考交流,形成概念 例1.从字母a、b、c、d中任意取出两个不同的字母, ①在这个试验中,有哪些基本事件?(ab、ac、ad、bc、bd、 cd)

概率论知识点总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示.

一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件 B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品) A.3个都是正品 B. 至少有一个是

次品() C.3个都是次品 D. 至少有一个是 正品 2.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球"是必然事件 ②“当X为某一实数时可使x2 < 0 ”是不可能事件 ③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是() A.0 B. 1 C.2 D.3 3.从数字1,2,3,4,5 中任取两个不同的数字构

A. B. i C. D. () 4.袋中有3个白球和2个黑球,从中任意摸出2 个 球,则至少摸出1个黑球的概率为 A.3 B. 7 C.丄 D. ? 7 10 10 10 () 5.从标有 1,2,345,6,7,8,9 的9张纸片中任取

A. 2 B. 13 D. 11 18 18 2张,那么这2张纸片数字之积为偶数的概 率为 () 6. 某小组共有10名学生,其中女生3名,现选举

A. B. 15 C. 5 D. 1 7.下列对古典概型的说法中正确的个数是() ①试验中所有可能出现的基本事件只有有限个; ②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A包含k个基本 事件,则P A ; n 7 ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球 那么下列事件中互斥事件的个数是() ⑴至少有一个白球,都是白球;⑵至少有一 个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球;⑷至少有一个 白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是() A. 一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低

古典概型的知识点

第五节古典概型 [备考方向要明了] 考什么怎么考 1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件及事 件发生的概率. 高考对本节内容的考查多为选择题或填空 题,难度中低档,如2012年广东T7,上海 T11等. [归纳·知识整合] 1.基本事件的特点 (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和. [探究] 1.在一次试验中,其基本事件的发生一定是等可能的吗? 提示:不一定.如试验一粒种子是否发芽,其发芽和不发芽的可能性是不相等的.2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)有限性:试验中所有可能出现的基本事件只有有限个; (2)等可能性:每个基本事件出现的可能性相等. [探究] 2.如何判断一个试验是否为古典概型? 提示:关键看这个实验是否具有古典概型的两个特征:有限性和等可能性. 3.古典概型的概率公式 P(A)= A包含的基本事件的个数 基本事件的总数 [自测·牛刀小试] 1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为() A. 1 2 B. 1 3 C. 2 3D.1

解析:选C 基本事件总数为(甲,乙),(甲,丙),(乙,丙)共3种.甲被选中共2种,所以甲被选中的概率为2 3 . 2.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,在选出的两人中有中国人的概率为( ) A.14 B.13 C.12 D .1 解析:选C 用列举法可知,共6个基本事件,有中国人的基本事件有3个. 3.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为奇数的概率为( ) A.35 B.25 C.34 D.23 解析:选A 由题意得基本事件共有10种,2张卡片之和为奇数须一奇一偶,共有6种,故所求概率为610=3 5 . 4.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线x +y =5的下方的概率为________. 解析:点P 在直线x +y =5下方的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)六种可能,故P =66×6=1 6 . 答案:16 5.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________. 解析:点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6种情况,只有(2,1),(2,2),这两种情况满足在圆x 2+y 2=9内部,所以所求概率为26=1 3 . 答案:13

高中数学必修三《古典概型》课后练习(含答案)

古典概型课后练习 题一:一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球. (1)列举出所有可能结果. (2)设第一次取出的球号码为x,第二次取出的球号码为y,写出B=“点(x,y)落在直线y=x+1 上方”这一事件包含的基本事件. 题二:一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y. (1)列出所有可能结果. (2)写出A=“取出球的号码之和小于4”这一事件包含的基本事件. (3)写出B=“编号X<Y”这一事件包含的基本事件. 题三:从1、2、3、4中任取两个不同的数字构成一个两位数,则这个两位数大于20的概率为. 题四:一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. 求:(1) 题七:在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求取出的两个球上标号为相邻整数的概率. 题八:在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求事件“取出的两个球上标号之和能被3整除”的概率. 题九:从1,3,5,7这四个数中随机地取两个数组成一个两位数,则组成的两位数是5的倍数的概率为.

高考知识点古典概型

第5节古典概型 最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率. 知识梳理 1.基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征的概率模型称为古典的概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果. (2)每一个试验结果出现的可能性相同. 3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等, 那么每一个基本事件的概率都是1 n;如果某个事件A包括的结果有m个,那么事 件A的概率P(A)=m n. 4.古典概型的概率公式 P(A)事件A包含的可能结果数试验的所有可能结果数 . [常用结论与微点提醒] 1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法. 2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B =?,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()

(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( ) (3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( ) (4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( ) 解析 对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),应利用几何概型求概率,所以(4)不正确. 答案 (1)× (2)× (3)√ (4)× 2.(必修3P127例3改编)掷两颗均匀的骰子,则点数之和为5的概率等于( ) A.118 B.19 C.16 D.112 解析 所有基本事件的个数为6×6=36,点数之和为5的基本事件有(1,4),(2, 3),(3,2),(4,1)共4个. 故所求概率为P =436=19. 答案 B 3.(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925 解析 甲被选中的概率为P =C 11C 14C 25 =410=25. 答案 B 4.(2018·长沙模拟)在装有相等数量的白球和黑球的口袋中放进一个白球,此时由 这个口袋中取出一个白球的概率比原来由此口袋中取出一个白球的概率大122,则 口袋中原有小球的个数为( ) A.5 B.6 C.10 D.11

古典概型知识点总结

知识点:古典概型 目录知识点总结常见考法误区提醒 知识点难易度 (中) 知识点总结 本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。其中主要是理解和掌握古典概型的概率计算公式,这个并不难。 1、古典概型 (1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。 (2)特点:①试验结果的有限性②所有结果的等可能性 (3)古典概型的解题步骤; ①求出试验的总的基本事件数; ②求出事件A所包含的基本事件数; 2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。 常见考法 本节在段考中,一般以选择题、填空题和解答题的形式考查古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。 误区提醒

在求试验的基本事件时,有时容易计算出错。基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。 【典型例题】 例1 如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率. 解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有4×3×3=36(种)涂法.②若△AOB与△COD不同色,它们共有4×3=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4×3×2×2=48(种)涂法.故相邻三角形均不同色的概率 例2 盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取2次,每次只取1只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各1只;(3)取到的2只中至少有1只正品. 解:从6只灯泡中有放回地任取2次,每次只取1只,共有62=36(种)不同取法.

关于古典概型的计算(摸球问题)

关于古典概率的计算(抽签问题) 1. 两种抽样方法 在古典概率的计算中,将涉及到两种不同的抽取方法,我们以例子来说明:设袋内装有n 个不同的球,现从中依次摸球,每次摸一只,就产生两种摸球的方法。 (1) 每次摸出一只后,仍放回原袋中,然后再摸下一只,这种摸球的方法称为有放 回的抽样。显然,对于有放回的抽样,依次摸出的球可以重复,且摸球可无限 地进行下去。 (2) 每次摸出一球后,不放回原袋中,在剩下的球中再摸一只,这种摸球的方法称 为无放回的抽样。显然,对于无放回的抽样,依次摸出的球不出现重复,且摸 球只能进行有限次。 2. 计算古典概型的基本原则 初学者往往对于一些古典概率的计算望而生畏,究其原因,大都是没有掌握好计算古典概率的基本原则。拿到一个问题,首先应该分清问题是否与顺序有关?元素是否允许重复?如问题与顺序有关,元素不允许重复,那么应考虑用排列的工具,如此等等,计算 当然,我们并不排除对于某些问题用特殊的方法去解决。 3.例1 (抽签问题)袋中有a 根红签,b 根白签,它们除颜色不同外,其它方面没有差别, 现有a+b 个人依次无放回的去抽签,求第k 个人抽到红签的概率。 解:这是一个古典概型问题,问题相当于把一根一根抽出来,求第k 次抽到红签的概率。如 考虑把签一一抽 排成一列,问题与顺序有关,是一个排列问题,就产生以下几种解法: 记A k =“第k 个人抽到一根红签”。 (1) 把a 根红签和b 根白签看作是不同的(例如设想把它们编号),若把抽出的 签依次排成一列,则每个排列就是试验的一个基本事件,基本事件总数就 等于a+b 根不同签的所有全排列的总数为(a+b )! 事件A k 包含的基本事件的特点是:在第k 个位置上排列的一定是红签,有 a 种排法;在其它a+b-1个位置上的签的排列种数为(a+b-1)!,所以A k 包 含的基本事件数为a.(a+b-1)!,所求概率为: P A k =a . a +b?1 ! a + b !=a a + b (1≤k ≤a +b ) (2) 把a 根红签、b 根白签均看作是没有区别的,仍把抽出的签依次排列成一 列,这是一个含有相同元素的全排列,每一个这样的全排列就是一个基本 事件,基本事件总数就等于(a+b )根含有相同签的全排列总数为 a +b ! a !. b !。 事件A k 可看成在第k 个位置上放红签,只有一种放法,在其余的a+b-1个 位置上放余下的a+b-1根签,其中a-1根是没有区别的红签,b 根是没有区 别的白签,共有 a +b?1 ! a?1 !b !种放法,所以A k 包含的基本事件数为 a +b?1 ! a?1 !b !,

相关文档
最新文档