Matlab多元线性回归.pdf

合集下载

第15讲 MATLAB 多元线性回归分析

第15讲  MATLAB 多元线性回归分析
假设,说明至少有一个回归系数 i 0 ,从而说明
变量 Y 线性依赖于某个变量 X i ;若检验的结果是 接受 H 0 ,则说明所有变量 X 1 , X 2 ,..., X p 对变量的线性 关系是不重要的。
本章目录
16
回 归 分析
2 线性回归
—多元线性回归
2.3 回归方程的假设检验—模型的检验
x i (1, xi1 ,...,xip )

本章目录
22
i 1,2,...,n
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
自变量的选择
本章目录
23
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择

选择自变量的准则 选择自变量进入回归模型的方法

(SAS实例)
本章目录
24
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法
1. 引言
因变量
y 自变量为 x , x ,, x
1 2
p
满足线性关系
p
y x x e
0 1 1 p
(I)
对 x1 , x2 ,, x p y 进行 n 次观测, 所得的 n 组数据为
xi1 , xi 2 ,, xip, (i 1,2,, n)
它们均满足(I)式
25
本章目录
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab 成立多元线性回归模型并进行显着性查验及展望问题例子 ;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增添一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果: b = bint =stats =即对应于 b 的置信区间分别为 [, ]、[,]; r2=, F=, p= p<, 可知回归模型 y=+ 成立 . 这个是一元的,假如是多元就增添 X 的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)%多元线性回归 (Y=Xβ +ε )MATLAB代码%?%参数说明%X:自变量矩阵,列为自变量,行为观察值%Y:应变量矩阵,同 X%alpha:置信度, [0 1]之间的随意数据%beta_hat:回归系数%Y_beata:回归目标值,使用 Y-Y_hat来观察回归成效%stats:构造体,拥有以下字段%=[fV,fH], F 查验有关参数,查验线性回归方程能否显着%fV: F 散布值,越大越好,线性回归方程越显着%fH: 0 或 1,0 不显着; 1 显着 (好)%=[tH,tV,tW] ,T 查验有关参数和区间预计,查验回归系数β能否与 Y 有显着线性关系%tV: T 散布值, beta_hat(i)绝对值越大 ,表示 Xi 对 Y 显着的线性作用%tH: 0 或 1,0 不显着; 1 显着%tW :区间预计拒绝域,假如beta(i)在对应拒绝区间内,那么否定%=[T,U,Q,R],回归中使用的重要参数%T:总离差平方和,且知足T=Q+U%U:回归离差平方和%Q:残差平方和%R∈[0 1] :复有关系数,表征回归离差占总离差的百分比,越大越好%举例说明%比方要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意必定要将本来方程线化%x1=rand(10,1)*10;%x2=rand(10,1)*10;%Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; %将本来的方表达式化成 Y=Xβ,注意最前方的 1 不要丢了%[beta_hat,Y_hat,stats]=mulregress(X,Y,%%注意事项%有可能会出现这样的状况,总的线性回归方程式显着的 =1),%可是全部的回归系数却对 Y 的线性作用却不显着 =0),产生这类现象的原意是%回归变量之间拥有较强的线性有关,但这类线性有关不可以采纳方才使用的模型描绘,%因此需要从头选择模型%C=inv(X'*X);%最小二乘回归剖析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归展望%离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); %残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); %回归离差平方和 T=(Y-Y_mean)'*(Y-Y_mean); %总离差平方和,且知足T=Q+U R=sqrt(U/T); %复有关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); %p变量个数, n 样本个数%回归显着性查验fV=(U/(p-1))/(Q/(n-p)); % 听从 F 散布, F 的值越大越好 fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着 (好);H=0,回归不显着%回归系数的显着性查验chi2=sqrt(diag(C)*Q/(n-p)); % 听从χ 2(n-p)散布 tV=beta_hat./chi2; % 听从 T 散布,绝对值越大线性关系显着 tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示 Xi 对 Y 显着的线性作用; H(i)=0,Xi 对 Y 的线性作用不显然%回归系数区间预计tW=[-chi2,chi2]*tInv; % 接受 H0,也就是说假如在beta_hat(i)对应区间中,那么Xi 与 Y 线性作用不显然stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。

Matlab 多元线性回归

Matlab 多元线性回归
在 Matlab 图示所示:
/输出结果如图所示:/
因 此 我 们 可 得 bˆ0 = −16.0730, , bˆ1 = 0.7194.
bˆ0 的置信区间 ( − 33.7071, 1.5612) ,
bˆ1 的置信区间 (0.6047, 0.834). r2 = 0.9282, F = 180.9531, p = 0.0000.
多元线性回归模型的一般形式为:
Yi =β0 +β1X1i +β2X2i + +βk Xki +μi , i=1,2, ,n
(1)
其中 k 为解释变量的数目, β j ( j = 1,2, ,k) 称为回归系数(regression coefficient)。上
式也被称为总体回归函数的随机表达式。它的非随机表达式为:
Matlab 多元线性回归
1、 多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象 常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一 个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模 型。(multivariable linear regression model )
在 Matlab 图示所示:
/输出结果如图所示:/
bˆ0 = 62.4054, bˆ0 的置信区间 ( − 99.1786, 223.9893) , bˆ1 = 1.5511, bˆ1 的置信区间 (−0.1663, 3.2685) , 因此我们可得 bˆ2 = 0.5102, , bˆ2 的置信区间 (−1.1589, 2.1792) , bˆ3 = 0.1019, bˆ3 的置信区间 (−1.6385, 1.8423) , bˆ4 = −1441. bˆ4 的置信区间 (−1.7791, 1.4910). r2 = 0.9824, F = 111.4792, p = 0.0000. p < 0.05,回归模型 y = −62.4054 +1.5511x1 + 0.5102x2 +0.1019x3 -0.1441x4成立.

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 9698 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显著% fV:F分布值,越大越好,线性回归方程越显著% fH:0或1,0不显著;1显著(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显著线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显著的线性作用% tH:0或1,0不显著;1显著% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显著的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显著的=1),% 但是所有的回归系数却对Y的线性作用却不显著=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显著性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显著(好);H=0,回归不显著% 回归系数的显著性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显著tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显著的线性作用;H(i)=0,Xi 对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]) ;。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立.⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、多项式回归(一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];[p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 10075 80 70 50 65 90 100 110 60收入 1000 600 1200500 300 400 1300 1100 1300 300 价格 5 7 6 6 8 7 5 4 3 9解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.00011.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值.(2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,StepwiseHistory.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

matlab回归(拟合)总结(一元、多元)

matlab回归(拟合)总结(一元、多元)

matlab 回归(拟合)总结前言1、学三条命令polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2、同一个问题,这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。

相当于咨询多个专家。

3、回归的操作步骤:根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。

(并写出该函数表达式的一般形式,含待定系数)------选用某条回归命令求出所有的待定系数。

所以可以说,回归就是求待定系数的过程(需确定函数的形式)一、回归命令一元多次拟合polyfit(x,y,n);一元回归polyfit;多元回归regress---nlinfit(非线性)二、多元回归分析对于多元线性回归模型(其实可以是非线性,它通用性极高): e x x y pp ++++=βββ 110设变量12,,,p x x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n =记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同(),拟合成多元函数---regress使用格式:左边用b=[b, bint, r, rint, stats]右边用=regress(y, x)或regress(y, x, alpha) ---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。

matlab多元回归方程系数求解

matlab多元回归方程系数求解

matlab多元回归方程系数求解英文回答:To solve a multiple regression equation in MATLAB, you can use the "regress" function. This function takes in two arguments: the dependent variable and the independent variables. The dependent variable should be a column vector, and the independent variables should be a matrix where each column represents a different independent variable.Here's an example to illustrate how to use the "regress" function in MATLAB:matlab.% Create a sample dataset.x1 = [1; 2; 3; 4; 5];x2 = [2; 4; 6; 8; 10];y = [5; 10; 15; 20; 25];% Create a matrix of independent variables.X = [ones(size(x1)), x1, x2];% Solve the multiple regression equation.[b, bint, r, rint, stats] = regress(y, X);In this example, we have two independent variables (x1 and x2) and one dependent variable (y). We create a matrix X that includes a column of ones (for the intercept term) and the two independent variables. Then, we use the "regress" function to solve the multiple regression equation.The function returns several outputs. The "b" variable contains the estimated coefficients of the regression equation. In this case, b will be a column vector with three elements, representing the intercept term and thecoefficients for x1 and x2. The "bint" variable containsthe confidence intervals for the coefficients. The "r" variable contains the residuals (the differences betweenthe observed and predicted values), and the "rint" variable contains the confidence intervals for the residuals. Finally, the "stats" variable contains additionalstatistics, such as the R-squared value and the F-statistic.中文回答:要在MATLAB中求解多元回归方程,可以使用"regress"函数。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。

利用MATLAB进行多元线性回归

利用MATLAB进行多元线性回归

通常,进行多元线性回归的步骤如下: (1)做自变量与因变量的散点图,根据散点图的形 状决定是否可以进行线性回归; (2)输入自变量与因变量; (3)利用命令: [b,bint,r,rint,s]=regress(y,X,alpha),rcoplot(r,rint) 得到回归模型的系数以及异常点的情况;
RSS /(( n c ) / 2 k 1 )RSS 2 2 F ~ F (( n c ) / 2 k 1 , ( n c ) / 2 k 1 ) RSS /(( n c ) / 2 k 1 )RSS 1 1
其中,n为样本容量,k为自变量个数. 然后对残差进行自相关性的检验,通常我们利用DW检 验进行残差序Байду номын сангаас自相关性的检验。该检验的统计量为:
2
3 10
215
138 154
47
45 56
31.1
22.6 19.3
1
0 0
22
23 30
142
120 175
50
39 69
26.2
23.5 27.4
1
0 1
体重指数 = 体重(kg)/身高(m)的平方 吸烟习惯: 0表示不吸烟,1表示吸烟
建立血压与年龄、体重指数、吸烟习惯之间的回归模型
DW ( e e ) / e t t 1 t
2 t 2 t 1 n n 2
其中 e t 为残差序列,对于计算出的结果通过查 表决定是否存在自相关性。 若 du<DW<4-du,则不存在自相关性; 若 DW<dl,则存在一阶正相关; DW>4-dl,则存在一阶负相关; 若 dl<DW<du 或4-du<DW<4-dl ,则无法判断

Matlab多元线性回归

Matlab多元线性回归

Matlab多元线性回归Matlab多元线性回归[ b , bint , r , rint , stats ]=regress ( y , x ) ,其中b 是回归⽅程中的参数估计值,bint 是b 的置信区间,r 和rint 分别表⽰残差及残差对应的置信区间。

StatS 数组包含三个数字,分别是相关系数,F 统计量及对应的概率p 值。

拟合结果:Y=b(1)x(1)+b(2)x(2)+b(3)x(3)+…+b(n)x(n)b(1)是系数,x(1)为全1的⼀个列向量。

注意:不是插值。

x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3155 3372];%因变量时间序列数据y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];%⾃变量时间序列数据X=[ones(size(x')),x'];[b,bint,r,rint,stats]=regress(y',X,0.05);%调⽤⼀元回归分析函数rcoplot(r,rint)%画出在置信度区间下误差分布.举例:x =1 2 4 91 4 3 71 5 9 01 9 1 8>> y=[10 3 90 48]';>> [ b , bint , r , rint , stats ]=regress ( y , x )得到的结果b =-186.833316.023821.85718.5952bint =NaN NaNNaN NaNNaN NaNNaN NaNr =1.0e-013 *-0.5684rint =NaN NaNNaN NaNNaN NaNNaN NaNstats =1 NaN NaN NaN另外,⽤b=inv(x)*y得到的结果和上⾯⽤regression得到的⼀样。

[VIP专享]matlab多元线性回归模型

[VIP专享]matlab多元线性回归模型

159.6
7
11
60
5.5
11
339.4
16
5
73
6.5
10
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
提示:建立一个多元线性回归模型。
195.0
11
9
59

多元线性回归matlab程序

多元线性回归matlab程序
164.66 142.27 -147.2 120.21 135.28 157.65
164.7 142.94 -148.45 120.68 135.16 157.63
164.67 141.56 -145.88 119.68 135.29 157.61
164.69 143.84 -150.34 121.34 135.12 157.64
164.23 140.73 -144.18 119.12 135.57 157.2
163.04 140.34 -144.03 119.31 135.97 156.31
165.54 146.88 141.4 -144.34 118.67 134.67 159.28
166.35 139.29 -144.2 119.1 136.33 157.59
165.54 140.14 -144.19 119.09 135.81 157.67
166.75 138.95 -144.17 119.15 136.55 157.59
167.69 138.07 -144.14 119.19 137.11 157.65
120 73 231.39 80 125 125 81.1 90
120 73 198.48 80 125 125 81.1 90
120 73 212.64 80 125 125 81.1 90
120 73 190.55 80 125 125 81.1 90
120 73 180 75.857 125 125 81.1 90
120 73 180 65.958 125 125 81.1 90
120 73 180 87.258 125 125 81.1 90
120 73 180 97.824 125 125 81.1 90

(研究生数理统计)多元线性回归及显著性检验Matlab程序(完美版)

(研究生数理统计)多元线性回归及显著性检验Matlab程序(完美版)

多元线性回归及显著性检验Matlab程序(完美版)之宇文皓月创作一、说明:1、本程序是研究生教材《数理统计》(杨虎、刘琼、钟波编著)例4.4.1(P133)的Matlab编程解答程序。

教材上的例题只做了回归方程显著性分析和一次回归系数显著性分析(剔除x1后没有再检验x2和x3)。

2、本程序在以上的基础之上,还分别检验了x2和x3,而且计算精度更高。

3、本程序可根据用户的需要,在输入分歧的显著性水平α之下得到相应的解答。

4、本程序移植性强,对于其他数据,只需要改变excel中的数据即可。

5、本程序输出的可读性强,整洁美观。

二、数据入下(将数据存入excel表格,文件名为jc_p133_example.xls。

注意数据是按x1,x2,…,xk,y这样来列来存储。

若不是3个变量,则相应增减数据列就行。

):三、完整程序如下:%----------------------------by ggihhimm----------------------------%《数理统计》杨虎、刘琼、钟波编著例 4.4.1 多元线性回归及显著性检验完整解答% 输入需要的显著水平α(默认α=0.02),计算出分歧结果(见运行结果)% 该程序也适合其他维数的数据分析(只需改变excel表格中的数据即可)%----------------------------by ggihhimm----------------------------clear;clc;data=xlsread('jc_p133_example.xls','sheet1');xi=data(:,1:end-1);[n,k]=size(data);k=k-1;index_of_xi_array=ones(1,k);X=[ones(n,1) xi];Y=data(:,end);fprintf('第1次计算结果:\r')beta_mao=((X'*X)\X'*Y)';fmt_str0='';for i0=1:k+1fmt_str0=[fmt_str0 'β' num2str(i0-1) ' = %0.4f\r'];endfprintf(fmt_str0,beta_mao)fprintf('\r')%%检验回归方程的显著性x_ba=mean(xi);y_ba=mean(Y);St_square=sum(Y.^2)-n*y_ba^2;lxy=sum((xi-ones(n,1)*x_ba).*((Y-y_ba)*ones(1,k)));Sr_square=sum(beta_mao(2:end).*lxy);Se_square=St_square-Sr_square;c_flag=Sr_square/Se_square;F_alpha=input('>>>>>>请输入您要求的显著性水平(0<α<1)α= ');while ~(isscalar(F_alpha) && F_alpha<1 && F_alpha>0)F_alpha=input('您的输入有误,请重新输入一个大于0,小于1的数,α= ');endF_fenweidian=finv(1-F_alpha,k,n-k-1);c=k/(n-k-1)*F_fenweidian;if c_flag>cfprintf(['\r--------------------回归方程显著性检验(H0:β1=β2=...=βk=0)' ...'--------------------\r经过计算:拒绝H0,原假设不成立。

Matlab实现多元回归实例-8页word资料

Matlab实现多元回归实例-8页word资料

Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。

如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。

进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。

在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。

回归方程具有如下形式: 其中,ε是残差。

在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。

⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。

多元线性回归 matlab中求解

多元线性回归   matlab中求解

多元线性回归matlab中求解源代码:y=data(:,1);>> x=data(:,2:3);>> [b,bint,r,rint,stats]=regress(y,x)结果:b =1.603121.0280bint =0.6449 2.561214.4526 27.6034r =-16.24428.875417.58288.31557.6692-20.79900.15789.129821.1145-28.9567rint =-54.5200 22.0316-28.0267 45.7775-15.2745 50.4401-29.9540 46.5850-30.7374 46.0758-57.6551 16.0572-40.7942 41.1098-30.8252 49.0848-15.2155 57.4446-59.3228 1.4095stats =1.0148 742.1191 0.0000 322.5068分析结果:stats四个值说明:判决系数r^2,,F统计值,p值,误差方差y=a1*x(1)+a2*x(2);其中a1=1.6031,a2=21.0280,a1的置信区间【0.6449,2.5612】,a2的置信区间【14.45426,27.6043】,p小于0.05,说明显著效果很好,越小越好在spss中求解:线性规划matlab求解例1:c=[2;3;1]; mix z=2*x1+3*x2+x3 >> a=[1 4 2;3 2 0]; s.t 1.x1+4*x2+2*x3>=8; >> b=[8;6]; 2.3*x1+2*x2>=6;>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1) ) 3.x1>=0,x2>=0,x3>=0结果:x =0.80661.79000.0166 %最优解y =7.0000 %最优值例2:c=[2;3;-5]; max z=2*x1+3*x2-5*x3a=[-2,5,-1];b=-10; s.t 1.x1+x2+x3=7;aeq=[1,1,1]; 2.2*x1-5*x2+x3>=10;beq=7; 3.x1>=0,x2>=0,x3>=0%是求最大值而不是最小值,注意这里是"-c"而不是"c"x=linprog(-c,a,b,aeq,beq,zeros(3,1))value=c'*x结果:x =6.42860.57140.0000 %最优解value = 14.5714 %最优值例3.(整数规划)灰色预测clearsyms a b;c=[a b]';A=[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670];B=cumsum(A); %原始数据累加n=length(A);for i=1:(n-1)C(i)=(B(i)+B(i+1))/2; %生成累加矩阵end% 计算待定参数的值D=A;D(1)=[];D=D' ;E=[-C;ones(1,n-1)];c=inv(E*E')*E*D;c=c' ;a=c(1);b=c(2);% 预测后续数据F=[];F(1)=A(1);for i=2:(n+10)F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;endG=[];G(1)=A(1);for i=2:(n+10)G(i)=F(i)-F(i-1); %得到预测出来的数据endt1=1999:2008;t2=1999:2018;Gplot(t1,A,'o',t2,G)结果; 1.0e+006 *0.08970.08930.10340.11960.13850.16020.18540.21460.24830.28730.33250.38470.44520.51520.59620.68990.79840.92391.06911.2371。

MATLAB中多元线性回归的例子

MATLAB中多元线性回归的例子

s2=sum(r.^2)/(n-m-1);
b,bint,s,s2
rcoplot(r,rint)
模型 求解
xueya01.m
回归系数 回归系数估计值 回归系数置信区间
0
45.3636
[3.5537 87.1736]
1
0.3604
[-0.0758 0.7965 ]
2
3.0906
[1.0530 5.1281]
下面我们对模型进行检验: (1)残差的正态检验: 由jbtest检验,h=0表明残差服从正态分布,进而由t检验可知h=0,p=1,故残差服从 均值为零的正态分布; (2)残差的异方差检验: 我们将28个数据从小到大排列,去掉中间的6个数据,得到F统计量的观测值为:f =1.9092,
由F(7,7)=3.79,可知:f =1.9092<3.79,故不存在异方差.
这时置信区间不包含零点,F统计量增大,可决系数从0.6855增大到0.8462 , 我们得到回归模型为:
yˆ 58.5101 0.4303 x1 2.3449 x2 10.3065 x3
通常,进行多元线性回归的步骤如下:
(1)做自变量与因变量的散点图,根据散点图的形状决定是否可以进行线性回归;
67 56 64 56 59 34 42 48
45 18 20 19 36 50 39 21
44 53 63 29 25 69];
x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0
25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5
(3)残差的自相关性检验: 计算得到:dw = 1.4330,查表后得到:dl=0.97 , du=1.41, 由于 1.41=du<dw=1.433<4-du=2.59 ,残差不存在自相关性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 多元线性回归
1、 多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象 常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一 个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模 型。(multivariable linear regression model )
达到最小。

∑ ⎪⎪
⎨ ⎪
∑ ⎪⎩
∂Q ∂b0
=
n
−2
i =1
( yi
− b0
− b1xi1

∂Q ∂bj
=
n
−2
i =1
( yi
− b0
− b1xi1

j = 1, 2, , p
− bp xip ) = 0, − bp xip )xij = 0
(4)化简可得:
− bp xip )2
(4)
∑ ∑ ∑ ∑ n
Yi =β0 +β1X1i +β2X2i + +βk Xki , i=1,2, ,n
(2)
β j 也被称为偏回归系数(partial regression coefficient)。
2、 多元线性回归计算模型
Y=β0 +β1x1+β2 x2 + +βk xk +ε , ε ∼ N (0,δ 2 )
(3)
μ(x1, x2 , , xp ) = b0 + b1x1 + + bp xp 的估计是:
yˆ = bˆ0 + bˆ1x1 + bˆ2 x2 +
公式(8)为 P 元经验线性回归方程。
+ bˆp xp
3、 Matlab 多元线性回归的实现
多元线性回归在 Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中
⎪ ⎪ ⎬


∑ ∑ ∑ ∑ n
n
n
b0 xip + b1 xip xi1 + b2 xip xi2 +
+ bp
n
xi2p
⎪ ⎪
i =1
i =1
i =1
i=1 ⎪
n
∑ = xip yi. i =1
⎪ ⎪⎭
引入矩阵:
⎛1
X
=
⎜⎜1 ⎜
x11 x21
⎜⎜⎝1 xn1
方程组(5)可以化简得:
可得最大似然估计值:
n
b0n + b1 xi1 + b2 xi2 +
n
+ bp
xip =
n
yi ,
⎫ ⎪
i =1
i =1
i =1
i =1

∑ ∑ ∑ ∑ n
n
n
b0 xi1 + b1 xi21 + b2 xi1xi2 +
+ bp
n
⎪ xi1xip ⎪
i =1
i =1
i =1
i =1

n
∑ = xi1 yi , i =1
多元线性回归模型的一般形式为:
Yi =β0 +β1X1i +β2X2i + +βk Xki +μi , i=1,2, ,n
(1)
其中 k 为解释变量的数目, β j ( j = 1,2, ,k) 称为回归系数(regression coefficient)。上
式也被称为总体回归函数的随机表达式。它的非随机表达式为:
Matlab 程序为: /输入如下命令:/
x=[143,145,146,147,149,150,153,154,155,156,157,158,159,160,162,164]; y=[88,85,88,91,92,93,93,95,96,98,97,96,98,99,100,102]; X=[ones(length(y),1),x']; Y=y'; [b,bint,r,rint,stats]=regress(Y,X); b,bint,stats
验回归模型
①bint 表示回归系数的区间估计.
②r 表示残差
③rint 表示置信区间
④stats 表示用于检验回归模型的统计量,有三个数值:相关系数 r2、F 值、与 F 对应的
概率 p
说明:相关系数 r2 越接近 1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝 H0,F 越大,说明回归方程越显著;与 F 对应的概率 p<α 时拒绝 H0,回归模型成立。
多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe) 为最小的前提下,用最小二乘法或最大似然估计法求解参数。
设 (x11, x12 ,
参数:
, x1p , y1),
, (xn1, xn2 ,
, xnp , yn ) 是一个样本,用最大似然估计法估计
n
∑ 取 bˆ0 , bˆ1, , bˆp , 当 b0 = bˆ0 , b1 = bˆ1, , bp = bˆp 时,Q = ( yi − b0 − b1xi1 − i =1
⎛1
X
=
⎜⎜1 ⎜
x11 x21
x12 x22
⎜⎜⎝1 xn1 xn2
x1 p x2 p


⎟ ⎟
,Y
=
⎛ ⎜ ⎜ ⎜
y1 y2
⎞ ⎟ ⎟⎟, B
=
⎛ ⎜ ⎜
b0 b1



⎟ ⎟
.
xnp ⎟⎟⎠
⎜⎟ ⎝ yn ⎠
⎜⎜⎝ bp ⎟⎟⎠
(5)
(6) (7) (8)
(9)
(2)[b,bint,r,rint,stats]=regress(Y,X,alpha) 求回归系数的点估计和区间估计、并检
x12 x22
x1 p x2 p


⎟ ⎟
,Y
=
⎛ ⎜ ⎜ ⎜
y1 y2

Hale Waihona Puke ⎟⎟ ⎟,
B
=
⎛ ⎜ ⎜ ⎜
b0 b1
⎞ ⎟ ⎟⎟ .
xn 2
xnp ⎟⎟⎠
⎜⎟ ⎝ yn ⎠
⎜⎜⎝ bp ⎟⎟⎠
X ' XB = X 'Y
⎛ ⎜
bˆ0
⎞ ⎟

=
⎜ ⎜
bˆ1
⎟ ⎟
=
(X
'
X
)−1
X
'Y
⎜⎟
⎜ ⎝
bˆp
⎟ ⎠
159
160
162
164
腿长
96
98
97
96
98
99
100
102
试研究这些数据之间的关系。
分析: x=[143,145,146,147,149,150,153,154,155,156,157,158,159,160,162,164] 由式(9)可得 X=[eT, xT](eT 为单位列向量) y=[88,85,88,91,92,93,93,95,96,98,97,96,98,99,100,102] Y= yT
⑤alpha 表示显著性水平(缺省时为 0.05)
(3)rcoplot(r,rint)
画出残差及其置信区间
实例 1:(一元线性回归)
测得 16 名女子的身高和腿长如下表所示(单位:cm):
身高
143
145
146
147
149
150
153
154
腿长
88
85
88
91
92
93
93
95
身高
155
156
157
158
相关文档
最新文档