高中数学推理与证明知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学推理与证明知识点总结高中数学推理与证明知识点总结

一、考点(限考)概要:

1、推理:

(1)合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,称为合情推理。

①归纳推理:

ⅰ定义:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论

的推理,称为归纳推理,简称归纳。

ⅱ特点:

*归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论

超越了前提所包容的范围;

*归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性;

*归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实

验的基础之上;

*归纳是立足于观察、经验、实验和对有限资料分析的基础上,

提出带有规律性的结论。

ⅲ步骤:

*对有限的资料进行观察、分析、归纳整理;

*提出带有规律性的结论,即猜想;

*检验猜想。

②类比推理:

ⅰ定义:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

ⅱ特点:

*类比是从人们已经掌握了的事物的属性,推测正在研究的事物

的属性,是以旧有的认识为基础,类比出新的结果;

*类比是从一种事物的特殊属性推测另一种事物的特殊属性;

*类比的结果是猜测性的不一定可靠,单它却有发现的功能。

ⅲ步骤:

*找出两类对象之间可以确切表述的相似特征;

*用一类对象的已知特征去推测另一类对象的特征,从而得出一

个猜想;

*检验猜想。

(2)演绎推理:

①定义:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

②演绎推理是由一般到特殊的推理;

③“三段论”是演绎推理的一般模式,包括:

大前提——已知的一般结论;

小前提——所研究的特殊情况;

结论——根据一般原理,对特殊情况得出的判断。

④“三段论”推理的依据,用集合的观点来理解:

若集合M的所有元素都具有性质P,S是M的一个子集,那么S

中所有元素也都具有性质P。

(3)合情推理与演绎推理的区别与联系:

①归纳是由特殊到一般的推理;

②类比是由特殊到特殊的推理;

③演绎推理是由一般到特殊的推理.

④从推理的结论来看,合情推理的结论不一定正确,有待证明;

演绎推理得到的结论一定正确。

⑤演绎推理是证明数学结论、建立数学体系的重要思维过程;而

数学结论、证明思路的发现,主要靠合情推理.

(1)直接证明:

①综合法:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方

法叫做综合法。综合法又叫顺推法,其特点是:“由因导果”。

②分析法:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫

逆推证法,其特点是:“执果索因”。

③数学归纳法:

ⅰ数学归纳法公理:

如果①当n取第一个值

(例如

等)时结论正确;

②假设当

时结论正确,证明当n=k+1时结论也正确;

那么,命题对于从

开始的所有正整数n都成立。

ⅱ说明:

*数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必

须严格按步骤进行;

*数学归纳法公理是证明有关自然数命题的依据。

(2)间接证明(反证法、归谬法):假设原命题不成立,经过正确

的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

用反证法证明一个命题常采用以下步骤:

①假定命题的结论不成立;

②进行推理,在推理中出现下列情况之一:与已知条件矛盾;与

公理或定理矛盾;

③由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;

④肯定原来命题的结论是正确的。

即“反设——归谬——结论”

一、合情推理

1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的

联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推

导类比对象的'性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式

是正确的,其结论一定是正确,一定要注意推理过程的正确性与完

备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、

公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假

设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立

和数列通项公式成立。

相关文档
最新文档