第一章 化学发展简史
2024新教材高中化学第1章第1节走进化学科学教案鲁科版必修第一册
- 学生通过参与课堂讨论、实验探究等活动,提高了观察、分析、解决问题的能力。
- 学生在小组合作中,学会了倾听他人意见,提升了团队协作能力。
- 学生通过课后拓展阅读和思考题,培养了自主学习的能力,拓宽了知识面。
3. 情感态度与价值观:
- 学生对化学学科产生浓厚的兴趣,激发了对自然科学探究的热情。
- 课后拓展:布置相关阅读材料和思考题,引导学生课后深入学习,提升学科素养。
6. 总结与布置作业(5分钟)
- 课程总结:简要回顾本节课的主要内容,强调化学与生活的紧密联系。
- 布置作业:布置与本节课相关的作业,巩固所学知识,培养学生的自主学习能力。
教学过程中,教师应注重启发式教学,鼓励学生积极参与,关注学生的个体差异,确保教学双边互动,提高学生的学科素养和核心素养能力。
- 对于论述题,评价学生的理解深度和表述能力,鼓励学生用自己的语言解释概念。
- 对于实践题,关注学生的实验设计是否安全、合理,实验记录是否完整。
- 对于阅读拓展,鼓励学生提出自己的观点和思考,促进学生的批判性思维。
- 反馈时,针对每个学生的具体情况,给出具体的改进建议,鼓励学生改正错误,提高作业质量。
- 简史:古代→近代→现代
- 方法:观察、实验、推理
- 应用:生活、能源、材料、环保
- 方程式:规则、配平
- 守恒定律:质量守恒、物质守恒
板书设计应注重清晰展示知识点的层次结构和内在联系,使用简洁明了的语言和符号,帮助学生更好地理解和记忆课程内容。
学情分析
三、学情分析:高中一年级学生在知识层面,已具备一定的自然科学基础,但对于化学学科的专业知识和研究方法尚处于起步阶段。在能力方面,学生的观察、分析、解决问题的能力有待提高,实验操作和数据处理能力也需进一步培养。素质方面,学生普遍具有好奇心和探索精神,但科学思维和创新能力有待加强。行为习惯上,部分学生可能存在注意力分散、学习方法不当等问题,这将对课程学习产生影响。针对这些情况,教学应注重激发学生兴趣,引导其主动参与,通过启发式教学和实验探究,提高学生的学科素养和自主学习能力,帮助学生建立正确的化学观念,为后续学习打下坚实基础。
化学发展简史与人类文明
古代和近代化学史大事记
古代和近代化学史大事记
• 古代和近代化学史大事记
•
§我国有了青铜器;春秋晚期能炼铁;战国晚期能炼钢;唐代有了火药。
•
§十八世纪七十年月,瑞典化学家舍勒和英国化学家普利斯里分别觉察并制得了
氧气;法国化学家拉瓦锡最早用天平和为争论化学的工具,并推翻了燃素学说;英国
化学家卡文迪许、雷利等间续从空气中觉察了惰性气体。
式的诞生和工业革命的进展,以及天文学、物理学等学科的重大突破,化学 试验最终冲破了炼丹术的桎梏,走上了科学的康庄大道。为此做出巨大奉献 的化学试验家产推波义耳(R.Boyle,1627—1691)和拉瓦锡(voisier, 1743—1794)。
• 现代化学试验 • 19世纪末20世纪初,以震惊整个自然科学的电子、X射线与放射性等三大觉察
• 拉瓦锡的化学试验方法论思想,对化学试验从定性向定量的进展产生 了乐观和深远的影响,成为近代化学试验进展史上的重要里程碑。正 是在此根底上,近代化学试验才得以蓬勃进展,从而拓展了化学科学 争论的领域,导致了很多重要化学理论的建立和进展。
近代化学试验
• 三 化学试验是化学科学理论建立和进展的根底
• 道尔顿(J.Dalton,1766—1844)原子论就是在化 学科学试验的根底上建立起来的。
• 他还觉察了铜盐和银盐、盐酸和硫酸的化学检验方法,并在1685年发 表的“矿泉水的试验争论史的简洁回忆”一文中,描述了一套鉴定物 质的方法。因此,他还常被尊为定性分析化学的奠基者。
近代化学试验
• 二 定量化学试验方法论的创立者——拉瓦锡
• 拉瓦锡“是明确提出把量做为衡量尺度对化学现 象进展试验证明的第一位化学家”,他把近代化 学试验推动到定量争论的水平。
配位化学发展简史及基本概念
黄色氯化钴[Co(NH3)6]Cl3 紫色氯化钴[Co(NH3)5Cl]Cl2
配合物中金属是如何与中性分子或有机基团结合呢?对此 先后有多种的解释,其中包括利用19世纪已经确立的有机 属性与结构的关系作解释,但无法从根本上对配 位化合物的结构给予说明。
础。
NH3 Cl
NH3
NH3
NH3
Cl
Co
NH3
NH3
NH3 Cl
NH3
NH3
Cl
Co
NH3
NH3
NH3 Cl
5
6
Cl
Cl
NH3
NH3
Cl
Co
NH3
NH3
Co
NH3
Cl
Cl
Cl
NH3
NH3
7
整理ppt
8
31
Werner对立体化学的贡献—确定六配位配合物的八面 体结构
已知的异构体数与理论上三种不同结构可能异构体数
4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、 金属药物、非线性光学材料、分子磁体、介孔材料、分子机器 等。
整理ppt
13
微量元素与人体健康的问题是世界各国普遍关心 的问题,也是生物无机化学研究的重点课题。新 近发现,许多无机元素在人体中具有极其重要的 作用。如:
缺硒与“克山病”的联系;
项目
配合物 MA5B MA4B2 MA3B3
已知异 构体数
1 2 2
1
6
2
5
3
4
1
2
1
3
5
2
4
5
4
3
5
6
平面六角 形
三角棱柱体
八面体
化学发展简史
化学发展的五个时期自从有了人类,化学便与人类结下了不解之缘。
钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。
正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。
今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。
从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢?1.远古的工艺化学时期。
这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。
这是化学的萌芽时期。
2.炼丹术和医药化学时期。
从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。
记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。
这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。
这是化学史上令我们惊叹的雄浑的一幕。
后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。
化学方法转而在医药和冶金方面得到了正当发挥。
在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。
英语的chemistry 起源于alchemy,即炼金术。
chemist至今还保留着两个相关的含义:化学家和药剂师。
这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。
3.燃素化学时期。
从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。
4.定量化学时期,既近代化学时期。
1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。
这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。
所有这一切都为现代化学的发展奠定了坚实的基础。
无机化学 电子书 免费下载 中文版
无机化学电子书免费下载中文版无机化学第一篇无机化学基本内容、基本理论第一章绪论第一节化学发展简史一、古代化学二、近代化学三、现代化学第二节无机化学简介一、无机化学的研究内容二、无机化学与药学三、无机化学的发展前景第二章非电解质稀溶液第一节溶液浓度的表示方法一、质量摩尔浓度二、物质的量浓度三、摩尔分数四、其他浓度表示方法(自学) 五、各浓度之间的换算(自学) 第二节非电解质稀溶液的依数性一、溶液的蒸气压下降二、溶液的沸点升高三、溶液的凝固点降低四、溶液的渗透压五、依数性的应用(阅读)本章小结习题第三章化学平衡第一节化学反应的可逆性和化学平衡一、化学反应的可逆性二、化学平衡第二节标准平衡常数及其计算一、标准平衡常数二、有关化学平衡的计算第三节化学平衡的移动一、浓度对化学平衡的影响二、压力对化学平衡的影响三、温度对化学平衡的影响四、选择合理生产条件的一般原则本章小结习题第四章电解质溶液第一节强电解质溶液理论一、电解质溶液的依数性二、离子氛与离子强度三、活度与活度系数第二节弱电解质的电离平衡一、水的电离与溶液的pH值(自学)二、一元弱酸、弱碱的电离平衡三、多元弱酸的电离第三节缓冲溶液一、缓冲作用原理二、缓冲溶液的pH值计算三、缓冲容量四、缓冲溶液的选择和配制五、血液中的缓冲系和缓冲作用六、缓冲溶液在控制药物稳定性中的应用第四节盐类水解一、各类盐的水解二、影响水解平衡移动的因素第五节酸碱的质子论与电子论(自学)一、酸碱质子论二、酸碱的电子论简介本章小结习题第五章难溶电解质的沉淀-溶解平衡第一节溶度积和溶解度一、溶度积常数二、溶度积和溶解度的关系(课堂讨论)三、溶度积规则第二节沉淀-溶解平衡的移动一、沉淀的生成二、沉淀的溶解三、同离子效应与盐效应第三节沉淀反应的某些应用(阅读)一、在药物生产上的应用二、在药物质量控制上的应用三、沉淀的分离本章小结习题第六章氧化还原反应第一节基本概念(课堂讨论) 一、氧化还原反应的实质二、氧化值第二节氧化还原反应方程式的配平一、离子-电子法(半反应法)二、氧化值法(自学)第三节电极电势一、原电池和电极电势二、影响电极电势的因素——能斯特方程式三、电极电势的应用四、氧化还原平衡及其应用五、元素电势图及其应用本章小结习题第七章原子结构与周期系第一节核外电子运动的特征(自学)一、量子化特性二、波粒二象性第二节核外电子运动状态的描述——量子力学原子模型一、薛定谔方程二、波函数和原子轨道(轨函)三、四个量子数四、概率密度和电子云五、波函数和电子云的空间形状第三节原子核外电子排步和元素周期系一、多电子原子的原子轨道能级二、原子核外电子的排布与电子结构三、原子的电子层结构和元素周期系第四节元素某些性质的周期性(自学)一、原子半径二、电离势三、电子亲和势四、元素的电负性本章小结习题第八章化学键与分子结构第一节离子键(自学)一、离子键的形成二、离子键的特征三、离子的特征四、离子晶体第二节现代共价键理论一、价键理论二、杂化轨道理论三、价层电子对互斥理论(阅读)四、分子轨道理论五、键参数(自学) 第三节键的极柱与为子的极性(阅读)一、键的极性二、分子的极性和偶极矩第四节分子间的作用力与氢键(课堂讨论)一、分子间的作用力二、氢键第五节禹子的极化(自学)一、离子极化的定义二、离子的极化作用三、离子的变形性四、相互极化作用五、离子极化对化合物性质的影响六、化学键的离子性本章小结习题第九章配位化合物第一节配位化合物的基本概念一、配位化合物的定义二、配合物的组成三、配合物的命名四、配位化合物的类型第二节配合物的化学键理论一、价键理论二、晶体场理论第三节配位化合物的稳定性一、配位化合物的稳定常数二、影响配位化合物稳定性的因素(阅读) 三、软硬酸碱规则与配离子稳定性(阅读)第四节配合平衡的移动一、配合平衡与酸碱电离平衡二、配合平衡与沉淀-溶解平衡三、配合平衡与氧化还原平衡四、配合物的取代反应与配合物的“活动性”第五节配位化合物的应用(自学)一、检验的特效试剂二、作掩蔽剂、沉淀剂三、在医药方面的应用四、在生化方面的应用本章小结习题第二篇元素化学第十章 s区和p区元素第一节 s区元素(自学) 一、碱金属和碱土金属的通性二、碱金属和碱土金属的化合物第二节 p区元素一、卤族元素二、氧族元素三、氮族元素四、碳族元素五、硼族元素本章小结习题第十一章 d区和ds区元素第一节 d区元素一、d区元素的通性二、d区元素的化合物第二节 ds区元素一、ds区元素的通性二、ds区元素的化合物本章小结习题第三篇拓展内容第十二章矿物药第一节矿物药的发展简史第二节矿物药的分类第三节矿物药的研究现状及发展前景一、矿物药研究现状二、矿物药的发展前景第十三章金属配合物在医药中的应用第一节金属配合物与疾病一、有害配体毒害作用的产生二、有害物质破坏金属配合物的正常状态三、金属离子间的相互交换反应四、有害金属离子与生物配体的配位作用第二节金属配合物的解毒作用一、巯基类解毒剂二、依地酸二钠钙及其类似物解毒剂三、青霉胺第三节抗肿瘤金属配合物一、铂系金属配合物二、金属茂配合物三、烷基化试剂的金属配合物四、希佛碱-金属配合物五、有机锗配合物六、有机锡配合物第四节抗癌金属配合物的选择与研究第十四章生物无机化学基本知识第一节生物无机化学研究的内容和方法第二节生物体内的重要配体一、氨基酸、肽和蛋白质二、核苷、核苷酸与核酸三、卟啉类化合物四、生物金属螯合物第三节生命元素一、生物体内元素的分类二、生物体内必需元素的生物功能三、微量元素与地方病第四节生物无机化学研究现状与展望一、生物无机化学基本反应规律的研究二、金属离子与细胞的相互作用三、微量元素的生物无机化学研究四、金属蛋白和金属酶的研究五、环境生物无机化学的研究进展第五节中医药微量元素研究与展望第十五章纳米技术、纳米材料与中医药第一节纳米技术与纳米材料一、纳米与纳米技术二、纳米材料三、纳米材料的奇异特性四、纳米材料的制备第二节纳米技术与医药学、中医药一、纳米技术与医药学的发展二、纳米技术与中医药的发展三、纳米中药制剂的设计与生产附录附录一中华人民共和国法定计量单位附录二常用的物理常数和单位换算附录三无机酸、碱在水中的电离常教(298K) 附录四难溶化合物的溶度积(291,298K)附录五标准电极电势表(298K) 附录六配离子的稳定常数(293,298K) 附录七化学元素相对原子质量(1993年) 附录八常用希腊字母的符号及汉语译音下面是诗情画意的句子欣赏,不需要的朋友可以编辑删除!!谢谢1. 染火枫林,琼壶歌月,长歌倚楼。
【化学课件】第一章化学发展简史
化学简史总题1.化学发展简史2.化学史上的中国人3.中国化学史上的“世界第一”4.化学史大事年表5.科学家与化学史6.古代和近代化学史7.与《绪言》有关的化学历史8.化学发展简史习题9.中外化学家简介1化学发展简史1.1、化学的前奏1.人类文明的起点——火的利用在几百万年以前,人类过着极其简单的原始生活,靠狩猎为生,吃的是生肉和野果。
根据考古学家的考证,至少在距今50万年以前,可以找到人类用火的证据,即北京周口店北京猿人生活过的地方发现了经火烧过的动物骨骼化石。
有了火,原始人从此告别了茹毛饮血的生活。
吃了熟食后人类增进了健康,智力也有所发展,提高了生存能力。
后来,人们又学会了摩擦生火和钻木取火,这样,火就可以随身携带了。
于是,人们不再是火种的看管者,而成了能够驾驭火的造火者。
火是人类用来发明工具和创造财富的武器,利用火能够产生各种各样化学反应这个特点,人类开始了制陶、冶金、酿造等工艺,进入了广阔的生产、生活天地。
2.历史悠久的工艺——制陶陶器是什么时候产生的,已很难考证。
对陶器的由来,说法不一,有人推测:人类最原始的生活用容器是用树枝编成的,为了使它耐火和致密无缝,往往在容器的内外抹上一层粘土。
这些容器在使用过程中,偶尔会被火烧着,其中的树枝都被烧掉了,但粘土不会着火,不但仍旧保留下来,而且变得更坚硬,比火烧前更好用。
这一偶然事件却给人们很大启发。
后来,人们干脆不再用树枝做骨架,开始有意识地将粘土捣碎。
用水调和,揉捏到很软的程度,再塑造成各种形状,放在太阳光底下晒干,最后架在篝火上烧制成最初的陶器。
大约距今1万年以前,中国开始出现烧制陶器的窑,成为最早生产陶器的国家。
陶器的发明,在制造技术上是一个重大的突破。
制陶过程改变了粘土的性质,使粘土的成分二氧化硅、三氧化二铝、碳酸钙、氧化镁等在烧制过程中发生了一系列的化学变化,使陶器具备了防水耐用的优良性质。
因此陶器不但有新的技术意义,而且有新的经济意义。
化学发展简史
化学发展简史化学作为一门研究物质组成、性质和变化的科学,自古至今在人类社会中发挥着重要的作用。
本文将为您详细介绍化学发展的历史,从古代的炼金术到现代的有机化学和无机化学,带您了解化学的发展脉络和重要里程碑。
1. 古代炼金术的起源和发展古代炼金术是化学发展的起点,它起源于古埃及和古希腊时期。
炼金术家们试图将低贵金属转化为贵金属,同时也探索了药物和草药的制备方法。
然而,由于缺乏科学方法和实验技术,炼金术的成果主要是基于经验和观察,缺乏系统性和理论性。
2. 化学元素的发现和分类在18世纪,化学元素的发现和分类成为化学发展的重要里程碑。
安托万·拉瓦锡提出了现代化学元素的概念,并将元素按照其性质进行了分类。
他的分类法为后来的化学家们提供了重要的启示,为元素的研究奠定了基础。
3. 化学反应和化学方程式的发展19世纪,化学反应和化学方程式的发展推动了化学的进一步发展。
亨利·博尔特莱特和安托万·拉瓦锡等化学家提出了化学反应的概念,并将其用化学方程式表示出来。
这使得化学反应的研究更加系统和准确,为后来的化学实验和工业化学奠定了基础。
4. 有机化学的崛起和发展19世纪末,有机化学的崛起和发展成为化学史上的重要事件。
弗里德里希·凯库勒首次提出了有机化合物的结构理论,开创了有机化学的新时代。
随后,许多重要的有机化学家如阿道夫·冯·拜尔、罗伯特·罗宾逊等相继提出了各自的理论和实验成果,推动了有机化学的发展。
5. 无机化学的发展和重要发现无机化学作为化学的另一个重要分支,在19世纪和20世纪取得了许多重要的发现。
例如,德米特里·门捷列夫发现了周期表,将元素按照其原子序数进行了分类。
此外,亨利·莫塞莱发现了一系列重要的无机化合物,如硝酸铵、硝酸钾等,为无机化学的研究和应用做出了重要贡献。
6. 现代化学的发展和应用20世纪,化学在科学研究和工业应用中发挥着越来越重要的作用。
化学发展简史
化学发展简史化学,这门神秘而又实用的科学,从远古时代开始,就一直伴随着人类的发展,不断地改变着我们的生活。
在远古时期,人类就已经开始对化学现象有了初步的认识和利用。
比如,火的使用就是一个重要的里程碑。
人们发现了摩擦生火的方法,学会了用木材、干草等可燃物来取暖、烹饪和照明。
火的使用不仅改变了人类的生活方式,还为后来的金属冶炼等化学工艺奠定了基础。
随着时间的推移,人类逐渐掌握了一些简单的化学技术。
在古代埃及,人们学会了用植物染料来染色,用金属制造工具和装饰品。
在古代中国,炼丹术的兴起也在一定程度上推动了化学的发展。
炼丹术士们试图通过各种方法炼制长生不老的丹药,虽然他们的目标没有实现,但在实验过程中积累了许多化学知识,比如对矿物质的认识和化学变化的观察。
到了中世纪,炼金术在欧洲盛行。
炼金术师们梦想着将普通金属转化为黄金,虽然这在当时是不切实际的幻想,但他们的工作促使了化学实验技术的进步,也为后来的化学研究积累了经验。
在这个时期,一些重要的化学仪器,如蒸馏器、坩埚等被发明和改进,化学实验的方法也逐渐变得更加规范和系统。
进入近代,化学迎来了真正的科学革命。
17 世纪,英国科学家罗伯特·波义耳提出了元素的概念,他认为元素是不能用化学方法再分解的简单物质。
这一概念为化学的发展指明了方向,标志着近代化学的开端。
18 世纪,法国化学家拉瓦锡通过精确的实验,推翻了“燃素说”,提出了氧化学说,彻底改变了人们对燃烧现象的认识。
他还通过定量实验,确立了质量守恒定律,为化学的定量研究奠定了基础。
19 世纪,化学取得了一系列重大的突破。
道尔顿提出了原子学说,认为化学元素是由不可再分的原子组成的,不同元素的原子具有不同的性质和质量。
这一学说为化学的发展提供了坚实的理论基础。
随后,阿伏伽德罗提出了分子学说,指出分子是由原子组成的,单质的分子由相同元素的原子组成,化合物的分子由不同元素的原子组成。
原子学说和分子学说的建立,使得化学从宏观进入到微观领域,为化学的进一步发展开辟了道路。
化学发展简史
马和
我国唐朝的炼丹家,是世界是最早发现氧气的人。马 和写有一本书叫做《平龙认》,马和的《平龙认》一 直流传到清代,后来被德国侵略者乘战乱时抢走,我 国现无保存。不过,在1807年,俄国彼得堡科学院的 一次学术讨论会上,德国汉学家朱利斯·克拉普罗兹 (Klaproth)宣布了一篇论文,文中说他见过《平龙 认》的中文手抄本。近代一些国外专著也提到了马和 及《平龙认》。如英国梅勒的《无机化学大全》,苏 联湿克拉索夫的《普通化学》教程。涅克拉索夫写道: “在8世纪时,中国学者马和的著作中就明确指出了 空气组成的复杂性,提出了制备氧气(阴气)的方法, 并发展了燃烧的假设”。 瑞典化学家舍勒和英国化学家普利斯特里发现氧气是 18世纪70年代,比马和的发现要晚1000多年。
二、近代化学——探索物质结构
徐寿:我国清末科学家。江苏无锡人。 徐寿:我国清末科学家。江苏无锡人。我国近 代化学史上一位重要人物。他一生著作很多, 代化学史上一位重要人物。他一生著作很多, 在化学方面主要有《化学鉴原》 在化学方面主要有《化学鉴原》、《化学鉴原 续编》 化学鉴原补编》 化学考质》 续编》、《化学鉴原补编》、《化学考质》、 化学求数》等书籍。 《化学求数》等书籍。他的著作系统地介绍了 19世纪七八十年代化学知识的主要内容。此外 世纪七八十年代化学知识的主要内容。 世纪七八十年代化学知识的主要内容 他于1875年在上海创立了“格致学院”(格 年在上海创立了“ 他于 年在上海创立了 格致学院” 致即格物致知,清末时对物理、化学的总称) 致即格物致知,清末时对物理、化学的总称) 公开讲演自然科学知识,还进行化学演示实验, 公开讲演自然科学知识,还进行化学演示实验, 对我国近代化学的发展起了重要的促进作用
道尔顿、阿伏伽德罗、门捷列夫
化学由宏观进入到微观的层次,使化学研究建 立在原子和分子水平的基础上。 元素周期表
化学发展简史
化学发展简史化学作为自然科学的一个重要分支,在人类社会的发展过程中发挥着重要的作用。
本文将从化学发展的历史角度出发,梳理化学发展的简史,带领读者了解化学在人类文明中的演变过程。
一、古代化学的萌芽1.1 早期人类对化学现象的观察古代人类开始对火、水、土、风等自然现象进行观察和实验,逐渐积累了化学知识。
1.2 古代文明中的化学实践古埃及、巴比伦、印度等古代文明国家在金属冶炼、染料制作、药物研究等方面有着丰富的化学实践经验。
1.3 古代哲学家对化学的思量古希腊的柏拉图、亚里士多德等哲学家开始探讨物质的本质和变化规律,为后来的化学理论奠定了基础。
二、中世纪的炼金术时代2.1 炼金术的兴起中世纪时期,炼金术盛行,人们试图通过炼金术实现黄金的创造,同时也积累了一些实验经验。
2.2 炼金术对化学的影响炼金术促进了实验方法的发展,推动了化学知识的积累和传播。
2.3 炼金术的衰落随着科学方法的兴起和实验技术的进步,炼金术逐渐被现代化学所取代,成为化学发展史上的一个重要阶段。
三、现代化学的奠基者3.1 卢瑟福的原子理论英国科学家卢瑟福提出原子理论,开创了现代化学的先河。
3.2 门捷列夫的元素周期表俄国化学家门捷列夫提出元素周期表,系统地归纳了元素的性质和周期规律。
3.3 摩尔的化学计量定律法国化学家摩尔提出了化学计量定律,为化学反应的定量研究奠定了基础。
四、化学工业的兴起4.1 工业革命对化学的影响18世纪的工业革命推动了化学工业的发展,化学产品的生产大幅增加。
4.2 化学工业的技术进步19世纪以来,化学工业的技术不断创新,化学工程、有机合成等领域取得了重大突破。
4.3 化学工业的现代化20世纪以来,化学工业实现了现代化,成为国民经济的支柱产业,为人类社会的发展做出了重要贡献。
五、当代化学的发展趋势5.1 绿色化学的兴起当代化学强调可持续发展和环保理念,绿色化学成为化学发展的重要方向。
5.2 材料化学的发展新材料的研发和应用成为当代化学的热点,为现代科技的发展提供了重要支撑。
化学发展简史与人类文明知识课件
2020/8/8
早期化学实验
2020/8/8
早期化学实验
• 一 化学实验的萌芽
• 人类最初对火的利用距今大概已有100多万年了。火是人类最早使用 的化学实验手段。人类最早从事的制陶、冶金、酿酒等化学工艺,都 与火有直接或间接的联系。在熊熊烈火中,烧制成型的粘土可获得陶 器;烧炼矿石可得到金属。陶器的发明使人类有了贮水器以及贮藏粮 食和液体食物的器皿,从而为酿酒工艺的形成和发展创造了条件。
式的诞生和工业革命的进行,以及天文学、物理学等学科的重大突破,化学 实验终于冲破了炼丹术的桎梏,走上了科学的康庄大道。为此做出巨大贡献 的化学实验家当推波义耳(R.Boyle,1627—1691)和拉瓦锡(voisier, 1743—1794)。
• 现代化学实验 • 19世纪末20世纪初,以震惊整个自然科学的电子、X射线与放射性等三大发现
2020/8/8
概述 化学发展史的五个时期
• 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的 积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素, 燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬 。
• 定量化学时期,即近代化学时期。1775年前后,拉瓦锡用定量化学实 验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不 少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机 结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。
2020/8/8
早期化学实验 • 继帕拉塞斯、李巴乌之后,对后世影响较大、对化学实验的发展贡献卓
著的医药化学家还有赫尔蒙特(J.B.van Helmont,1597-1644)。他工作 的最大特点是对化学进行定量研究,广泛使用了天平,并萌生了初始的 物质不灭的思想。他所做的“柳树实验”和“沙子实验”,是早期化学 实验发展史上著名的两个定量实验①。此外,他在无机物制备方面取得 过空前的成果,曾对燃烧现象提出过颇有独到之处的见解。因此,他常 被尊为从炼丹术到化学的过渡阶段的代表。
化学的发展简史
化学的发展简史化学是一门研究物质的组成、性质、结构和变化的科学,它的发展历史可以追溯到古代。
本文将以化学的发展简史为主题,探讨化学学科的起源、重要里程碑和现代化学的发展趋势。
一、化学的起源化学这门学科的起源可以追溯到古代的古埃及、古希腊和古印度。
古埃及人利用化学技术制造颜料和染料,古希腊人则研究了火和空气的性质,提出了四大元素的理论。
古印度人通过铜冶炼和药物制备等实践活动,积累了丰富的实验经验。
二、重要里程碑1. 17世纪的化学革命:当时的炼金术师逐渐发现了一些重要的化学概念和实验方法。
罗伯特·波义耳提出了元素的概念,安托万·拉瓦锡开创了现代化学实验方法,使得化学从炼金术的迷信中解放出来。
2. 18世纪的化学革命:安托万·拉瓦锡和约瑟夫·普里斯特利发现了氧气,拉瓦锡还提出了氧化和还原的概念,奠定了现代化学的基础。
卡尔·威廉·舍勒发现了燃烧原理,提出了质量守恒定律。
3. 19世纪的化学革命:约翰·道尔顿提出了原子理论,认为所有物质都由不可分割的原子组成。
道尔顿还提出了化合物的比例定律和多比例定律,为化学定量分析奠定了基础。
此外,亚历山大·冯·洪堡的实地考察和研究,促进了化学在地理学和生物学中的应用。
4. 20世纪的化学革命:20世纪是化学发展的黄金时期。
亨利·莫塞里提出了元素周期表,系统地整理了已知元素。
玛丽·居里和皮埃尔·居里发现了放射性元素,为核化学的发展做出了重要贡献。
此外,有机化学的发展也取得了突破,如弗里德里希·艾舍尔合成了尿素,揭示了有机物可以由无机物合成的事实。
三、现代化学的发展趋势1. 材料化学:随着科技的进步,对新材料的需求越来越大。
材料化学致力于研究和开发新材料,如高性能塑料、新型金属合金和纳米材料等。
材料化学的发展将推动科技进步和产业升级。
2. 生物化学:生物化学是化学和生物学的交叉学科,研究生物分子的结构和功能。
无机化学 电子书 免费下载 中文版
无机化学第一篇无机化学基本内容、基本理论第一章绪论第一节化学发展简史一、古代化学二、近代化学三、现代化学第二节无机化学简介一、无机化学的研究内容二、无机化学与药学三、无机化学的发展前景第二章非电解质稀溶液第一节溶液浓度的表示方法一、质量摩尔浓度二、物质的量浓度三、摩尔分数四、其他浓度表示方法(自学)五、各浓度之间的换算(自学)第二节非电解质稀溶液的依数性一、溶液的蒸气压下降二、溶液的沸点升高三、溶液的凝固点降低四、溶液的渗透压五、依数性的应用(阅读)本章小结习题第三章化学平衡第一节化学反应的可逆性和化学平衡一、化学反应的可逆性二、化学平衡第二节标准平衡常数及其计算一、标准平衡常数二、有关化学平衡的计算第三节化学平衡的移动一、浓度对化学平衡的影响二、压力对化学平衡的影响三、温度对化学平衡的影响四、选择合理生产条件的一般原则本章小结习题第四章电解质溶液第一节强电解质溶液理论一、电解质溶液的依数性二、离子氛与离子强度三、活度与活度系数第二节弱电解质的电离平衡一、水的电离与溶液的pH值(自学)二、一元弱酸、弱碱的电离平衡三、多元弱酸的电离第三节缓冲溶液一、缓冲作用原理二、缓冲溶液的pH值计算三、缓冲容量四、缓冲溶液的选择和配制五、血液中的缓冲系和缓冲作用六、缓冲溶液在控制药物稳定性中的应用第四节盐类水解一、各类盐的水解二、影响水解平衡移动的因素第五节酸碱的质子论与电子论(自学)一、酸碱质子论二、酸碱的电子论简介本章小结习题第五章难溶电解质的沉淀-溶解平衡第一节溶度积和溶解度一、溶度积常数二、溶度积和溶解度的关系(课堂讨论)三、溶度积规则第二节沉淀-溶解平衡的移动一、沉淀的生成二、沉淀的溶解三、同离子效应与盐效应第三节沉淀反应的某些应用(阅读)一、在药物生产上的应用二、在药物质量控制上的应用三、沉淀的分离本章小结习题第六章氧化还原反应第一节基本概念(课堂讨论)一、氧化还原反应的实质二、氧化值第二节氧化还原反应方程式的配平一、离子-电子法(半反应法)二、氧化值法(自学)第三节电极电势一、原电池和电极电势二、影响电极电势的因素——能斯特方程式三、电极电势的应用四、氧化还原平衡及其应用五、元素电势图及其应用本章小结习题第七章原子结构与周期系第一节核外电子运动的特征(自学)一、量子化特性二、波粒二象性第二节核外电子运动状态的描述——量子力学原子模型一、薛定谔方程二、波函数和原子轨道(轨函)三、四个量子数四、概率密度和电子云五、波函数和电子云的空间形状第三节原子核外电子排步和元素周期系一、多电子原子的原子轨道能级二、原子核外电子的排布与电子结构三、原子的电子层结构和元素周期系第四节元素某些性质的周期性(自学)一、原子半径二、电离势三、电子亲和势四、元素的电负性本章小结习题第八章化学键与分子结构第一节离子键(自学)一、离子键的形成二、离子键的特征三、离子的特征四、离子晶体第二节现代共价键理论一、价键理论二、杂化轨道理论三、价层电子对互斥理论(阅读)四、分子轨道理论五、键参数(自学)第三节键的极柱与为子的极性(阅读)一、键的极性二、分子的极性和偶极矩第四节分子间的作用力与氢键(课堂讨论)一、分子间的作用力二、氢键第五节禹子的极化(自学)一、离子极化的定义二、离子的极化作用三、离子的变形性四、相互极化作用五、离子极化对化合物性质的影响六、化学键的离子性本章小结习题第九章配位化合物第一节配位化合物的基本概念一、配位化合物的定义二、配合物的组成三、配合物的命名四、配位化合物的类型第二节配合物的化学键理论一、价键理论二、晶体场理论第三节配位化合物的稳定性一、配位化合物的稳定常数二、影响配位化合物稳定性的因素(阅读)三、软硬酸碱规则与配离子稳定性(阅读) 第四节配合平衡的移动一、配合平衡与酸碱电离平衡二、配合平衡与沉淀-溶解平衡三、配合平衡与氧化还原平衡四、配合物的取代反应与配合物的“活动性”第五节配位化合物的应用(自学)一、检验的特效试剂二、作掩蔽剂、沉淀剂三、在医药方面的应用四、在生化方面的应用本章小结习题第二篇元素化学第十章s区和p区元素第一节s区元素(自学)一、碱金属和碱土金属的通性二、碱金属和碱土金属的化合物第二节p区元素一、卤族元素二、氧族元素三、氮族元素四、碳族元素五、硼族元素本章小结习题第十一章d区和ds区元素第一节d区元素一、d区元素的通性二、d区元素的化合物第二节ds区元素一、ds区元素的通性二、ds区元素的化合物本章小结习题第三篇拓展内容第十二章矿物药第一节矿物药的发展简史第二节矿物药的分类第三节矿物药的研究现状及发展前景一、矿物药研究现状二、矿物药的发展前景第十三章金属配合物在医药中的应用第一节金属配合物与疾病一、有害配体毒害作用的产生二、有害物质破坏金属配合物的正常状态三、金属离子间的相互交换反应四、有害金属离子与生物配体的配位作用第二节金属配合物的解毒作用一、巯基类解毒剂二、依地酸二钠钙及其类似物解毒剂三、青霉胺第三节抗肿瘤金属配合物一、铂系金属配合物二、金属茂配合物三、烷基化试剂的金属配合物四、希佛碱-金属配合物五、有机锗配合物六、有机锡配合物第四节抗癌金属配合物的选择与研究第十四章生物无机化学基本知识第一节生物无机化学研究的内容和方法第二节生物体内的重要配体一、氨基酸、肽和蛋白质二、核苷、核苷酸与核酸三、卟啉类化合物四、生物金属螯合物第三节生命元素一、生物体内元素的分类二、生物体内必需元素的生物功能三、微量元素与地方病第四节生物无机化学研究现状与展望一、生物无机化学基本反应规律的研究二、金属离子与细胞的相互作用三、微量元素的生物无机化学研究四、金属蛋白和金属酶的研究五、环境生物无机化学的研究进展第五节中医药微量元素研究与展望第十五章纳米技术、纳米材料与中医药第一节纳米技术与纳米材料一、纳米与纳米技术二、纳米材料三、纳米材料的奇异特性四、纳米材料的制备第二节纳米技术与医药学、中医药一、纳米技术与医药学的发展二、纳米技术与中医药的发展三、纳米中药制剂的设计与生产附录附录一中华人民共和国法定计量单位附录二常用的物理常数和单位换算附录三无机酸、碱在水中的电离常教(298K) 附录四难溶化合物的溶度积(291~298K)附录五标准电极电势表(298K)附录六配离子的稳定常数(293~298K)附录七化学元素相对原子质量(1993年)附录八常用希腊字母的符号及汉语译音。
(2024年)化学发展简史
THANKS
感谢观看
2024/3/26
27
意大利化学家阿伏伽德罗引入了分子的概念,提出了分子假说,认为物质是由分子组成的 ,分子是由原子构成的。
原子-分子学说的意义
原子-分子学说的建立为化学学科的发展提供了重要的理论基础,推动了化学反应机理、 物质结构等领域的研究。同时,它也对其他学科如物理学、生物学等产生了深远的影响。
10
03
19世纪化学的繁荣与进步
1 2
炼金术的兴起
炼金术士试图通过化学方法将贱金属转化为贵金 属,虽然未能成功,但为化学理论的发展提供了 契机。
物质转化的观念
炼金术士认为物质之间可以相互转化,这种观念 对后来的化学理论产生了深远影响。
元素与化合物的区分
3
炼金术士在实验中逐渐认识到有些物质无法再分 解,称之为元素,而由元素组成的物质则称之为 化合物。
2024/3/26
5
元素概念的提
古希腊哲学家的贡献
古希腊哲学家提出了原子论,认为物质由不可分割的原子构成,为 元素概念的提出奠定了基础。
波义耳的元素定义
17世纪英国化学家波义耳对元素进行了明确定义,认为元素是由同 种原子构成的物质,不同元素之间不能通过化学变化相互转化。
元素周期表的发现
19世纪俄国化学家门捷列夫发现了元素周期律,并编制了第一张元素 周期表,使元素概念得到了进一步发展和完善。
高分子材料的应用与拓展
高分子材料在各个领域得到广泛应用,如包 装、建筑、交通、医疗等,推动了人类社会 的进步和发展。
18
05
现代化学的前沿与挑战
2024/3/26
19
绿色化学与可持续发展
绿色合成方法
发展高效、环保的合成方法,减少废弃物和有害物质 的产生。
化学发展简史
化学发展简史化学是一门研究物质的组成、结构、性质、变化和相互关系的科学。
它的发展与人类社会的进步密不可分。
本文将以时间顺序为主线,为您介绍化学发展的里程碑事件和重要贡献。
1. 古代化学的起源古代化学的起源可以追溯到公元前3000年左右的古代埃及和古代巴比伦。
古埃及人通过炼金术的实践,掌握了金属提炼和染料制备等技术。
巴比伦人则在农业和医药领域做出了一些贡献。
古希腊的阿里斯托特利和丢番图等学者也对化学的发展有所贡献。
2. 元素的发现与研究17世纪,英国科学家罗伯特·博义利和法国科学家安托万·拉瓦锡等人开始研究化学元素。
博义利通过对空气和水的实验,发现了氧气和氢气。
拉瓦锡则提出了氧化反应和还原反应的概念,并发现了氯气和碘。
18世纪末,瑞典化学家卡尔·威廉·舍勒首次提出了元素的概念,并将化学元素分类。
随后,英国化学家亨利·卡文迪什发现了氢气,并将其作为第一个元素。
法国化学家安托万·拉瓦锡和英国化学家约瑟夫·普利斯特利也做出了重要贡献,发现了多个元素,如锂、钠、钾等。
3. 化学反应的研究19世纪初,法国化学家安托万·拉瓦锡提出了化学反应的基本原理,并建立了化学方程式的概念。
他还发现了氧化还原反应和酸碱反应等重要的化学反应类型。
19世纪中叶,德国化学家弗里德里希·凯库勒首次提出了有机化合物的概念,并通过对碳化合物的研究,揭示了有机化学的基本规律。
此后,有机化学得到了快速发展,为药物合成和高分子材料的制备奠定了基础。
4. 原子结构的揭示19世纪末,英国物理学家约瑟夫·约翰·汤姆逊发现了电子,并提出了“面包状模型”来描述原子的结构。
随后,新西兰物理学家欧内斯特·卢瑟福进行了金箔散射实验,并提出了原子核模型,认为原子核是由带正电荷的质子组成的。
20世纪初,丹麦物理学家尼尔斯·玻尔提出了量子理论,解释了原子光谱和电子能级的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学简史总题1.化学发展简史2.化学史上的中国人3.中国化学史上的“世界第一”4.化学史大事年表5.科学家与化学史6.古代和近代化学史7.与《绪言》有关的化学历史8.化学发展简史习题9.中外化学家简介1化学发展简史1.1、化学的前奏1.人类文明的起点——火的利用在几百万年以前,人类过着极其简单的原始生活,靠狩猎为生,吃的是生肉和野果。
根据考古学家的考证,至少在距今50万年以前,可以找到人类用火的证据,即北京周口店北京猿人生活过的地方发现了经火烧过的动物骨骼化石。
有了火,原始人从此告别了茹毛饮血的生活。
吃了熟食后人类增进了健康,智力也有所发展,提高了生存能力。
后来,人们又学会了摩擦生火和钻木取火,这样,火就可以随身携带了。
于是,人们不再是火种的看管者,而成了能够驾驭火的造火者。
火是人类用来发明工具和创造财富的武器,利用火能够产生各种各样化学反应这个特点,人类开始了制陶、冶金、酿造等工艺,进入了广阔的生产、生活天地。
2.历史悠久的工艺——制陶陶器是什么时候产生的,已很难考证。
对陶器的由来,说法不一,有人推测:人类最原始的生活用容器是用树枝编成的,为了使它耐火和致密无缝,往往在容器的内外抹上一层粘土。
这些容器在使用过程中,偶尔会被火烧着,其中的树枝都被烧掉了,但粘土不会着火,不但仍旧保留下来,而且变得更坚硬,比火烧前更好用。
这一偶然事件却给人们很大启发。
后来,人们干脆不再用树枝做骨架,开始有意识地将粘土捣碎。
用水调和,揉捏到很软的程度,再塑造成各种形状,放在太阳光底下晒干,最后架在篝火上烧制成最初的陶器。
大约距今1万年以前,中国开始出现烧制陶器的窑,成为最早生产陶器的国家。
陶器的发明,在制造技术上是一个重大的突破。
制陶过程改变了粘土的性质,使粘土的成分二氧化硅、三氧化二铝、碳酸钙、氧化镁等在烧制过程中发生了一系列的化学变化,使陶器具备了防水耐用的优良性质。
因此陶器不但有新的技术意义,而且有新的经济意义。
它使人们处理食物时增添了蒸煮的办法。
陶制的纺轮、陶刀、陶锉等工具也在生产中发挥了重要的作用;同时陶制储存器可以使谷物和水便于存放。
因此,陶器很快成为人类生活和生产的必需品,特别是定居下来从事农业生产的人们更是离不开陶器。
3.冶金化学的兴起在新石器时代后期,人类开始使用金属代替石器制造工具。
使用得最多的是红铜。
但这种天然资源毕竟有限,于是,产生了从矿石冶炼金属的冶金学。
最先冶炼的是铜矿,约公元前3800年,伊朗就开始将铜矿石(孔雀石)和木炭混合在一起加热,得到了金属铜。
纯铜的质地比较软,用它制造的工具和兵器的质量都不够好。
在此基础上改进后,便出现了青铜器。
到了公元前3O00年~公元前2500年,除了冶炼铜以外,又炼出了锡和铅两种金属。
往纯铜中掺入锡,可使铜的熔点降低到800℃左右,这样一来,铸造起来就比较容易了。
铜和锡的合金称为青铜(有时也含有铅),它的硬度高,适合制造生产工具。
青铜做的兵器,硬而锋利,青铜做的生产工具也远比红铜好,还出现了青铜铸造的铜币。
中国在铸造青铜器上有过很大的成就,如殷朝前期的“司母戊”鼎。
它是一种礼器,是世界上最大的出土青铜器。
又如战国时的编钟,称得上古代在音乐上的伟大创造。
因此,青铜器的出现,推动了当时农业、兵器、金融、艺术等方面的发展,把社会文明向前推进了一步。
世界上最早炼铁和使用铁的国家是中国、埃及和印度,中国在春秋时代晚期(公元前6世纪)已炼出可供浇铸的生铁。
最早的时候用木炭炼铁,木炭不完全燃烧产生的一氧化碳把铁矿石中的氧化铁还原为金属铁。
铁被广泛用于制造犁铧、铁镈(一种锄草工具)、铁锛等农具以及铁鼎等器物,当然也用于制造兵器。
到了公元前8世纪~公元前7世纪,欧洲等才相继进入了铁器时代。
由于铁比青铜更坚硬,炼铁的原料也远比铜矿丰富,在绝大部分地方,铁器代替了青铜器。
4.中国的重大贡献——火药和造纸黑火药是中国古代四大发明之一。
为什么要把它叫做“黑火药”呢?这还要从它所用的原料谈起。
火药的三种原料是硫黄、硝石和木炭。
木炭是黑色的,因此,制成的火药也是黑色的,叫黑火药。
火药的性质是容易着火,因此可以和火联系起来,但是这个“药”字又怎样理解呢?原来,硫磺和硝石在古代都是治病用的药,因此,黑火药便可理解为黑色的会着火的药。
火药的发明与中国西汉时期的炼丹术有关,炼丹的目的是寻求长生不老的药,在炼丹的原料中,就有硫磺和硝石,炼丹的方法是把硫黄和硝石放在炼丹炉中,长时间地用火炼制。
在许多次炼丹过程中,曾出现过一次又一次地着火和爆炸现象,经过这样多次试验终于找到了配制火药的方法。
黑火药发明以后就与炼丹脱离了关系,一直被用在军事上。
古代人打仗,近距离时用刀枪,远距离时用弓箭。
有了黑火药以后,从宋朝开始,便出现了各种新式武器,例如用弓发射的火药包。
火药包有火球和火蒺藜两种,用火将药线点着,把火药包抛出去,利用燃烧和爆炸杀伤对方。
大约在公元8世纪,中国的炼丹术传到了阿拉伯,火药的配制方法也传了过去,后来又传到了欧洲。
这样,中国的火药成了现代炸药的“老祖宗”。
这是中国的伟大发明之一。
纸是人类保存知识和传播文化的工具,是中华民族对人类文明的重大贡献。
在使用植物纤维制造的纸以前,中国古代传播文字的方法主要有:在甲骨(乌龟的腹甲和牛骨)上刻字,即所谓的甲骨文;甲骨数量有限,后来改在竹简或木简上刻字。
可是,孔子写的《论语》所用的竹简之多,份量之重是可想而知的;另外,用丝织成帛,也可以用来写字,但大量生产帛却是难以做到的。
最后才有了用植物纤维制造的纸,一直流传到今天。
1957年5月,中国考古工作者在陕西省西安市灞桥的一座古代墓葬中发现一些米黄色的古纸。
经鉴定这种纸主要由大麻纤维制造,其年代不会晚于汉武帝(公元前156年~公元前87年),这是现存的世界上最早的植物纤维纸。
提起纸的发明,人们都会想起蔡伦。
他是汉和帝时的中常侍。
他看到当时写字用的竹简太笨重,便总结了前人造纸的经验,带领工匠用树皮、麻头、破布、破鱼网等做原料,先把它们剪碎或切断,放在水里长时间浸泡,再捣烂成为浆状物,然后在席子上摊成薄片,放在太阳底下晒干,便制成了纸。
它质薄体轻,适合写字,很受欢迎。
造纸是一个极其复杂的化学工艺,它是广大劳动人民智慧的产物。
实际上,蔡伦之前已经有纸了,因此,蔡伦只能算是造纸工艺的改良者。
5.炼丹术与炼金术当封建社会发展到一定的阶段,生产力有了较大提高的时候,统治阶级对物质享受的要求也越来越高,皇帝和贵族自然而然地产生了两种奢望:第一是希望掌握更多的财富,供他们享乐;第二,当他们有了巨大的财富以后,总希望永远享用下去。
于是,便有了长生不老的愿望。
例如,秦始皇统一中国以后,便迫不及待地寻求长生不老药,不但让徐福等人出海寻找,还召集了一大帮方士(炼丹家)日日夜夜为他炼制丹砂——长生不老药。
炼金家想要点石成金(即用人工方法制造金银),他们认为,可以通过某种手段把铜、铅、锡、铁等贱金属转变为金、银等贵金属。
像希腊的炼金家就把铜、铅、锡、铁熔化成一种合金,然后把它放入多硫化钙溶液中浸泡。
于是,在合金表面便形成了一层硫化锡,它的颜色酷似黄金(现在,金黄色的硫比锡被称为金粉,可用做古建筑等的金色涂料)。
这样,炼金家主观地认为“黄金”已经炼成了。
实际上,这种仅从表面颜色而不从本质来判断物质变化的方法,是自欺欺人。
他们从未达到过“点石成金”的目的。
虔诚的炼丹家和炼金家的目的虽然没有达到,但是他们辛勤的劳动并没有完全白费。
他们长年累月置身在被毒气、烟尘笼罩的简陋的“化学实验室”中,应该说是第一批专心致志地探索化学科学奥秘的“化学家”。
他们为化学学科的建立积累了相当丰富的经验和失败的教训,甚至总结出一些化学反应的现律。
例如中国炼丹家葛洪从炼丹实践中提出:“丹砂(硫化汞)烧之成水银,积变(把硫和水银二者放在一起)又还成(变成)丹砂;”这是一种化学变化规律的总结,即“物质之间可以用人工的方法互相转变”。
炼丹家和炼金家夜以继日地在做这些最原始的化学实验,必定需要大批实验器具,于是,他们发明了蒸馏器、熔化炉、加热锅、烧杯及过滤装置等。
他们还根据当时的需要,制造出很多化学药剂、有用的合金或治病的药,其中很多都是今天常用的酸、碱和盐。
为了把试验的方法和经过记录下来,他们还创造了许多技术名词,写下了许多著作。
正是这些理论、化学实验方法、化学仪器以及炼丹、炼金著作,开挖了化学这门科学的先河。
从这些史实可见,炼丹家和炼金家对化学的兴起和发展是有功绩的,后世之人决不能因为他们“追求长生不老和点石成金”而嘲弄他们,应该把他们敬为开拓化学科学的先驱。
因此,在英语中化学家(chemist)与炼金家(alchemist)两个名词极为相近,其真正的含义是“化学源于炼金术”。
1.2创建近代化学理论——探索物质结构世界是由物质构成的,但是,物质又是由什么组成的呢?最早尝试解答这个问题的是我国商朝末年的西伯昌(约公元前1140年),他认为:“易有太极,易生两仪,两仪生四象,四象生八卦。
”以阴阳八卦来解释物质的组成。
约公元前1400年,西方的自然哲学提出了物质结构的思想。
希腊的泰立斯认为水是万物之母;黑拉克里特斯认为,万物是由火生成的;亚里士多德在《发生和消灭》一书中论证物质构造时,以四种“原性”作为自然界最原始的性质,它们是热、冷、干、湿,把它们成对地组合起来,便形成了四种“元素”,即火、气、水、土,然后构成了各种物质。
上面这些论证都未能触及物质结构的本质。
在化学发展的历史上,是英国的波义耳第一次给元素下了一个明确的定义。
他指出:“元素是构成物质的基本,它可以与其他元素相结合,形成化合物。
但是,如果把元素从化合物中分离出来以后,它便不能再被分解为任何比它更简单的东西了。
”波义耳还主张,不应该单纯把化学看作是一种制造金属、药物等从事工艺的经验性技艺,而应把它看成一门科学。
因此,波义耳被认为是将化学确立为科学的人。
人类对物质结构的认识是永无止境的,物质是由元素构成的,那么,元素又是由什么构成的呢?1803年,英国化学家道尔顿创立的原子学说进一步解答了这个问题。
原子学说的主要内容有三点:1.一切元素都是由不能再分割和不能毁灭的微粒所组成,这种微粒称为原子;2.同一种元素的原子的性质和质量都相同,不同元素的原子的性质和质量不同;3.一定数目的两种不同元素化合以后,便形成化合物。
原子学说成功地解释了不少化学现象。
随后意大利化学家阿伏加德罗又于1811年提出了分子学说,进一步补充和发展了道尔顿的原子学说。
他认为,许多物质往往不是以原子的形式存在,而是以分子的形式存在,例如氧气是以两个氧原子组成的氧分子,而化合物实际上都是分子。
从此以后,化学由宏观进入到微观的层次,使化学研究建立在原子和分子水平的基础上。
1.3现代化学的兴起19世纪末,物理学上出现了三大发现,即X射线、放射性和电子。