低音炮的一些常见问题

低音炮的一些常见问题
低音炮的一些常见问题

低音炮的一些常见问题

序言本来想写一个比较系统的文章,就大家影音实践中的常见基本常识来一个汇总。但是近日阅读大量的咨询帖子,知道,写的再好也意义不大,越全面越系统看的人越少,而且感觉,置顶帖子的作用也非常有限,一句话,网络是一种快餐文化的平台,遇到问题就要解决,而且似乎是马上,而且要一对一。

当然网络论坛这种模式,里面也是精华与水帖共存混杂,一些网友不知道如何利用这个平台。虽然我们有技术版主团队在处理各类资讯贴的分类与引导,也有善用的阅读工具如搜索工具、精华区、高亮现实标题、置顶等工具,但是还是不能起到应该有的作用,令我们对引导的设计非常弥漫。

最近有一些时间思考如何展开讨论便于大家消化与接受,如何方便大家更多的接受我们提供的资讯,但是没有答案。

所以,功率打算取消原来的打算,还是把一些问题分开来写,这样压力也小一些,网友看起来也容易消化吧,这也许就是化整为零的效果吧。

下面言归正传吧!

一、低音炮的作用与意义

低音炮是大家的一个俗称或者简称,严格讲应该是:超重低音音箱。就人耳可闻的音频分析而言,由超重低音、低音、低中音、中音、中高音、高音、超高音等组成。

简单讲,低频是声音的基本框架,中频是声音的血肉,高频是声音的细节反映。

随着科技的发展以及经济基础的发展,超重低音与宽频进入了音响世界。超重低音就是把架构加强,宽频就是把声音差异更加明晰。

本次我们专门谈超重低音。超重低音人耳的可闻是及其有限的,反而是人的其它感官会感受得到,这就是震撼的感觉!就音响与家庭影院反映的音频节目源的需要来说,超重低音只是在特定的节目源中存在并需要还原的,有它,可以使节目源的还原更加结实,无它,就给人缺乏力量、能量的感觉。比如,在电影院或者在现实中,我们能够感受得到飞机起飞时那种力量与能量的震撼,但是如果我们的家庭影院没有配置超重低音音箱或者配置不合理,我们就无法感受这种震撼,但也仅此而已。

就音频环境而言,无论是听音乐还是看电影,超重低音(宽频)都是需要的,应该予以确保的。这个在数字家庭影院的二大音频还原标准中划出0.1CH作为超重低音声道也说明了其意义与作用,那是必须的,但也是可以妥协的。

为什么要妥协?

因为超重低音的还原,作为标准拟定者当然明白是很难普及的,因为代价巨大。不借助其它技术的情况下,低音重放的单元应该是大口径的,另外,驱动这种大口径单元也需要大功率的放大器,这将是还原超重低音的成本直线上升。

当然,我们也是可以在市场上买到销售价格不是很高的低音炮,这其实是另外一种妥协,从技术上说是伪低音炮罢了,但是从商品与消费市场来看,这也是市场的需要。

二、有源低音炮与无源低音炮

前面已经说过,超重低音是需要强大功率来驱动的,因此市场上大多数低音炮都是内置放大器的,也就是说,把低音炮的音箱与放大器都独立划分并整合到一体了。

如果低音炮内没有放大器的话,就是无源低音炮。

三、低音炮的单元口径

严格说,低音炮应该采用大口径单元,而且一般是特殊设计的单元。感觉功率曾经参与评测的国内外各种低音炮实际试听对比来看,这种大口径低音炮的效果是最棒的。

但是市场需要是多面的,某些条件下,也无法摆放大体积的低音炮,另外,有些消费者也喜欢小巧的商品,所以也就有了小型低音炮的存在了。这种低音炮通常是技术手段获取的,如博士、雅马哈,前者是箱体设计上的技术,后者是电路设计上的技术。但是不管这种低音炮怎么震撼,但是其中的“假”是难以掩饰的,请大家准确理解我说的“假”,不要传播,以免引起不必要的误会与误解。

四、低音炮的分频电路说明

随着大量低音炮是用于家庭影院系统的,现在的低音炮设计越来越简单化了,而且这种简单似乎是合理的。严格说,超重低音音箱只能还原超重低音信号,因此在早期的低音炮设计中,前端通常还设计有低通滤波分音电路,就是把高于超重低音的信号滤除掉,使其不进入后面的放大器并干扰超重低音单元的工作。

在数字家庭影院音频解码规范中,输出的0.1CH信号本身已经是超重低音信号了,因此,对于较新的系统而言,超重低音音箱有无低通滤波器对低音炮工作是没有影响的。

对于那些试图在二声道音乐系统中也使用低音炮者来说,因为通常的信号源或者功放没有单独的超重低音信号输出,这就需要在现有系统基础上抽取超重低音信号,因此,不少低音炮为了实现多功能多用途或者为了竞争需要,在低音炮中设计有低通滤波器,并设计了二种抽取方式:

1、从信号源的低电平信号输出中抽取,一般是RCA输入端口,用一对信号线或

者用一根信号线链接都是可以的。

2、从左右音箱上抽取高电平信号,一般采用的是和功放上的喇叭接线端子一样的端子,同上,用二对较细的喇叭线或者一付喇叭线效果都基本是一样的。

五、截止频率的设置

前面谈到的低通滤波器临界点就是低音炮的截止频率,为了增加低音炮的适应性,不少低音炮的截止频率是可调的。

这个截止频率的设置是玩低音炮的一个重要调试环境,用来调试低音炮与音箱的频率衔接问题,衔接好了,系统表现很比较完美,衔接不好,不是丢失一些信号就是会破坏信号的本来面目了。

一般来说,对于书架箱、小口径音箱,截止频率要高一些,对于落地音箱,设置要低一点。通常要看音箱的低频还原下限。

举例说明,一个音箱的低频下限是60Hz,那么低音炮的截止频率设置在60-80Hz比较合理,过高,会是60Hz部分的低音过量,过低,就会损失60Hz信号的能量感。

对于数字家庭影院功放来说,功放本身具有低音管理设置,结合音箱的大小设置来调试低音炮的截止频率设置。

六:相位(英文phase)

大多数低音炮设计有相位调节开关,高级的低音炮的相位调节还是连续的。

相位调节比较简单,正相或者反相。正确的设置应该是超重低音声音比较结实震撼,如果假如低音炮之后声音变得虚无飘渺,那么应该马上把相位开关改过来。

七、连接

对于家庭影院系统而言,超重低音信号建议用低电平信号输入。通常面临二种选择,一个是取自碟机的多声道输出,一个是取自AV功放的超重低音输出,除非是功放没有超重低音输出端子,我们建议连接还是从AV功放取,这样可以是超重低音音量受到AV功放的同步控制。如果取自碟机,那么当系统音量改变时,需要同时调整低音炮的音量。这种接法,通常在立体声模式下低音炮是无法获得信号的,因此对系统没有多少帮助或者改善的,这个需要注意的。

对于试图从立体声信号取全频带信号输入低音炮的话,首先要确认你的低音炮里有低通设计,否则,该炮就不能使用。这种情况下,可以使任何节目的超重低音得到加强。

八、摆位

严格说,超重低音是缺乏方向性的,因此摆放在听音室任何地方都是可以的,但是考虑到环境对声音传播的巨大影响,在实践中我们仍然强烈的发现,挪动低音炮的摆位对超重低音的还原影响比较大,在有条件时,我们还是建议用户调试一下低音炮的摆位来取得最佳的效果。

最后需要说明的是,超重低音在节目源中不是随时存在的,因此在聆听或者调试时不要因此发生误会。因为习惯,在调试中人们难免不自觉的用耳朵去听低音炮有没有工作或者是否很震撼,其实大可不必,用身体感受就可以了。为了方便调试,市场上的测试碟中通常也提供专门的超重低音信号。(本节完,转载请注明:新时代工作室功率太小)

line in是指低音炮直接从功放的前级输出信号取出信号,其它的处理与功率放大由低音炮自己完成。方法是买一根信号线链接,二根最好。

hi level input是指低音炮从主音箱上取信号,用喇叭线链接。

hi level output可能是用来带另外一个无源低音炮输出的超重低音信号。

简易数字频率计设计

简易数字频率计设计报告 设计内容: 1、测量信号:方波、正弦波、三角波; 2、测量频率范围: 1Hz~9999Hz; 3、显示方式:4位十进制数显示; 4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得); 5、当被测信号的频率超出测量范围时,报警。 设计报告书写格式: 1、选题介绍和设计系统实现的功能; 2、系统设计结构框图及原理; 3、采用芯片简介; 4、设计的完整电路以及仿真结果; 5、Protel绘制的电路原理图; 6、制作的PCB; 7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。 电子课程设计过程: 系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告

简易数字频率计课程设计报告 第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进

5.3心得体会附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。

低音炮音箱的制作原理

低音炮音箱的制作原理[收藏] 上传者:dolphin浏览次数:925 超重低音音箱,俗称低音炮,大多数牌号以AV功放加五只音箱与低音炮组成套餐形式推销家庭影院产品中,低音炮已经是必不可少的配置了,实际上,设计规范、制作精湛、效果出色的低音炮.其在家庭影院系统音频重放中的效果相当迷人。 本文拟就低音炮的设计原理做简单的介绍,供有兴趣音参考。 低音分有源与无源二大类有源低音炮指包含功率放大器的低音炮,其中电路部分除功率放大外.通常还具有音频频率滤波(滤去低音以上的音频频率成分),相位调整。音量调整等单元;而无源低音炮由单元与无源功率分频器组成,其中分频器是一低通滤波器而已。使其重放频率范围仅为超重低音音频。下面就低音炮的-大单元音箱,功率放大分别做以介绍。 一、低音炮箱体设计原理和分类 就低音炮设计原理,可大致分三大类,即密闭式音箱、倒相式音箱以及带通滤波式音箱 1、密闭式音箱 顾名思义,这种音箱箱体是完全封闭的,见图1。 密闭式音箱的特点是结构简单,瞬态响应比较好.即听感深沉、清晰。不足是,在相同的体积下,与其它类型的音箱相比,其低频下潜截止频率要高于其他音箱。 闭箱在制作、调校时通常还需要在箱体内填充大量吸音棉,材料以玻璃纤维,长纤维羊毛为主,能够改善音箱的柔顺性,也可达到等效增加箱体容积的效果,另外,填充吸音棉,也可提高音箱的效率,正确的填充量,最大可提高音箱效率达15%,吸音棉的多少通常需要通过反复试听来决定填充量的多少,以声音不浑浊(量偏少),沉闷(量过多)为原则,其它类型音箱也是如此。 对于闭箱型低音炮,对单元的要求相对其它类型音箱要严格一些,Fs以低于40Hz为好,Qts 应该在0.3-0.6,Fs/Qts≤50,单元口径最好大于20cm ,而且属于长冲程设讨。 2、倒相式音箱 市场上最多的一类音箱,音箱上设计有倒相管,见图2。

简易数字频率计

4.2.3简易数字频率计电路设计 数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 一、设计目的 1. 了解数字频率计测量频率与测量周期的基本原理; 2. 熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。 二、设计任务与要求 要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为: 1.测量范围:1HZ—9.999KHZ,闸门时间1s; 10 HZ—99.99KHZ,闸门时间0.1s; 100 HZ—999.9KHZ,闸门时间10ms; 1 KHZ—9999KHZ,闸门时间1ms; 2.显示方式:四位十进制数 3. 当被测信号的频率超出测量范围时,报警. 三、数字频率计基本原理及电路设计 所谓频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为 fx=N/T 。因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。可见数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成,总体结构如图4-2-6:

图4-2-6数字频率计原理图 从原理图可知,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清“0”脉冲Ⅴ,使计数器每次测量从零开始计数。 1.放大整形电路 放大整形电路可以采用晶体管 3DGl00和74LS00,其中3DGl00组成放大器将输入频率为fx的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。 2.时基电路 时基电路的作用是产生标准的时间信号,可以由555组成的振荡器产生,若时间精度要求较高时,可采用晶体振荡器。由555定时器构成的时基电路包括脉冲产生电路和分频电路两部分。 (1)555多谐振荡电路产生时基脉冲 采用555产生1000HZ振荡脉冲的参考电路如图4-2-7所示。电阻参数可以由振荡频率计算公式f=1.43/((R1+2R2)*C)求得。 (2)分频电路 由于本设计中需要1s、0.1s、10ms、1ms四个闸门时间,555振荡器产生1000HZ,周期为1ms的脉冲信号,需经分频才能得到其他三个周期的闸门信号,可采用74LS90分别经过一级、二级、三级10分频得到。 图4-2-7 555多谐振荡电路 3. 逻辑控制电路 在时基信号II结束时产生的负跳变用来产生锁存信号Ⅳ,锁存信号Ⅳ的负跳变又用来产生清“0”信号V。脉冲信号Ⅳ和V可由两个单稳态触发器74LSl23产生,它们的脉冲宽度由电路的时间常数决定。触发脉冲从B端输入时,在触发脉冲的负跳变作用下,输出端Q可获得一正脉冲, Q非端可获得一负脉冲,其波形关系正好满足Ⅳ和V的要求。手动复位开关S按下时,计数器清“ 0 ”。参考电路如图4-2-8 图4-2-8数字频率计逻辑控制电路 4.锁存器 锁存器的作用是将计数器在闸门时间结束时所计得的数进行锁存,使显示器上能稳定地显示此时计数器的值.闸门时间结束时,逻辑控制电路发出锁存信号Ⅳ,将此时计数器的值送译码显示器。选用8D锁存器74LS273可以完成上述功能.当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,即Q=D。从而将计数器

multisim简易数字频率计

. . . . 哈尔滨工业大学 简易频率计的仿真设计

目录 1.设计要求 2. 总电路图及工作原理 3.电路组成介绍 3.1脉冲形成电路 3.2闸门电路 3.3时基电路 3.4计数译码显示电路 4. 电路的测试 5. 分析与评价 附录:元器件清单 1.设计要求 本次设计任务是要求设计一个简易的数字频率计,即用数字显示被测信号频率的仪 2

器,数字频率计的设计指标有: 1. 测量信号:正弦信号、方波信号等周期变化的物理信号; 2. 测量频率范围:0Hz~9999Hz; 3. 显示方式:4位十进制数显示。 2.电路工作原理 频率计总电路图如下所示: 2

频率计的基本原理:通过将被测周期信号整形为同频率的方波信号后,利用555定时器组成的振荡电路所产生的频率为1Hz的标准方波,作为基准时钟,与被整形后的方波信号一起经过闸门电路处理输入计数电路,再利用74LS90N的十进制计数功能进行级联计数,计数后输入8位数据/地址锁存器74LS273N以实现锁存和清零功能,最后输入到译码显示电路中,用BCD7段译码器显示出来,这样就实现了对被测周期信号的频率测量并显示的功能。 频率计的工作原理流程图如下所示: 3.电路组成介绍 3.1脉冲形成电路 脉冲形成电路由信号发生器与整形电路组成,输入信号先经过限幅器,再经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限副作用。由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。线路图如下所示: 2

3.2闸门电路 闸门电路的作用是控制计数器的输入脉冲,在电路中用一个与非门来实现(如下图所标注)。当标准信号(正脉冲)来到时闸门开通,被侧信号的脉冲通过闸门进入计时器计数;正脉冲结束时闸门关闭,计数器无时钟脉冲输入。 闸门电路 2

简易数字频率计

宁波工程学院 电子信息工程学院 课程设计报告 课程设计题目:简易数字频率计 起讫时间:2011年05月23日至2011年06月03日

目录第一章技术指标 1.1整体功能要求 1.2电气指标 1.3扩展指标 1.4设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图 2.3 计数原理 第三章单元电路设计 3.1 波形变换电路 3.2 闸门电路设计 3.3小数点显示电路设计 第四章测试与调整 4.1 硬件测试与调整 4.2 软件测试与调整 4.3 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进 5.3心得体会 附录

第一章技术指标 1.1整体功能要求 设计并制作一台数字显示的简易频率计,主要用于测量正弦波、方波等周期 信号的频率值。 1.2 电气指标 1.2.1 信号波形:方波; 1.2.2 信号幅度;TTL电平; 1.2.3 信号频率:100Hz~9999Hz; 1.2.4 测量误差:≤1%; 1.2.5 测量时间:≤1s/次,连续测量; 1.2.6 显示:4位有效数字,可用数码管,LED或LCD显示。 1.3扩展指标 1.3.1 可以测量正弦波信号的频率,电压峰-峰值VPP=0.1~5V; 1.3.2 方波测量时频率测量上限为3MHz,测量误差≤1%; 1.3.3 正弦(Vopp=0.1V~5V)测量时频率测量上限为3MHz,测量误差≤1%; 1.3.4量程自动切换,且自动切换为四位有效数字输出; 1.4设计条件 1.4.1 电源条件:+5V。 1.4.2开发平台:本系统以高速SOC单片机C8051F360和FPGAEP2C8T144为 核心,主要包括9个模块,其主要配置见表1-1。 表1-1数字电子系统设计实验平台模块一览 型号名称主要配置 MCU模块SOC单片机8051F360,CPLD芯片EMP3064TC44 74151 FPGA模块EMP3064TC44,串行配置芯片,JTAG和AS配置 接口 74153 LCD和键盘模块12864中文液晶,16个按键 7404 8位高速A/D模块30MHz8位A/D转换器ADS930,信号调理电路4518 10位高速D/A模块双路100MHz10位D/A转换器THS5651,差分放 大电路,反相器

JBL_225W大功率低音炮电路图

Balboa? Series SUB10 Powered Subwoofer Service Manual JBL Consumer Products 250 Crossways Park Dr. Woodbury, New York 11797 Rev0 10/2006

- CONTENTS - BASIC SPECIFICATIONS (1) PACKING (2) DETAILED SPECIFICATIONS (3) CONNECTIONS (5) OPERATION (7) TEST SET-UP AND PROCEDURE (8) EXPLODED VIEW/PARTS LIST (9) AMPLIFIER BLOCK DIAGRAM (10) DETAILED TROUBLESHOOTING (12) ELECTRICAL PARTS LIST (13) P.C.B. DRAWINGS (17) IC/TRANSISTOR PINOUTS (23) SCHEMATICS (24) BALBOA SUB10 SPECIFICATIONS Amplifier Power (RMS): 100 Watts Peak Dynamic Power *: 225 Watts (254mm) Driver: 10" Inputs: Line Level and LFE Crossover Frequency: Variable from 50Hz to 150Hz, 24 dB per octave Frequency Response: 30Hz – 150Hz Dimensions (H x W x D): 19-3/4" x 14-1/16" x 14-3/4" (502mm x 357mm x 375mm) lb/16kg Weight: 35 JBL continually strives to update and improve existing products, as well as create new ones. The specifications and details in this and related JBL publications are therefore subject to change without notice. * The Peak Dynamic Power is measured by recording the highest center-to-peak voltage measured across the output of a resistive load equal to minimum impedance of the transducer, using a 50Hz sine wave burst, 3 cycles on, 17 cycles off.

简易数字频率计设计报告

简易数字频率计设计报告 目录 一.设计任务和要求 (2) 二.设计的方案的选择与论证 (2) 三.电路设计计算与分析 (4) 四.总结与心得..................................... 错误!未定义书签。2 五.附录........................................... 错误!未定义书签。3 六.参考文献....................................... 错误!未定义书签。8

一、 设计任务与要求 1.1位数:计4位十进制数。 1.2.量程 第一档 最小量程档,最大读数是9.999KHZ ,闸门信号的采样时间为1S. 第二档 最大读数是99.99KHZ ,闸门信号采样时间为0.1S. 第三档 最大读数是999.9KHZ ,闸门信号采样时间为10mS. 第四档 最大读数是9999KHZ ,闸门信号采样时间为1mS. 1.3 显示方式 (1)用七段LED 数码管显示读数,做到能显示稳定,不跳变。 (2)小数点的位置随量程的变更而自动移动 (3)为了便于读数,要求数据显示时间在0.5-5s 内连续可调 1.4具有自检功能。 1.5被测信号为方=方波信号 二、设计方案的选择与论证 2.1 算法设计 频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图 2-1所示的算法。图2-2是根据算法构建的方框图。 被测信号 图2-2 频率测量算法对应的方框图 输入电路 闸门 计数电路 显示电路 闸门产生

整体方框图及原理 频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。 周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态

低音炮制作很简单

低音炮制作很简单,比制作普通音箱电路都简单. 因为只考虑低音,所以在前置电路中只引入低通滤波电路即可,有无源和有源之分,无源采用普通电容加电感等,低音炮的制作方法。其中介绍了两种方法:1. 在普通的家庭音响上加滤波电路,然后用大音箱回放重低音。其优点是效果好缺点是大音箱使用不方便。2. 自制功放、音箱的优点是使用灵活方便,音质好。缺点是制作的难度大。 鉴于以上两种方法各自的优缺点,和我制作过程中的经验做了以下的改动。原设计中自制的功放很复杂,特别是其中用到了n级的电容。制作时稍有不慎便有“画虎不成反类犬”的效果。所以功放部分还是采用一般功放加滤波电容的做法。功放可以在旧货市场上买到,40W足够。价格比自己做的还便宜。 其具体办法是在声卡接功放之间加一个简单的电路,如图1。如果觉得低音不足,还有部分高音混入。这时可适当换稍小的电容就可解决。最好是买一个一转二的立体声的插头,一个孔接原音箱,另一个接低音炮。电路可以直接焊在旧功放的输入接口上,元件有1/8W 22K电阻4只,68n(0.068uF)电容4只,一根声卡接功放线。这样就能回放100Hz以下的低音了。 图1 在声卡接功放之间加一个电路 既然是低音炮,就要遵循低音回放的原理。原作者的设计很合理。不过最好不要用现成的箱体做。因为现在很多的箱体质量不是很好,而且其尺寸比例和设计比较差。最主要的是要封好原有的喇叭孔也很不容易。其具体的做法如图2,值得注意的是音盆安装时最好靠后,否则会妨碍装导音孔。音盆用6.5英寸的低音喇叭,值得注意的是两个音盆的极性要反接。也就是其中一个的正极接另一个的负极,另外一个极性也如法炮制。然后从一个音盆上接线到接线盒上。我个人经验最好在接线盒和音盆之间在加一个分频器。电子市场上有卖的,20元以下,有线圈和电容的那一种。只用低音的部分,高音的部分闲置不用。这样就可以进一步地将未滤掉的中音滤掉。

简易数字显示频率计的设计

简易数字显示频率计的设计 摘要:本文应用NE555构成时钟电路,7809构成稳压电源电路,CD4017构成控制电路,CD40110和数码管组成计数锁存译码显示电路,实现可测量1HZ-99HZ这个频段的数字频率计数器。 关键词:脉冲;频率;计数;控制 1 引言 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得很重要。测量频率的方法有很多,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。 2 电子计数器测频方法 电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 3 简易数字频率计电路组成框图 本设计主要运用数字电路的知识,由NE555构成时钟电路,7809构成稳压电源电路,CD4017构成控制电路,CD40110和数码管组成计数锁存译码显示电路。从单元电路的功能进行划分,该频率计由四大模块组成,分别是电源电路、时钟电路(闸门)、计数译码显示电路、控制电路(被测信号输入电路、锁存及清零)。电路结构如图1所示。 图1 简易数字频率计电路组成框图 4 单元模块电路设计

4.1电源电路 在电子电路中,通常都需要电压稳定的直流电源供电。小功率的稳压电源的组成如图2所示,它由电源变压器、整流电路、滤波电路和稳压电路四部分组成。 图2 电源电路 220V市电经220V/12V变压器T降压,二极管桥式整流电路整流,1000uF电容滤波后送人7809的输入端(1脚)。7809的第二脚接地,第三脚输出稳压的直流电压,C7、C8是为了进一步改变输出电压的纹波。红色发光管LED指示电源的工作状态,R9为LED的限流电阻,取值为5.1K。 4.2 时钟电路 电路如图3所示,由NE555构成的多谐振电路,3脚输出振荡脉冲,其中LED为黄色发光二极管,R1为5.1K,R2为1K,R3为10K,C1,C5为100UF,C4为0.01UF,C2为1000PF,R PE 选取10K。 图3 时钟电路 4.3计数、显示电路

简易数字频率计电路设计

简易数字频率计电路设计

摘要 请对内容进行简短的陈述,一般不超过300字 关键字:周期;频率;数码管,锁存器,计数器,中规模电路,定时器 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。 数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 本章要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示。数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、数码管、时基电路、逻辑控制、译码显示电路几部分组成。

目录 前言 (1) 1.数字频率计的原理 (2) 2.系统框图 (3) 3.系统各功能单元电路设计 (3) 3.1 时基电路设计 (3) 3.2 放大整形电路 (4) 3.3 逻辑控制电路 (5) 3.4 锁存单元 (6) 3.5 分频电路 (7) 3.6 显示器 (7) 3.7 报警电路 (8) 4.系统总电路图 (10) 结束语 (11) 参考文献 (12)

前言 数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。被测信号可以是正弦波、方波或其它周期性变化的信号。数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。 在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。 频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。

JBLBTX_250低音炮服务手册ServiceManual

Service Manual BTX250 ?250mm subwoofer and 250mm passive radiator combined with a 100W RMS amplifier housed in a specific enclosure, all carefully engineered to work together as a unique, integrated system. ?12 dB/octave electronic low pass filter with selectable 40Hz-120Hz crossover frequency for precise frequency division to match any system ?Variable Bass Boost for up to 6dB more level at 50Hz ?Line-level and speaker-level Inputs to integrate seamlessly with virtually any factory-installed head unit ?Variable input sensitivity for compatibility with all source units and factory head units ?Effective protection circuitry against short circuit, overheating and over-current ?High-quality power, input and output connectors for clean, tight, long-lasting connections ?Power-On indicator led for visible indication of amplifier status Specifications Dynamic Range: CD:100W RMS Power Handling:300W Max Power Handling:20Hz - 160Hz Frequency Response:40 - 120Hz Active Crossover: 4 Ohms Impedance:0 - 180° Phase control:0 to +6dB @ 40Hz Dimensions (H x W x D):625 x 320 x 315 mm

简易数字频率计设计实验报告

电子线路课程设计报告 姓名: 学号: 专业:电子信息 日期:2014.4.13 南京理工大学紫金学院电光系 2014-4-13

引言 《电子线路课程设计》是一门理论和实践相结合的课程。它融入了现代电子设计的新思想和新方法,架起一座利用单元模块实现电子系统的桥梁,帮助学生进一步提高电子设计能力。对于推动信息电子类学科面向21世纪课程体系和课程内容改革,引导、培养大学生创新意识、协作精神和理论联系实际的学风,加强学生工程实践能力的训练和培养,促进广大学生踊跃参加课外科技活动和提高毕业生的就业率都会起到了良好作用。 该课程主要内容: (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用:包括放大器、滤波器、比较器、光电耦合器、单稳、逻辑控制、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 (5)电子线路课程设计课题: 设计并制作一个基于模电和数电的简易数字频率计。

目录 第一章设计要求................................................. 1.1 基本要求........................................... 1.2 提高部分........................................... 1.3 设计报告........................................... 第二章整体方案设计............................................. 2.1 算法设计........................................... 2.2 整体方框图及原理................................... 第三章单元电路设计............................................. 3.1 模电部分设计....................................... 3.1.1 放大电路........................................ 3.1.2 滤波电路........................................ 3.1.3 比较电路........................................ 3.1.4 模电总体电路.................................... 3.2 数电部分设计....................................... 3.2.1 时基电路........................................ 3.2.2 单稳态电路...................................... 3.2.3 计数、译码、显示电路............................ 3.2.4 数电总体电路.................................... 第四章测试与调整............................................... 4.1 时基电路的调测..................................... 4.2 计数电路的调测..................................... 4.3 显示电路的调测..................................... 第五章设计小结................................................. 5.1 设计任务完成情况................................... 5.2心得体会...........................................

LM3886制作的低音炮电路图

使用LM3886制作的低音炮电路图 作者:低音之父来源:未知日期:2009-10-19 14:24:04 人气:4566 标签: 导读:LM3886TF是美国NS公司推出的新型的大功率音频放大集成电路,其后面的TF为全绝缘封装,和L M1875T相比,它的功率较大,在额定工作电压下最大可达68W的连续不失真 LM3886TF是美国NS公司推出的新型的大功率音频放大集成电路,其后面的TF为全绝缘封装,和 LM1875T相比,它的功率较大,在额定工作电压下最大可达68W的连续不失真平均功率,同样具有比较完善的过压过流过热保护功能,最可贵的是它具有自动抗开关机时的电流冲击的功能,使扬声器能够安全的工作。 LM3886优异的性能,使得它在近几年音响制作中广泛的应用,许多成品功放机中就有直接的应用它担任后级功放或者用它作为重低音放大电路。采用了美国NS公司(国家半导体公司)推出的新型高保真音响功放集成电路LM 3886TF作功率放大,用运放NE5532或AD827作前置线性放大和音调放大。其特点有:输出功率大(连续输出功率68W)、失真度小(总失真加噪声<0 03%)、保护功能(包括过压保护、过热保护、电流限制、温度限制、开关电源时的扬声器冲击保护、静噪功能)齐全,外围元件少,制作调试容易,工作稳定可靠。由于用它制作功率放大电路具有简易,适用的特点,特别适合于烧友以及电子爱好者的制作。 LM3886TF的电气参数如下: LM3886在VCC=VEE=28V、 4欧负载时能达到68W的连续平均功率,在VCC=VEE=35V,8欧负载时能达到50W的平均功率。具有较宽的电源电压范围VCC+VEE为20V-94V; 总谐波失真+噪声:60W 20Hz

简易频率计的设计

分类号UDC 单位代码10644 密级公开学号2008050248 学士学位论文 简易频率计的设计 The design of simple frequency counter 论文作者:聂德军 指导教师:伍世云 系 别:物理与工程技术系 专业:电子科学与技术 提交论文日期:年月日 论文答辩日期:年月日 学位授予单位:四川文理学院 中国 达州 2012 年月

摘要 频率是电子技术领域中最基本的参数之一,在许多测量方案以及测量结果中都会涉及到频率测量的相关问题,频率精确测量的重要性显而易见。 在本设计中就介绍了频率测量的原理以及一种简易频率计的制作方法。由于待测信号未知,它有可能是正弦波,有可能是三角波,也有可能是方波。通过施密特触发器把待测信号转换为可以计数的脉冲信号,再由单片机计数输出到合适的电子显示元件以十进制显示出来。 本文重点介绍了以AT89C52单片机为对系统各个部件的控制来实现整个电路的信号频率采集、测量、转换数据、以及显示最终结果的功能,结合外围电子电路得以频率和周期的测量,并用十进制数字来显示被测信号的频率和周期。本数字频率计的硬件部分是采用PROTEUS ISIS绘制的,PROTEUS和KEIL联合做系统仿真,软件部分的单片机控制程序的编写使用的是C语言本。本系统的最大优点就是它结构简单易懂,制作起来也并不算麻烦,其缺点就是容易受自身电路元件以及周围环境的影响,从而导致测量结果与实际值的偏差。 关键词:单片机AT89C52 电路原理频率测量周期测量 I

ABSTRACT Frequency is one of the basic parameters in the field of electronic technology, many measurement programs, as well as measurement results are related to the frequency measurement, and frequency of accurate measurement of obvious importance. In this design on a frequency measurement principle and method of making a simple frequency meter. The test signal is unknown, it may be a sine wave, there is a triangle wave, there may be a square wave. Converted to a test signal through the Schmitt trigger pulse signal can count, count by the microcontroller output to the appropriate electronic display elements displayed in decimal. This paper focuses on AT89C52 microcontroller for control of the system in various parts of to achieve the entire circuit signal frequency acquisition, measurement and conversion data, and display the final results feature, combined with the external electronic circuit can be frequency and period of measurement, and use decimal numbers to display of the measured signal frequency and period. The digital hardware part of the frequency meter using the PROTEUS the ISIS draw, the PROTEUS, and KEIL do system simulation software part of the microprocessor control program written using C language in this. The biggest advantage of this system is its structure is simple, the production is not too troublesome, the drawback is vulnerable to its own circuit elements, as well as the surrounding environment, resulting in the deviation of measurement results and the actual value. Keywords: SCM AT89C52 circuit schematic frequency measurement cycle measurement II

低音炮电路

很多发烧友普遍使用6.5~8英寸低音单元的音箱,这些音箱的低频下限比较低,低音听起来虽然有力,但能量和延伸能力却不足。众所周知,低音是音乐信号的基础,它在很大程度上影响听音的氛围,缺失低音信号声音会显得轻飘而不真实,而在正规的家庭影院播放中,超重低音箱是很重要的一分子,如果少了重低音的烘托,那就完全失去临场感,也就是说不真实。 因此,笔者建议,如果有条件,还是选用中大型落地箱为好,以得到更丰富的低频响应,而组建家庭影院时,应把超重低音音箱考虑进去。当然,如果原来的系统没有丰富的低频效果,你也可单独添置一个优质的超重低音音箱来提高重播效果。不过,好一点的超重低音音箱售价不菲,既然我们有能力去自己设计制作书架箱或落地箱,那么我们是否也能自己做一个好一点的超重低音音箱呢?答案是肯定的,有兴趣的读者不妨跟随着我依葫芦画瓢。 理想的超重低音箱的概念 在制作前,我们应对什么是“好一点的超重低音音箱”有一个基本的概念。笔者认为衡量超重低音音箱的品质高低有几个方面。 1、好的超重低音箱必须是有源放大的 所谓“有源放大”就是内置功放的,而无源超低音音箱是没有内置功放,箱内只有无源分频器,要和主音箱共用或另配功放。无源超低音音箱是利用前级的音量控制来决定音量,如果超重低音音箱的灵敏度或

音量和主音箱不平均,会引发声场混乱、频响不均衡、声像定位出不来等情况,而此时超重低音音箱的摆位又不能解决这一问题,这些问题就难以改善。加上超低音大口径单元的振动质量肯定大于主音箱单元,故发声速度要慢一些,加了这种超重低音音箱之后,效果往往很浑浊。 有源超低音音箱是专门为低音重播而设计的。它的工作特征是信号直入带有源分频的前级。100 Hz以下的频率由专用的低音放大器放大后驱动超低音音箱。100 Hz以上的频率经分频后送至放大器,放大后由主音箱播出。这时要有一个独立的音量控制用来控制超低音音量跟主音箱在音量上的比例。 正规的添加超低音音箱是超低音在交叉分频频率以下工作(例如100 Hz或120 Hz),而主音箱在交叉分频频率以上工作,不过这样的分频器要设在信号源输出之后,主声道前级之前,因而,一些高级的超低音音箱都设有一对左右声道输出端子,但在日常使用中很多人都是直接从前级输出直驳入超低音音箱。 由此看来,有源超低音音箱所用的单元和内部磁路结构、专用的低频提升技术,以及分频放大器、箱体等都是为低频再现而服务的。因此,有源超低音音箱的表现并非无源音箱所能比拟的。 2、超低频量感要充足,延伸要足够低 超低音音箱的功能就是弥补主声道音箱的低频不足。

multisim简易数字频率计

哈尔滨工业大学 简易频率计的仿真设计

目录 1.设计要求 2. 总电路图及工作原理 3.电路组成介绍 3.1脉冲形成电路 3.2闸门电路 3.3时基电路 3.4计数译码显示电路 4. 电路的测试 5. 分析与评价 附录:元器件清单 1.设计要求 本次设计任务是要求设计一个简易的数字频率计,即用数字显示被测信号频率的仪 2

器,数字频率计的设计指标有: 1. 测量信号:正弦信号、方波信号等周期变化的物理信号; 2. 测量频率范围:0Hz~9999Hz; 3. 显示方式:4位十进制数显示。 2.电路工作原理 频率计总电路图如下所示: 3

频率计的基本原理:通过将被测周期信号整形为同频率的方波信号后,利用555定时器组成的振荡电路所产生的频率为1Hz的标准方波,作为基准时钟,与被整形后的方波信号一起经过闸门电路处理输入计数电路,再利用74LS90N的十进制计数功能进行级联计数,计数后输入8位数据/地址锁存器74LS273N以实现锁存和清零功能,最后输入到译码显示电路中,用BCD7段译码器显示出来,这样就实现了对被测周期信号的频率测量并显示的功能。 频率计的工作原理流程图如下所示: 3.电路组成介绍 3.1脉冲形成电路 脉冲形成电路由信号发生器与整形电路组成,输入信号先经过限幅器,再经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限副作用。由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。线路图如下所示: 4

3.2闸门电路 闸门电路的作用是控制计数器的输入脉冲,在电路中用一个与非门来实现(如下图所标注)。当标准信号(正脉冲)来到时闸门开通,被侧信号的脉冲通过闸门进入计时器计数;正脉冲结束时闸门关闭,计数器无时钟脉冲输入。 闸门电路 5

相关文档
最新文档