2017年全国高中数学联赛试题及答案

合集下载

2017年全国高中数学联赛试题与答案

2017年全国高中数学联赛试题与答案

2017年全国高中数学联赛试题与答案第一试一、填空题:本大题共8小题,每小题8分,共64分.1.设()f x 是定义在R 上的函数,对任意实数x 有()()341f x f x +⋅-=-.又当07x ≤<时,()()2log 9f x x =-,则()100f -的值为 .答案:1.2-解:由条件知,()()()114,7f x f x f x +=-=+所以()()()()21111001001472.5log 42f f f f -=-+⨯=-=-=-=- 2.若实数,x y 满足22cos 1x y +=,则cos x y -的取值范围是 .答案:1.⎡⎤-⎣⎦解:由于[]212cos 1,3x y =-∈-,故.x ⎡∈⎣由21cos 2x y -=可知,()2211cos 1 1.22x x y x x --=-=+-因此当1x =-时,cos x y -有最小值(这时y 可以取2π);当x =cos x y -1(这时y 可以取π).由于()21112x +-的值域是1⎡⎤-⎣⎦,从而cos x y -的取值范围是1.⎡⎤-⎣⎦ 3.在平面直角坐标xOy 中,椭圆C 的方程为221910x y +=,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为 .解:易知()()3,0,0,1.A F 设P的坐标是()3cos ,0,,2πθθθ⎛⎫∈ ⎪⎝⎭则11313cos 23OAPF OAP OFP SS S θθ=+=⋅+⋅⋅)()3sin .2θθθϕ=+=+其中ϕ=当θ=时,四边形OAPF 另解:易知()()3,0,0,1.A F 经过C 上位于第一象限内点()000,P x y 一条切线与直线1AF 平行.该切线方程为001910x x y y+=. 因为这两条平行直线的斜率相等,所以 00101.93x y -⋅=- 又因22001,910x y +=所以00x y ==易得点0P ⎝⎭到直线1:330AF x y +-=)1.于是,四边形OAPF 的面积的最大值为)01131122OAF FAP S S +=⋅⋅+=4.若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是 .答案:75.解:考虑平稳数abc .若0b =,则{}1,0,1a c =∈,有2个平稳数.若1b =,则{}1,2a ∈,{}0,1,2c ∈,有236⨯=个平稳数. 若28b ≤≤,则{},1,,1a c b b b ∈-+,有73363⨯⨯=个平稳数. 若9b =,则{},8,9a c ∈,有224⨯=个平稳数. 综上可知,平稳数的个数是2663475.+++= 另解:设abc 是一个平稳数,则1b a -≤且 1.c b -≤ 由1b a -≤可知0b a -=,1.由1c b -≤可知c b -=0,1. 1)若0,0b a c b -=-=,则,1,2,,9abc aaa a ==,有9个平稳数.2)若0,1b a c b -=-=,则 ,1,b a c a =⎧⎨=+⎩或,1.b a c a =⎧⎨=-⎩于是,()1abc aa a =+,1,2,,8a =;或()1abc aa a =-,1,2,,9a =.有8917+=个平稳数.3)若1,0b a c b -=-=,则 ,1,c b a b =⎧⎨=-⎩或, 1.c b a b =⎧⎨=+⎩ 于是,()1abc b bb =-,2,3,,9b =;或()1,0,1,,8abc b bb b =+=.有8917+=个平稳数.4)若1,1b a c b -=-=,则1b a -=±, 1.c b -=± 由1,1b a c b -=-=得()()12,1,2,,7abc a a a a =++=;由1,1b a c b -=-=-得()1,1,2,,8abc a a a a =+=;由1,1b a c b -=--=得()1,1,2,,9abc a a a a =-=;由1,1b a c b -=--=-得()()12,2,3,,9.abc a a a a =--=有789832+++=个平稳数.综上可知,平稳数的个数为 917173275.+++=5.正三棱锥P -ABC 中,1,2AB AP ==,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为 .解:设,AB PC 的中点分别为,K M ,则易证平面ABM 就是平面α.由中线长公式知()()222222*********,24242AM AP AC PC =+-=+-⨯=所以KM ==又易知直线PC 在平面α上的射影是直线MK,而1,CM KC ==所以222531cos 2KM MC KC KMC KM MC +-+-∠===⋅故棱PC 与平面α6.在平面直角坐标系xOy 中,点集(){},|,1,0,1.K x y x y ==-在K 中随机取出三个点,则的概率 .答案:4.7解:易知K 中有9个点,故在K 中随机取出三个点的方式有3984C =种.将K 中的点按右图标记为128,,,,,A A A O 其中有8由对称性,考虑14,A A 两个点的情况,则剩下的一个点有7种取法.这样有7856⨯=个三点组(不计每组中三点的次序).对每个()1,2,,8i A i =,K 中恰有35,i i A A ++(这里下标按模8理解),因而恰有{}()35,,1,2,,8i i i A A A i ++=这8个三点组被记了两次.从而满足条件的三点组个数为56848-=,进而所求概率为484.847= 7.在ABC 中,M 是BC 的中点,N 是线段BM 的中点.若3A π∠=,ABC 的面积AM AN ⋅的最小值为 .1. 解:由条件知,()131,244AM AB AC AN AB AC =+=+,故()22131134.2448AM AN AB AC AB AC AB AC AB AC ⎡⎤⎛⎫⋅=+⋅+=++⋅ ⎪⎢⎥⎝⎭⎣⎦13sin ,24ABCSAB AC A AB AC ==⋅⋅⋅=⋅⋅所以4AB AC ⋅=,进一步可得 cos 2,AB AC AB AC A ⋅=⋅⋅=从而2212348AM AN AB AC AB AC ⎛⎫⋅≥⋅+⋅ ⎪⎝13 1.2AB AC AB AC ⋅+⋅=+当,2AB AC ==AM AN ⋅ 1.8.设两个严格递增的正整数数列{}n a ,{}n b 满足:10102017a b =<,对任意正整数n , 有211,2,n n n n n a a a b b +++=+=则11a b +的所有可能值为 .答案:13,20.解:由条件可知:121,,a a b 均为正整数,且12.a a <由于9101120172512b b b >=⋅=,故{}11,2,3.b ∈反复运用{}n a 的递推关系知 1098877665542325385a a a a a a a a a a a =+=+=+=+=+43322113821131421,a a a a a a =+=+=+ 因此1101032212121133421,a a b a a a a ≡==+=+而13213481⨯=⨯+,故()1111132113226mod34.a a b b ≡⨯≡⨯= ①另一方面,注意到12a a <,有1211553421512,a a a b <+=故11512.55a b <② 当11b =时,①,②分别化为()1151226mod34,,55a a ≡<无解. 当12b =时,①,②分别化为()11102452mod34,,55a a ≡<得到唯一的正整数118,a =此时1120.ab +=当13b =时,①,②分别化为()11153678mod34,55a a ≡<,得到唯一的正整数110,a =此时1113.ab +=综上所述,11a b +的所有可能的值为13,20.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设,k m 为实数,不等式21x kx m --≤对所有[],x a b ∈成立.证明:b a -≤证明:令()2f x x kx m =--,[],x a b ∈,则()[]1,1.f x ∈-于是 ()21,f a a ka m =--≤ ① ()21,f b b kb m =--≤ ②21.222a b a b a b f k m +++⎛⎫⎛⎫=-⋅-≥- ⎪ ⎪⎝⎭⎝⎭③ 由①+②2-⨯③知,()()()22 4.22a b a b f a f b f -+⎛⎫=+-≤ ⎪⎝⎭故b a -≤另证:令()2f x x kx m =--,[],.x a b ∈因为不等式()1f x ≤对所有[],x a b ∈成立,所以()f x 在[],a b 上的最大值与最小值之差不超过2.下面用反证法证明b a -≤假设b a ->1)当2ka ≥时,()()(()2f b f a f a f a ≥->+-((()22a k a m a ka m =+-+----228a ka m a ka m =++----++888.2k=-+≥-+=矛盾.2)当2kb ≤时, ()()(()2f a f b f b f b ≥->--888.2k=-++≥-++=矛盾.3)当2ka b <<时, ⅰ)若22k a b+≤,则 ()()222k a b f b f f b f +⎛⎫⎛⎫≥-≥-⎪ ⎪⎝⎭⎝⎭2222a b a b a b f f +++⎫⎛⎫>-=+⎪ ⎪⎭⎝⎭2 2.2k≥+=矛盾.ⅱ)若22k a b+>,则 ()()22222k a b a b a b f a f f a f f f +++⎛⎫⎛⎫⎛⎛⎫≥->->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭22 2.22a b k+=-++>-+=矛盾.10.(本题满分20分)设123,,x x x 是非负实数,满足1231x x x ++=,求 ()3212313535x x x x x x ⎛⎫++++⎪⎝⎭的最大值和最小值.解:由柯西不等式()3212313535x x x x x x ⎛⎫++++≥ ⎪⎝⎭ ()2123 1.x x x =++=当1231,0,0x x x ===时不等式等号成立,故欲求的最小值为1. 因为()()52123113312315353553553x x x x x x x x x x x x ⎛⎫⎛⎫++++=++++ ⎪ ⎪⎝⎭⎝⎭ ()2123123115355543x x x x x x ⎡⎤⎛⎫≤⋅+++++⎢⎥ ⎪⎝⎭⎣⎦212311466203x x x ⎛⎫=++ ⎪⎝⎭()212319666,205x x x ≤++= 当12311,0,22x x x ===时不等式等号成立,故欲求的最大值为9.511.(本题满分20分)设复数12,z z 满足()()12Re 0,Re 0z z >>,且()()2212Re Re 2z z ==(其中()Re z 表示复数z 的实部). (1)求()12Re z z 的最小值;(2)求121222z z z z +++--的最小值.解:对1,2k =,设()i ,k k k k k z x y x y R =+∈.由条件知()()222Re 0,Re 2.k k k k k x z z y z =>-== 因此()()()()1211221212Re Re i i z z x y x y x x y y =++=-()12122 2.y y y y +-≥又当12z z ==()12Re 2z z =.这表明,()12Re z z 的最小值为2.(2)对1,2k =,将k z 对应到直角坐标系xOy 中的点(),k k k P x y .记2P '是2P 关于x 轴的对称点,则12,P P '均位于双曲线22:2C x y -=的右支上.设12,F F 分别是C 的左、右焦点,易知()()122,0,2,0.F F -根据双曲线的定义,有11122122PF PF P FP F ''=+=+进而得 1212112222z z z z z z z +++--=++-112112122212PF P F PP PF P F PP ''''=+-=+-≥等号成立当且仅当2F 位于线段12P P '上(例如,当122z z ==时,2F 恰是12P P '的中点).综上可知,121222z z z z +++--的最小值为加试题一、(本题满分40分)如图,在ABC 中,AB AC =,I 为ABC 的内心.以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点B 、I 的圆3Γ与1Γ、2Γ分别交于点P 、Q (不同于点B ).设IP 与BQ 交于点R .证明:.BR CR ⊥证明:连接,,,,.IB IC IQ PB PC由于点Q 在圆2Γ上,故,IB IQ =所以.IBQ IQB ∠=∠又,,,B I P Q 四点共圆,所以,IQB IPB ∠=∠于是,IBQ IPB ∠=∠ 故IBP ∽IRB ,从而有,IRB IBP ∠=∠且RQP ICBA A BCIP Q R,IB IP IR IC= 注意到AB AC =,且I 为ABC 的内心,故IB IC =,所以,IC IP IR IC= 于是ICP ∽IRC ,故.IRC ICP ∠=∠又点P 在圆1Γ的弧BC 上,故11802BPC A ∠=-∠,因此BRC IRB IRC IBP ICP ∠=∠+∠=∠+∠360BIC BPC =-∠-∠113609018022A A ⎛⎫⎛⎫=-+∠--∠ ⎪ ⎪⎝⎭⎝⎭90,= 故.BR CR ⊥二、(本题满分40分)设数列{}n a 定义为11,a = 1,,1,2,.,,n n n nn a n a n a n a n a n ++≤⎧⎪==⎨->⎪⎩若若求满足20173r a r <≤的正整数r 的个数.解:由数列定义可知121, 2.a a ==假设对某个2r ≥有r a r =,我们证明对1,,1t r =-,有2122121,2.r t r t a r t r t a r t r t +-+=+->+-=-<+ ①对t 归纳证明.当1t =时,由于r a r r =≥,由定义,121,r r a a r r r r r +=+=+=>+()()2112112r r a a r r r r r ++=-+=-+=-<+,结论成立.设对某个11t r ≤<-,①成立,则由定义()21222221,r t r t a a r t r t r t r t r t +++=++=-++=+>++()()222121221122,r t r t a a r t r t r t r t r t ++++=-++=+-++=--<++即结论对1t +也成立.由数学归纳法知,①对所有1,2,,1t r =-成立,特别当1t r =-时,有321r a -=,从而()3132323 1.r r a a r r --=+-=- 若将所有满足r a r =的正整数r 从小到大记为12,,,r r 则由上面的结论可知1211,2,31,2,3,.k k r r r r r +===-=由此可知,()11131,,122k k r r k m +⎛⎫-=-=- ⎪⎝⎭,从而11111313.222m m m r r --+⎛⎫=-+= ⎪⎝⎭由于201730182017201820193131322r r ++=<<=,在20171,2,,3中满足r a r =的数r 共有2018个,为122018,,,.r r r由①可知,对每个1,2,,2017k =,1,2,,32k k k r r r ++-中恰有一半满足.r a r <由于2017201831112r ++=+与20173均为奇数,而在201720181,,3r +中,奇数均满足r a r >,偶数均满足r a r <,其中偶数比奇数少1个.因此满足20173r a r <≤的正整数r 的个数为()20172017132019320181.22---= 另解:易知1231,2,4a a a ===;4567891,5,10,4,11,3,a a a a a a ======10111212,2,13a a a ===;1314151617181920211,14,28,13,29,12,30,11,31,a a a a a a a a a =========222310,32,a a == 242526272829309,33,8,34,7,35,6,a a a a a a a =======31323336,5,37,a a a ===344,a = 353637383938,3,39,2,40a a a a a =====;……当正整数n 足够大时,若1n a =,则()121321,1,122,2,n n n n n n n a a a n n a a n n a a n n +++++==+=+=++=+=-+=()435465323,41,524,n n n n n n a a n n a a n n a a n n ++++++=++=+=-+=-=++=+由以上等式易观察出:若1n a =,正整数2k n <+,则 2122,2 1.n k n k a n k a n k +-+=-+=++因为当21n k -+=时,1k n =+,2131,n k n +-=+所以,当1n a =时,使得1m a =且m n >的最小正整数3 1.m n =+当1n >,且1n a =时, 11,11n n a n a n n +=<=+≤+,2222,n a n n +=+>+ 212221,212,2,,.n k n k a n k n k a n k n k k n +-+=-+<+-=++>+= 因为11a =,所以使得1m a =且1m >的最小正整数31m =+.因为311a +=,所以使得1m a =且31m >+的最小正整数()2331133 1.m =⋅++=++依此类推下去,可知使得1n a =的一切正整数n 分别为221,13,133,,1333,k +++++++.设220121,13,133,,1333,k k n n n n ==+=++=++++.易知2007201620173,n n <<20161n a =,2016201612016201622016201611,22 2.n n a n n a n n ++=+≤+=+>+ 201620162120162016220162016221,212,n k n k a n k n k a n k n k +-+=-+<+-=++>+2017201632,,.2n k -=满足01,r a r n r n <≤<的正整数r 的个数为零;满足,3r i i a r n r n <≤<+ 的正整数r 的个数为1,1,2,,2016.i =满足1331i i i n r n n ++≤<=+的正整数r 共有22i n -(偶数)个,1,2,,2015,i =其中分别使得r a r <和r a r >的各占一半.满足2017201633n r +≤≤的正整数r 共有2017201632n --(偶数)个,其中分别使得r a r <和r a r >的各占一半.于是,满足20173r a r <≤的正整数r 的个数为20172017332017320192016.22-⨯-+=三、(本题满分50分)将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.解:记分隔边的条数为L .首先,将方格纸按如图分成三个区域,分别染成三种颜色, 粗线上均为分隔边,此时共有56条分隔边,即56.L =粗线上均为分隔边,此时共有56条分隔边,即56.L =下面证明56.L ≥将方格纸的行从上至下依次记为1233,,,A A A ,列从左至右依次记为1233,,,B B B .行i A 中方格出现的颜色数记为()i n A ,列i B 中方格出现的颜色个数记为()i n B .三种颜色分别记为123,,.c c c 对于一种颜色j c ,设()j n c 是含有j c 色方格的行数与列数之和.记()1,,0,i j i j A c A c δ⎧⎪=⎨⎪⎩若行含有方格,否则,类似地定义(),i j B c δ.于是()()()()()()33333111,,iiijiji i j n A n B A c B c δδ===+=+∑∑∑11331716()()()()3333111,,.i j i j j j i j A c B c n c δδ====+=∑∑∑由于染j c 色的方格有21333633⋅=个,设含有j c 色方格的行有a 个,列有b 个,则j c 色的方格一定在这a 行和b 列的交叉方格中,因此363ab ≥,从而()38,j n c a b =+≥> 故 ()39,1,2,3.j n c j ≥= ①由于在行i A 中有()i n A 种颜色的方格,因此至少有()1i n A -条分隔边.同理在列j B 中,至少有()1j n B -条分隔边.于是()()()()33331111i i i i L n A n B ==≥-+-∑∑()()()33166i i i n A n B ==+-∑ ②()3166.j j n c ==-∑ ③下面分两种情形讨论.情形 1:有一行或一列全部方格同色.不妨设有一行全为1c 色,从而方格纸的33列中均含有1c 色方格.由于1c 色方格有363个,故至少有11行中含有1c 色方格,于是()1113344.n c ≥+= ④由①,③及④即得()()()123664439396656.L n c n c n c ≥++-≥++-=情形2:没有一行也没有一列的全部方格同色.则对任意133i ≤≤,均有 ()()()33166334666656.i i i L n A n B =≥+-≥⨯-=>∑综上所述,分隔边条数的最小值等于56. 四、(本题满分50分)设,m n 均是大于1的整数,.m n ≥12,,,n a a a 是n 个不超过m 的互不相同的正整数,且12,,,n a a a 互素.证明:对任意实数x ,均存在一个()1i i n ≤≤,使得()2,1i a x x m m ≥+这里y 表示实数y 与它最近的整数的距离.证明:首先证明以下两个结论. 结论1:存在整数12,,,n c c c ,满足11221,n n c a c a c a +++=并且,1.i c m i n ≤≤≤由于()12,,,1n a a a =,由裴蜀定理,存在整数12,,,n c c c ,满足1122 1.n n c a c a c a +++= ①下面证明,通过调整,存在一组12,,,n c c c 满足①,且绝对值均不超过m .记()()112212,,,0,,,,0.i j n in j c mc mS c c c cS c c c c ><-=≥=≥∑∑如果10S >,那么存在1,i c m >>于是1,i i c a >又因为12,,,n a a a 均为正数,故由① 可知存在0.j c <令i i c c a '=-。

2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)1.2017年全国高中数学联赛江苏赛区预赛试卷及详解2.填空题1.已知向量$\overrightarrow{AP}=\begin{pmatrix}1\\3\end{pmatrix}$,$\overrightarrow{PB}=\begin{pmatrix}-3\\1\end{pmatrix}$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角等于$\frac{\pi}{4}$。

2.已知集合$A=\{x| (ax-1)(a-x)>0\}$,且$a\in A$,$3\notin A$,则实数$a$的取值范围是$1\leq a<2$或$2<a\leq 3$。

3.已知复数$z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$,则$z^3+z^2=\frac{1}{2}-\frac{3}{2}i$。

4.在平面直角坐标系$xOy$中,设$F_1$,$F_2$分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,$P$是双曲线右支上一点,$M$是$PF_2$的中点,且$OM\perp PF_2$,$3PF_1=4PF_2$,则双曲线的离心率为$5$。

5.定义区间$[x_1,x_2]$的长度为$x_2-x_1$。

若函数$y=\log_2x$的定义域为$[a,b]$,值域为$[0,2]$,则区间$[a,b]$的长度的最大值与最小值的差为$3$。

6.若关于$x$的二次方程$mx^2+(2m-1)x-m+2=0(m>0)$的两个互异的根都小于$1$,则实数$m$的取值范围是$\left(\frac{3+\sqrt{7}}{4},+\infty\right)$。

7.若$\tan4x=\frac{3\sin4x\sin2x\sinx}{\cos8x\cos4x\cos4x\cos2x\cos2x\cos x\cos x}$,则$\sin^2x+\sin^24x+\sin^28x=3$。

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案
x x 9. (本题满分 16 分)设不等式 2 a 5 2 对所有
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则

2017年全国高中联赛一试(B卷)数学试题 Word版 含答案

2017年全国高中联赛一试(B卷)数学试题 Word版 含答案

2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a中,2a3a 1201172017a a a a ++的值为 . 2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2x f x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n = . (1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR的取值范围.试卷答案1.答案:89解:数列{}n a的公比为32a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.解:设,,z a bi a b R =+∈,由条件得(9)10(1022)a bi a b i ++=+-+,比较两边实虚部可得9101022a ab b +=⎧⎨=-+⎩,解得:1,2a b ==,故12z i =+,进而||z 3.答案:74- 解:由条件知,2(1)1((1)(1))(1)1f f f +=--+-=---,1(1)2(1)2f f +=-+, 两式相加消去(1)f -,可知:12(1)32f +=-,即7(1)4f =-. 4.答案:解:由正弦定理知,sin 2sin a A c C ==,又2b ac =,于是::a b c =,从而由余弦定理得:222222cos 24b c a A bc +-===-. 5.答案:解:由条件知,EF 平行于BC ,因为正四面体ABCD 的各个面是全等的正三角形,故4AE AF EF ===,7AD AB AE BE ==+=.由余弦定理得,DE ===同理有DF =作等腰DEF ∆底边EF 上的高DH ,则122E H E F ==,故DH ==于是12DEF S EF DH ∆==6.答案:514解:注意K 中共有9个点,故在K 中随机取出三个点的方式数为3984C =种,当取出的三点两两之间距离不超过2时,有如下三种情况:(1)三点在一横线或一纵线上,有6种情况,(2)三点是边长为4416⨯=种情况,(3的等腰直角三角形的顶点,其中,直角顶点位于(0,0)的有4个,直角顶点位于(1,0)±,(0,1)±的各有一个,共有8种情况.综上可知,选出三点两两之间距离不超过2的情况数为616830++=,进而所求概率为3058414=.7. 解:二次曲线方程可写成2221x y a a--=,显然必须0a ->,故二次曲线为双曲线,其标准2221()x a -=-,则2222()c a a a =+-=-,注意到焦距24c =,可知24a a -=,又0a <,所以a =. 8.答案:574 解:由条件知2017[]21000c ≤=,当1c =时,有1020b ≤≤,对于每个这样的正整数b ,由10201b a ≤≤知,相应的a 的个数为20210b -,从而这样的正整数组的个数为。

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷一、选择题(每题5分,共30分)1. 若函数f(x) = x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的首项a1 = 3,公差d = 2,求第5项a5的值。

A. 13B. 15C. 17D. 19答案:A3. 计算复数z = 3 + 4i的模。

A. 5B. √41C. 7D. √49答案:A4. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,求圆心到直线2x + 3y- 12 = 0的距离。

A. 2B. 3C. 4D. 5答案:C5. 计算定积分∫(0到1) (3x^2 - 2x + 1) dx。

A. 1B. 2C. 3D. 4答案:B6. 已知函数y = sin(x) + cos(x),求y'的值。

A. cos(x) - sin(x)B. cos(x) + sin(x)C. -cos(x) + sin(x)D. -cos(x) - sin(x)答案:B二、填空题(每题5分,共20分)7. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(2)的值。

答案:58. 计算二项式(3x - 2)^5的展开式中含x^3的系数。

答案:-809. 若直线y = 2x + 1与抛物线y^2 = 4x相交于点A和点B,求AB的长度。

答案:√510. 计算定积分∫(0到π) sin(x) dx。

答案:2三、解答题(每题10分,共50分)11. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)和f''(x)。

答案:f'(x) = 3x^2 - 6x + 2,f''(x) = 6x - 612. 已知数列{an}满足a1 = 2,an+1 = 2an + 1,求证:数列{an}是递增的。

答案:略13. 已知圆心在原点,半径为r的圆与直线y = x + b相切,求b的值。

2017年全国高中数学联赛A卷和B卷试题和答案(word版)

2017年全国高中数学联赛A卷和B卷试题和答案(word版)

2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 。

5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中,2a,3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2xf x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY.四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a的公比为32a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案解:设,,z a bi a b R =+∈,由条件得(9)10(1022)a bi a b i ++=+-+,比较两边实虚部可得9101022a a b b +=⎧⎨=-+⎩,解得:1,2a b ==,故12z i =+,进而||z =3.答案:74-。

2017年全国高中数学联赛A试题+答案

2017年全国高中数学联赛A试题+答案

2017年全国高中数学联赛A 卷一试答案1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 ___________5.正三棱锥ABC P -中,1=AB ,2=AP ,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为__________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为_________7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)R e()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.。

(完整版)2017年全国高中数学联赛A卷试题和答案

(完整版)2017年全国高中数学联赛A卷试题和答案

2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________. 3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是5.正三棱锥ABC P -中,1=AB ,2=AP ,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为__________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值. 2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.。

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案

13 3 33 2 5 5 2 2 12 a q (a a ⎩n) q说明:2017 年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,共 64 分.1. 在等比数列{a } 中, a 2, a ,则 a 1a 2011的值为 .n23aa答案: 8.972017解:数列{a } 的公比为qa 3 ,故 a 1 a 2011 a 1 a 2011 1 8.a 2a 6 67 2017 1 20112. 设复数 z 满足 z 9 10 z22 i ,则 z 的值为. 答案: .解:设z a b i, a , b R .由条件得 (a 9) b i 10a (10b 22) i .比较两边实虚部可得⎧a + 9 = 10a , ⎨b = -10b + 22, 解得a 1,b 2 ,故 z 1 2i ,进而 z .3. 设 f (x ) 是定义在R 上的函数,若 f (x ) x 2 是奇函数, f (x ) 2x 是偶函数,则 f (1) 的值为 .答案:7 .4解:由条件知, f (1)1f (1) (1)2f (1) 1,f (1) 2 f (1) 1,2两式相加消去 f (1) ,可知2 f (1)31 ,即 f (1)7 244. 在ABC 中,若sin A 2 sin C ,且三条边a , b , c 成等比数列,则cos A 的值为. 答案: 2.4解:由正弦定理知, a sin A2 ,又b 2 ac ,于是a : b : c 2 :: 1 ,从 c sin Cb 2c 2 a 2 ( 2)2 12 22而由余弦定理得, c os A .2 .92bc 45.在正四面体ABCD 中,E, F 分别在棱AB, AC 上,满足BE = 3, EF = 4 ,且EF 与面BCD 平行,则∆DEF 的面积为.2333737DE2 EH 2333321172答案:2 .解:由条件知,EF 平行于BC .因为正四面体ABCD的各个面是全等的正三角形,故AE AF EF4,由余弦定理得,DE同理有DFAD AB AE BE 7 .,作等腰DEF 底边EF 上的高DH ,则EH1EF 2 ,故2于是SDEFDH ,1EF DH 2 .26.在平面直角坐标系xOy 中,点集K ( x, y) | x, y 1, 0, 1.在K 中随机取出三个点,则这三个点两两之间距离均不超过2 的概率为.答案:5.14解:注意K中共有9 个点,故在K中随机取出三个点的方式数为种.当取出的三点两两之间距离不超过2 时,有如下三种情况:(1)三点在一横线或一纵线上,有6 种情况.(2)三点是边长为1, 1, 的等腰直角三角形的顶点,有4 4 16 种情况.(3)三点是边长为2, 2, 2 的等腰直角三角形的顶点,其中,直角顶点位于(0, 0) 的有4 个,直角顶点位于(1, 0), (0, 1) 的各有一个,共有8 种情况.综上可知,选出三点两两之间距离不超过2 的情况数为,进而所求概率为30 5.84 147.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线x2 ay2 a2 0 的焦距为4,则a 的值为.答案:117 .2x2 y2解:二次曲线方程可写成a2 a1.显然必须 a 0 ,故二次曲线为双曲2 x2 2 2 2 21.则c(a)2a(a)a a ,注意到焦距2c 4 ,可知a2 a 4 ,又a 0 ,所以a .8. 若正整数a, b, c 满足2017 10a 100b 1000c ,则数组(a, b, c) 的个数为.答案:574 .AD2AE 2 2 AD AE c os6049 16 2832017 解:由条件知c2 .1000当c 1时,有10 b 20 .对于每个这样的正整数b ,由10b a 201 知,45n n1n2n相应的a 的个数为202 10b .从而这样的正整数组的个数为20(202 10b)b10(1022)112572 .2017 2017当c 2 时,由20 b ,知b 20 .进而200 a201 ,100故a 200, 201 .此时共有 2 组(a, b, c) .综上所述,满足条件的正整数组的个数为.10二、解答题:本大题共 3 小题,满分56 分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设不等式2x a52x 成立,求实数a 的取值范围.解:设t 2x ,则t [2, 4],于是对所有成立.由于t a 5t (t a)2 (5t)2(2t a 5)(5a) 0 .………………8分对给定实数a ,设f (t) (2t a 5)(5a) ,则f (t) 是关于t 的一次函数或常值函数.注意t [2, 4],因此f (t) 0 等价于f(2)(1a)(5a)0,f(4)(3a)(5a)0,………………12分解得3 a 5 .所以实数a 的取值范围是3 a 5 .………………16分10.(本题满分20 分)设数列{an} 是等差数列,数列{bn} 满足b a a a2, n 1, 2, .(1)证明:数列{bn}也是等差数列;(2)设数列{an}、{bn}的公差均是d0,并且存在正整数s,t,使得asbt 是整数,求a1的最小值.解:(1)设等差数列{an}的公差是d,则b b(a aa2) (a a a2 )n1n n2n3n1n1n 2 nan 2(an 3an1) (an 1an)(an 1an)an 22d (an 1an) d(2an 2an 1an) d .所以数列{bn}也是等差数列.………………5分(2)由已知条件及(1)的结果知.因为,故.这样b a a a2 (a d )(a 2d ) a2n n 1 n2n n n n6nn3da 2d 2a 2. ………………10 分9若正整数 s , t 满足,则72 1 2abaa 2a (s 1) d a (t1) d 2stst9 1192a 1s t22Z . 39记l 2a 1s t 2 2 ,则39l Z ,且 18a 1 3(3l s t 1) 1是一个非零的整数,故,从而 .………………15 分又当时,有 ab1171Z .1318 18综上所述, a 的最小值为 1.………………20 分11811. (本题满分 20 分)在平面直角坐标系 xOy 中,曲线C : y24x ,曲线C : (x 4)2y 28 .经过C 上一点 P 作一条倾斜角为 45 的直线l ,与C 交于两 21 2个不同的点Q , R ,求 P Q PR 的取值范围.解:设 P (t 2 , 2t ) ,则直线l 的方程为 y x 2t t 2,代入曲线C 的方程得, (x 4) 2 (x 2t t 2 ) 2 8 ,化简可得 2x 2 2(t 2 2t 4)x (t 2 2t ) 2 8 0 . ① 由于l 与C 2 交于两个不同的点,故关于 x 的方程①的判别式为正.计算得,(t22t 4)2 2((t 22t ) 28) (t 2 2t )28(t 2 2t ) 16 2(t22t )216 4因此有(t 22t ) 28(t 22t )(t 22t )(t 22t8)t (t 2)(t 2)(t4) , t (2, 0) (2, 4) .②………………10 分设Q , R 的横坐标分别为 x 1, x 2 ,由①知,xxt 2 2t4, x x1((t 22t ) 28) ,121 2 2因此,结合l 的倾斜角为45可知,PQ PR2( x t 2 )2( x t 2 )2x x2t 2 ( xx ) 2t 4121 212(t 2 2t ) 282t 2 (t 22t4)2t 4t 4 4t 3 4t 2 82t 4 4t 3 8t 22t 4t 4 4t 2 8 (t 2 2) 2 4 .③………………15 分由②可知,t 22 (2, 2) (2, 14) ,故(t 2 2)2 [0, 4) (4, 196) ,从而由③得, PQ PR (t 2 2) 2 4 [4, 8) (8, 200) .………………20 分注 1:利用C 2 的圆心到l 的距离小于C 2 的半径,列出不等式2 ,同样可以求得②中t 的范围. 注 2:更简便的计算 PQ PR 的方式是利用圆幂定理.事实上,C 2 的圆心为4 2t t 22M (4, 0) ,半径为r 2 ,故2PQ PR PM 2 r 2 (t 2 4)2 (2t)2 (2 2)2 t 4 4t 2 8 .8。

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷

2017高中数学全国联赛试题及答案B卷一、选择题(每题5分,共30分)1. 下列函数中,哪个函数是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin x \)D. \( y = \cos x \)答案:B2. 已知函数 \( f(x) = \frac{1}{x} \),那么 \( f(1) \) 的值是多少?A. 0B. 1C. -1D. 不存在答案:B3. 计算下列极限:\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. 2D. 无穷大答案:B4. 已知 \( a \) 和 \( b \) 是两个正数,且 \( a + b = 1 \),那么 \( a^2 + b^2 \) 的最小值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)答案:D5. 一个圆的半径是 \( r \),那么它的面积 \( A \) 与半径 \( r \) 之间的关系是什么?A. \( A = \pi r \)B. \( A = 2\pi r \)C. \( A = \pi r^2 \)D. \( A = 4\pi r^2 \)答案:C6. 已知 \( \log_2 8 = 3 \),那么 \( \log_2 16 \) 的值是多少?A. 4B. 2C. 3D. 1答案:A二、填空题(每题5分,共20分)1. 计算 \( \int_{0}^{1} x^2 dx \) 的值是 _______。

答案:\( \frac{1}{3} \)2. 如果 \( \sin \theta = \frac{1}{2} \),那么 \( \cos 2\theta \) 的值是 _______。

答案:\( \frac{1}{2} \)3. 一个等差数列的前三项分别是 2,5,8,那么它的第五项是_______。

2017年全国高中数学联合竞赛一试(A卷)(含参考答案及评分标准)

2017年全国高中数学联合竞赛一试(A卷)(含参考答案及评分标准)

答案: 13, 20 . 解:由条件可知: a1 , a2 , b1 均为正整数,且 由于 ,故 . .反复运用 {an } 的递推关系知 , 因此 而 21a1 a10 b10 512b1 2b1 (mod 34) , ,故有 . 另一方面,注意到 ,有 . 当 当 时,①,②分别化为 时,①,②分别化为 ,此时 当 . ,得到唯一的正整数 ,无解. ,得到唯一的正整数 ,故 ②
( x1 + 3x2 + 5 x3 )( x1 +
x2 x3 1 5x + ) = ( x1 + 3x2 + 5 x3 )(5 x1 + 2 + x3 ) 3 5 5 3 2 1 1 5x ≤ ⋅ ( x1 + 3x2 + 5 x3 ) + (5 x1 + 2 + x3 ) 5 4 3
1 PP PF 1 1 P 2F 1 2 4 2 PF 1 2 P 2 F2 PP 1 2 4 2 , ………………15 分 (例如, 当 z1 z2 2 2 i 时,F2 恰是 PP 等号成立当且仅当 F2 位于线段 PP 1 2 上 1 2 的中点) . 综上可知, z1 2 z2 2 z1 z2 的最小值为 4 2 . …………20 分
① ② ③
a b a b ab f k m 1 . 2 2 2
由① ② 2 ③知, a b ( a b) 2 4, =f ( a ) f ( b ) 2 f 2 2 故ba 2 2 .
2
1 14 ………………10 分 = 6 x1 + x2 + 6 x3 20 3 1 9 2 ≤ ( 6 x1 + 6 x2 + 6 x3 ) = , 20 5 1 1 9 = x1 = , x2 0, = x3 当 时不等式等号成立,故欲求的最大值为 . ………20 分 2 2 5 11. ( 本 题 满 分 20 分 ) 设 复 数 z1 , z2 满 足 Re( z1 ) 0, Re( z2 ) 0 , 且

2017年全国高中数学联赛(福建省赛区)预赛暨2017年福建省高中数学竞赛试卷及答案

2017年全国高中数学联赛(福建省赛区)预赛暨2017年福建省高中数学竞赛试卷及答案

2017年全国高中数学联赛(福建省赛区)预赛 暨2017年福建省高中数学竞赛试卷参考答案(考试时间:2017年5月21日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。

请直接将答案写在题中的横线上) 1.已知集合{}2log (1)1A x x =-<,{}2B x x a =-<,若A B ⋂≠∅,则实数a 的取值范围为。

【答案】(15)-,【解答】由2log (1)1x -<,得012x <-<,13x <<,(13)A =,。

由2x a -<,得22x a -<-<,22a x a -<<+,(22)B a a =-+,。

若A B ⋂=∅,则21a +≤或23a -≥,1a ≤-或5a ≥。

∴ A B ⋂≠∅时,a 的取值范围为(15)-,。

2.已知()f x 是定义在R 上的奇函数,且函数(1)y f x =+为偶函数,当10x -≤≤时,3()f x x =,则9()2f =。

【答案】18【解答】由函数(1)y f x =+为偶函数,知(1)(1)f x f x -+=+。

又()f x 为奇函数,∴ (2)()()f x f x f x +=-=-,(4)(2)()f x f x f x +=-+=。

∴ 391111()()()()22228f f f ==--=--=。

3.已知{}n a 为等比数列,且120171a a =,若22()1f x x =+,则12320()()()()f a f a f a f a ++++=L 。

【答案】2017【解答】由22()1f x x =+知,2222212222()()211111()x f x f x x x x x+=+=+=++++。

∵ {}n a 为等比数列,且120171a a =, ∴ 12017220163201521a a a a a a a a =====L 。

2017年全国高中数学联赛A卷和B卷试题和答案(全文

2017年全国高中数学联赛A卷和B卷试题和答案(全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。

5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。

2017年全国高中数学联合竞赛试题及解答.(A卷)

2017年全国高中数学联合竞赛试题及解答.(A卷)



2 2 1 AM AN 3 AB AC 4 AB AC , 8
由 3 S ABC
1 3 AB AC sin A AB AC 得 AB AC 4 2 4
2
所以 AB AC 2 ,所以 3 AB
AC 8 3 ,当且仅当 AB
x x1 3x 2 5 x3 x1 2 3
★解析:由柯西不等式

x3 的最小值和最大值。 5 x2 5 x3 3 x3 5 1
2
x x x1 3x 2 5 x3 x1 x1 3 x 2 x1 2 3 3 5
当 x1 1 , x 2 0 , x 3 0 时取等号,故所求的最小值为 1 ; 又 x1 3 x 2 5 x 3 x1

x 2 x3 1 5x x1 3 x 2 5 x 3 5 x1 2 x 3 3 5 5 3
2
512 b1 ② 55
★证明:记 f ( x ) x kx m , x a, b ,则 f ( x ) 1,1 。于是
2
f (a ) a 2 ka m 1 ①; f (b) b 2 kb m 1 ② ab ab 2 ab )( ) k( ) m 1 ③ 2 2 2 ①+②- 2 ③知 f(
2017 年全国高中数学联合竞赛一试(A 卷)
一、填空题:本大题共 8 个小题,每小题 8 分,共 64 分。 2017A1、设 f ( x ) 是定义在 R 上函数,对任意的实数 x 有 f ( x 3) f ( x 4) 1 ,又当 0 x 7 时, f ( x ) log 2 (9 x ) ,则 f ( 100) 的值为 ◆答案:

2017年全国高中数学联赛A卷试题和答案-(1838)

2017年全国高中数学联赛A卷试题和答案-(1838)

2017 年全国高中数学联赛 A 卷一试一、填空题1.设f ( x)是定义在 R 上的函数,对任意实数x 有 f ( x 3) f ( x 4)1.又当0x 7时, f (x)log 2 (9x) ,则 f (100) 的值为__________ .2.若实数x, y满足x2 2 cos y 1 ,则x cos y 的取值范围是__________.3.在平面直角坐标系x 2y2xOy 中,椭圆C的方程为 :1,F为C的上焦点,A为C的910右顶点, P 是 C 上位于第一象限内的动点,则四边形 OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是5.正三棱锥P ABC中,AB1, AP 2 ,过 AB 的平面将其体积平分,则棱PC 与平面所成角的余弦值为 __________ .6.在平面直角坐标系xOy 中,点集K( x, y) x, y1,0,1.在K中随机取出三个点,则这三点中存在两点之间距离为 5 的概率为__________.7.在ABC 中, M 是边 BC 的中点, N 是线段 BM 的中点.若 A, ABC 的面积为33 ,则 AM AN 的最小值为__________.8.设两个严格递增的正整数数列a n , b n满足: a10b102017 ,对任意正整数n ,有a n 2a n1a n ,b n 12b n,则a1b1的所有可能值为__________.二、解答题9.设k, m为实数,不等式x 2kx m 1对所有x a, b 成立.证明: b a 2 2 .10.设x1, x2, x3是非负实数,满足x1x2x3 1,求 ( x1 3x2 5x3 )( x1x2x3 ) 的最35小值和最大值 .11.设复数z1, z2满足Re( z1)0, Re(z2 ) 0 ,且 Re(z12 ) Re(z22 ) 2(其中 Re(z) 表示复数 z 的实部).(1)求Re( z1z2)的最小值;(2)求z1 2 z2 2 z1z2的最小值 .2017 年全国高中数学联赛 A 卷二试一.如图,在ABC 中, AB AC , I 为ABC 的内心,以A为圆心, AB 为半径作圆 1 ,以I为圆心,IB为半径作圆 2 ,过点 B, I 的圆 3 与1,2分别交于点P,Q(不同于点B).设IP 与BQ交于点 R .证明: BR CR二 .设数列a n定义为 a1 1 ,a n 1a n n, a n n,2017 a n n, a nn 1,2, .求满足a r r 3n,的正整数 r 的个数.三.将3333方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设m, n均是大于 1 的整数,m n,a1, a2, , a n是n个不超过m的互不相同的正整数,且 a1 , a2 , , a n互素 . 证明:对任意实数x,均存在一个i (1 i n) ,使得2x ,这里y表示实数y到与它最近的整数的距离.a i xm(m 1)2017 年全国高中数学联赛 A 卷一试答案1.2.3.4.5.6. 7.8. 9.10.11.2017 年全国高中数学联赛 A 卷二试答案一.二.三.四.。

2017年全国高中数学联合竞赛试题与解答(B卷)_PDF压缩

2017年全国高中数学联合竞赛试题与解答(B卷)_PDF压缩

2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a中,2a =,3a =1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2x f x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.。

2017年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(教师版)

2017年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(教师版)
综上所述, 的所有可能值为
二、解答题:(本大题共3小题,满分56分.解答应写出文字说明、证明过程或解答步骤).
9、(本题满分16分)设 为实数,不等式 对所有 成立,证明: .
证明:令 则 于是
当 时不等式等号成立,故所求的最小值为1.
因为
当 时不等式等号成立,故所求的最大值为
11.(本题满分20分)设复数 满足 且 (其中 表示复数 的实部).
2017年全国高中数学联赛一试试题参考答案
一、填空题(本大题共8小题,每小题8分,共64分)
1、设 是定义在 上的函数,对任意实数 有 .又当 时, ,则 的值为.
【答案】
【解析】由条件知,
2、若实数 满足 ,则 的取值范围是.
【答案】
3、在平面直角坐标系 中,椭圆 的方程为 , 为 的上焦点, 为 的右顶点, 是 上位于第一象限内的动点,则四边形 的面积的最大值为.
所以
又易知直线 在平面 上的射影是直线
所以
故棱 与平面 所成的角的余弦值为
6、在平面直角坐标系 中,点集 ,在 中随机取出三个点,则这三点中存在两点之间距离为 的概率为.
【答案】
【解析】易知 中有9个点,故在 中随机取出三个点的方式数为 种.
将中的点按图标记为 ,其中有8对点之间的距离为 ,由对称性,考虑取 两点的情况,则剩下的一个点有7种取法,这样有 个三点组(不计每组中三点的顺序),对每个 , 中恰有 两点与之距离为 (这里下标按模8理解),因而恰有 这8个三点组被计了两次,从而满足条件的三点组个数为 ,进而所求概率为 .
【答案】
【解析】易知 设 的坐标是 则
其中 时,四边形 面积的最大值为
4、若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档