九年级数学人教版(概率)练习题
人教版九年级数学上册第25章25.1.2 概率 同步练习题(含答案,教师版)
人教版九年级数学上册第25章25.1.2 概率同步练习题一、选择题
1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面说法正确的是(C)
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
2.掷一枚质地均匀的硬币10次,下列说法正确的是(B)
A.每2次必有1次正面向上
B.可能有5次正面向上
C.必有5次正面向上
D.不可能有10次正面向上
3.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是(B)
A.1
2
B.
1
4
C.
1
8
D.
1
16
4.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是(A)
A.1
3
B.
1
4
C.
1
5
D.
1
6
5.下列事件中,发生的概率为0的是(D)。
人教版数学九年级上册第二十五章概率初步概率同步练习题含答案
人教版数学九年级上册第二十五章概率初步概率同步练习题含答案1. 某种彩票中奖的概率是1%,以下说法正确的选项是( )A .买1张这种彩票一定不会中奖B .买1张这种彩票一定会中奖C .买100张这种彩票一定会中奖D .买这种彩票中奖的能够性很小2. 〝兰州市明天降水概率是30%〞,对此音讯以下说法中正确的选项是( )A .兰州市明天将有30%的地域降水B .兰州市明天将有30%的时间降水C .兰州市明天降水的能够性较小D .兰州市明天一定不降水3.以下说法错误的选项是( )A .肯定发作的事情发作的概率为1B .不能够发作的事情发作的概率为0C .随机事情发作的概率大于0且小于1D .不确定事情发作的概率为04. 掷一枚质地平均的硬币10次,以下说法正确的选项是( )A .每两次必有1次正面向上B .能够有5次正面向上C .必有5次正面向上D .不能够有10次正面向上5. 九(1)班在参与学校4×100m 接力赛时,布置了甲、乙、丙、丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1 B.12 C.13 D.146. 从以下四张卡片中任取一张,卡片上的图形是中心对称图形的概率是( )A .0 B.34 C.12 D.147. 某学校在停止防溺水平安教育活动中,将以下几种在游泳时的本卷须知写在纸条上并折好,内容区分是:①相互关心;②相互提示;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描画正确的纸条的概率是( ) A.12 B.13 C.23 D.168. 在一个箱子里放有1个白球和2个红球,它们除颜色外其他都相反,从箱子里摸出1个球,那么摸到红球的概率是 .9. 从标有1到9序号的9张卡片中恣意抽取一张,抽到序号是3的倍数的概率是 .10. 某校先生会倡议双休日到养老院参与效劳活动,初次活动需求7位同窗参与,现有包括小杰在内的50位同窗报名,因此先生会将从这50位同窗中随机抽取7位,小杰被抽到参与初次活动的概率是 .11. 如图,在〝3×3”网格中,有3个涂成黑色的小方格.假定再从余下的6个小方格中随机选取1个涂成黑色,那么完成的图案为轴对称图案的概率是 .12. 从区分标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的相对值小于2的概率是 .13. 一个箱子装有除颜色外都相反的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14. 如图是一个转盘,转盘分红8个相反的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘前任其自在中止,其中的某个扇形恰恰停在指针所指的位置(指针指向两个扇形的交线时,重新转动).求以下事情的概率:(1)指针指向白色;(2)指针指向黄色或绿色.15. 掷一个骰子,观察向上一面的点数,求以下事情的概率:(1)点数为偶数;(2)点数大于2且小于5.参考答案;1---7 DCDBD DC8. 239. 1310. 75011. 1312. 3713. 红球14. 解:(1)14(2)38. 15. 解:(1)掷一个骰子,向上一面的点数能够为1、2、3、4、5、6,共6种,这些点数出现的能够性相等,点数为偶数的有3种能够,即点数为2、4、6,∴P(点数为偶数)=36=12; (2)点数大于2且小于5有2种能够,即点数为3、4,∴P (点数大于2且小于5) =26=13.。
(人教版数学)初中9年级上册-同步练习-25.1.2 概率-九年级数学人教版(上)(解析版)
第二十五章概率25.1.2概率一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是A.16B.13C.12D.23【答案】C【解析】由题意可得,点数为奇数的概率是:36=12,故选C.2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是A.23B.16C.13D.12【答案】D3.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为A.1 B.14C.12D.34【答案】B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为14,故选B.4.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【答案】A5.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n的值是A.6 B.7 C.8 D.9 【答案】A【解析】根据题意得2n=13,解得n=6,所以口袋中小球共有6个.故选A.二、填空题:请将答案填在题中横线上.6.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为__________.【答案】1 2【解析】由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:5325++=12,故答案为:12.7.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是__________.【答案】3 10【解析】∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是3 10,故答案为:3 10.8.在“Wish you success”中,任选一个字母,这个字母为“s”的概率为__________.【答案】2 7【解析】任选一个字母,这个字母为“s”的概率为:414=27,故答案为:27.9.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是__________.【答案】1 4三、解答题:解答应写出文字说明、证明过程或演算步骤.10.判断下列说法是否正确,并说明理由.(1)“从布袋中取出一只红球的概率是1”,这句话的意思是说取出一个红球的可能性很大.(2)在医院里看病注射青霉素时,说明书上说发生过敏的概率大约为0.1%,小明认为这个概率很小,一定不会发生在自己的身上,不需要做皮试.(3)小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,小华认为“3”出现的频率为12.【解析】(1)错误,“取出一只红球的概率是1”,说明这是一个必然事件,而不是可能性很大的,是100%.(2)错误,虽然发生的概率只有0.1%,发生的可能性很小,但它仍有可能发生,而且有关生命,因此,小明应做皮试.(3)错误,虽然小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,但是“3”出现的概率为16.11.投掷一枚正六面体骰子,六个面上依次标有1,2,3,4,5,6.(1)掷得“6”的概率是多少?(2)掷一次“不是6”的概率是多少?(3)掷得数“小于4”的概率是多少?(4)掷得数“小于或等于4”的概率是多少?。
第二十五章概率初步单元练习2024-2025学年人教版数学九年级上册
第二十五章 概率初步 单元练习 2024-2025学年人教版数学九年级上册一、单选题1.红星学校在日本战败投降79周年纪念日这天举行了“铭记历史,警钟长鸣”主题教育活动,学校需要从甲、乙、丙、丁四名同学中随机选取两名同学作为“勿忘历史”和“奋进新征程”两个栏目的宣传大使,则恰好选中乙为“勿忘历史”栏目宣传大使、丙为“奋进新征程”栏目宣传大使的概率( ) A .112B .19C .16D .132.小莹和小亮玩“抓纸牌”的游戏.在一个不透明的盒子里,有8张红桃、4张黑桃、a 张方块.每张牌质地、大小都相同,一人摸牌,一人记录.经过多次的试验、数据的记录、平均值的计算,小莹和小亮发现摸出方块的频率越来越接近14.请你估计a 的值为( ) A .3B .4C .5D .63.在一个不透明的布袋中,有红球、黑球和白球共50个,且小球除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红球和黑球的频率分别稳定在0.12和0.38左右,则口袋中白球的个数很可能是( ) A .30B .25C .19D .64.一不透明袋子中装有红、绿小球各2个,它们除颜色外无其他差别,先随机摸出一个小球,不放回,再随机摸出一个,两次都摸到绿球的概率为( ) A .18B .16C .13D .145.“交通文明,让长沙与我一起白头偕老”.自长沙开展“文明城市创建”以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个路口,该路口有红、黄、绿三色交通信号灯,他在路口遇到绿灯的概率为12,遇到黄灯的概率为110,那么他遇到红灯的概率为( )A .12B .13C .25D .356.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有1个黑色棋子和2个白色棋子,每个棋子除颜色外都相同,从中随机摸出一个棋子,记下颜色后放回搅匀,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概率是( ) A .13B .12C .23D .597.下面的四个命题中,真命题是( ) A .两条直线被第三条直线所截,同位角相等B .抽签中奖的概率为110,则每抽10次签,一定会有1次中奖C .一组数据的方差越大,数据越稳定D .400人中至少有两人的生日在同一天是必然事件8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是( )A .15B .14C .13D .3109.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小豫为了深入了解“二十四节气”,购买了若干张“二十四节气”主题邮票,他将2张“立春”和2张“立夏”背面朝上放在桌面上(邮票背面完全相同),从中随机抽取一张(不放回).再从中随机抽取一张,则小豫抽到的两张邮票恰好不同的概率是( )A .29B .16C .13D .2310.为迎接六一儿童节到来,某商场规定凡是购物满88元以上都可以获得一次转动转盘的机会.如图①所示,当转盘停止时,指针指向哪个区域顾客就获得对应的奖品.转动转盘若干次,其中指针落入优胜奖区域的频率如图①所示,则转盘中优胜奖区域的圆心角∠AOB 的度数近似为( )A .90°B .72°C .54°D .20°二、填空题11.下列事件:①通常加热到100℃时,水沸腾;①人们外出旅游时,使用手机APP 购买景点门票;①在平面上,任意画一个三角形,其内角和小于180°,其中是随机事件的是 .(只填写序号即可)12.一个不透明袋子中装4个标号为1,2,3,4的小球,除标号外其余均相同,把第一次摸出的小球标号作为十位数字,放回后第二次摸出的小球标号作为个位数字,则所组成的数是3的倍数的概率是 .13.从一副扑克牌中抽取一张,正好是joker 的概率为 .14.在一个不透明的袋中装有50个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在0.2左右,则袋中红球大约有15.现有四张正面分别标有数字−2,−1,0,1的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀后,随机抽取一张记下数字后不放回,背面朝上洗均匀后再随机抽取一张记下数字,前后两次抽取的数字之积为正数的概率为 . 16.某数学兴趣小组做“用频率估计概率”的试验时,记录了试验过程并把结果绘制成如下表格,则符合表格数据的试验可能是 .①掷一枚质地均匀的硬币,出现反面朝上;①掷一枚质地均匀的骰子,掷得朝上的点数是3的整数倍; ①在“石头、剪刀、布”游戏中,小明出的是“石头”;①将一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张扑克牌的花色是红桃. 三、解答题17.某校初三年级共有3名市级三好学生,其中2名男生,1名女生,想从中随机选取两人参加市里举办的“红色文化研学”活动,请利用画树状图或列表法,求选中一男一女参加活动的概率.18.如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率:(1)第一次取出的卡片图案为“B孙悟空”的概率为______;(2)求两次取出的2张卡片中至少有1张图案为“A唐僧”的概率.19.冬季是各类呼吸道传染病的高发季,某市疾控中心对一周内上报的新冠、支原体、甲流、乙流病毒感染者人数做了统计,整理分析绘制出两幅不完整的统计图.请根据图中的信息解决下面的问题.(1)由图可知一周内统计的感染者总人数为__________人,图中m的值为________;(2)请补全条形统计图;(3)该疾控中心决定进行传染病防治宣传工作,现有工作人员2名男生和2名女生,要求从中随机选取2人,若每个工作人员被选取的可能性相等,求选取的2人中至少有1名男生的概率(画树状图或列表法)20.为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,B,C,D四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示C等级的扇形的圆心角为,图中m=;(4)学校决定从本次比赛获得A等级的学生中选出两名去参加市征文比赛,已知A等级中有男生一名,女生两名.请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.21.如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明设计了如下方法:①在此封闭图形内画出一个半径为2米的圆.②在此封闭图形旁边闭上眼睛向封闭图形内掷小石子(可把小石子近似的看成点),记录如下:掷小石子落在不规则图形内的总次数50150300500⋯小石子落在圆内(含圆上)的次数m2061123206⋯(1)通过以上信息,可以发现当投掷的次数很大时,m:n的值越来越接近______(结果精确到0.1);(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在______附近(结果精确到0.1);(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)。
人教版九年级数学上册第二十五章 概率初步练习(含答案)
第二十五章 概率初步一、单选题1.下列事件中,属于必然事件的是( )A .购买一张彩票,中奖B .三角形的两边之和大于第三边C .经过有交通信号灯的路口,遇到红灯D .对角线相等的四边形是矩形 2.下列事件中,属于随机事件的是( ).A .三角形一边上的中线和这条边上的高重合B .用长度分别是1cm ,3cm ,4cm 的细木条首尾顺次相连可组成一个三角形C .若两个图形关于某条直线对称,则这两个图形全等D .任意一个三角形的内角和等于180°3.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( ) A .2 B .4C .6D .8 4.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( )A .16B .19C .118D .2155.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .126.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A.14B.13C.12D.237.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.13个D.12个9.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一10.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.12二、填空题11.从一副扑克牌中任意抽一张扑克牌,是红桃2,此事件是____________事件.(填“必然”“随机”或“不可能”)12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.14.现有五张质地大小完全相同的卡片,上面分别标有数字1、2、3、4、5,把分别标有数字3、4的两张卡片放入不透明的盒子A中,把分别标有数字1、2、5的三张卡片放入不透明的盆子B中.现随机从A和B两个盒子中各取出一张卡片,把从A盒中取出的卡片上标的数字记作a,从B盒中取出的卡片上标的数字记b,且a-b=k,则y关于x的正比例函数y=kx的图象经过一、三象限的概率是____________.三、解答题15.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.16.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.17.某商场举办抽奖活动规则如下:在不透明的袋子中有2个黑球和2个红球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到黑球,则获得1份奖品;若摸到红球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为.(2)如果小芳有两次摸球机会(摸出后不放回),请用表格法或树状图法求小芳获得2份奖品的概率.18.共享经济已经进入人们的生活.小沈收集了自已感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)答案1.B 2.A 3.D4.B 5.C 6.C 7.B 8.D 9.D 10.B 11.随机12.4 513.0.614.2 315.()1不确定事件;()2不可能事件;()3必然事件16.(1)23;(2)5617.(1)12;(2)1618.(1)14;(2)16。
人教版九年级数学上册《概率与统计》试卷(含答案)
人教版九年级数学上册《概率与统计》试
卷(含答案)
第一部分:选择题
1. 设A、B是两个事件,且P(A)=0.4,P(B)=0.6,P(A∩B)=0.2,求P(A∪B)的概率是多少?
- A. 0.4
- B. 0.6
- C. 0.8
- D. 1.0
2. 在一批产品中,有80%合格品,20%为不合格品。
随机抽取
5个产品,其中至少有1个不合格品的概率是多少?
- A. 0.672
- B. 0.336
- C. 0.032
- D. 0.016
3. 掷一个均匀硬币4次,全为正面的概率是多少?
- A. 1/2
- B. 1/8
- C. 1/16
- D. 1/32
第二部分:填空题
4. 在一次调查中,有280人接受了采访,其中45人选择了选项A,占比约为()。
填入百分数形式。
5. 甲乙两个班级参加学校篮球赛的比赛,甲班和乙班分别有32人和36人。
现在从甲班中选择3名球员和从乙班中选择4名球员作为代表队的成员,共有可能的组合数是()。
第三部分:解答题
6. 一批红、绿两色球,红球4个,绿球3个。
现从中任意取3个球,求取出3个红球的概率。
7. 在一次抽奖活动中,有8张奖券,其中2张为一等奖,6张为二等奖。
若从中任意抽取3张奖券,求至少得到1张一等奖的概率。
---
答案:
1. C
2. A
3. B
4. 16%
5. 1296
6. 1/35
7. 13/28。
人教版九年级数学 同步练习 含答案_第二十五章__概率初步
第二十五章概率初步测试1 随机事件学习要求了解随机事件的意义,会判断必然事件、不可能事件和随机事件,知道不同随机事件发生的可能性.课堂学习检测一、填空题1.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a,b为实数,那么a+b =b+a;⑿抛掷一枚图钉,钉尖朝上.确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)二、选择题2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生三、解答题6.“有位从不买彩票的人,在别人的劝说下用2元买了一随机号码,居然中了500万”,你认为这样的事情可能发生吗?请简述理由.综合、运用、诊断7.一张写有密码的纸片被随意地埋在如图所示的矩形区域内,图中的四个正方形大小一样,则纸片埋在几号区域的可能性最大?为什么?8.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?9.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?拓广、探究、思考10.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.测试2 概率的意义学习要求理解概率的意义;对于大量重复试验,会用事件的频率来估计事件的概率.课堂学习检测一、填空题1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.3.下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______. 二、选择题4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .95 三、解答题6.某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m 6 8 9 7 12 7 进球频率nm(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?综合、运用、诊断7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项:奖金/万元 501584…数量/个20 20 20 180 …如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个 D .15个 11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21B .31 C .51D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13.某地区近5年出生婴儿性别的调查表如下:出生年份 出生数 共计n =m 1+m 2出生频率男孩m 1 女孩m 2 男孩P 1女孩P 21996 52807 49473 102280 1997 51365 47733 99098 1998 49698 46758 96456 1999 49654 46218 95872 2000 4824345223934665年共计251767 235405 487172完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.拓广、探究、思考15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).测试3 用列举法求概率(一)学习要求会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.课堂学习检测一、填空题1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.3.某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(如图所示),转盘可以自由转动,参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品.则获得钢笔的概率为______,获得______的概率大.4.一副扑克牌有54张,任意从中抽一张. (1)抽到大王的概率为______;(2)抽到A 的概率为______; (3)抽到红桃的概率为______;(4)抽到红牌的概率为______;(红桃或方块) (5)抽到红牌或黑牌的概率为______. 二、选择题5.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ).A .1B .21C .31D .416.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ).A .61B .41C .31D .217.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ).A .54B .53C .52D .51三、解答题8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢?9.小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?综合、运用、诊断一、填空题10.袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是______. 11.有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概率为______.12.有7条线段,长度分别为2,4,6,8,10,12,14,从中任取三条,能构成三角形的概率是______. 二、选择题13.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( ).A .32B .21 C .31D .6114.从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( ).A .31B .21C .53D .3215.柜子里有两双不同的鞋,取出两只刚好配一双鞋的概率是( ).A .21B .31 C .41 D .6116.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ).A .4个B .3个C .2个D .1个 三、解答题17.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法? (2)其中甲排在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?18.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?拓广、探究、思考19.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?20.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是,21摸到白球的概率是,31摸到黄球的概率是;61(2)摸到白球的概率是,41摸到红球和黄球的概率都是 83测试4 用列举法求概率(二)学习要求能运用列表法和树状图法计算一些事件发生的概率.课堂学习检测一、选择题 1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113B .118 C .1411 D .143 2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ).A .1B .101C .1001D .10001二、解答题3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.综合、运用、诊断一、填空题8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支. 二、选择题12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31B .41C .51D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51B .52C .53D .54三、解答题14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球51个,任意摸出1个绿球的概率是3求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.拓广、探究、思考15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______.16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1)奇数点朝上的概率为;3(2)大于6的点数与小于3的点数朝上的概率相同.测试5 利用频率估计概率(一)学习要求会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n50 100 500 1000 5000优等品数m45 92 455 890 4500m优等品频率n(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50 45 60 48 10 30 42 38 15 10标记数 2 1 3 2 0 1 1 2 0 1总条数53 36 27 34 43 26 18 22 25 47标记数 2 1 2 1 2 1 1 2 1 2(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.测试6 利用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测一、填空题1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______. 二、选择题5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361B .181C .61D .216.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )A .8000条B .4000条C .2000条D .1000条 三、解答题7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率nm 0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.综合、运用、诊断一、填空题9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______. 二、解答题11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m 的圆,在不远处向圈内掷石子,且记录如下:掷子次数 50次 150次 300次 石子落在⊙O 内 (含⊙O 上)的次数m 1443 93 石子落在图形内的次数n1985186你能否求出封闭图形ABC 的面积?试试看.。
九年级数学上册(中考题型专练)(人教版) 概率初步(八大类型)(原卷版)
九年级数学上册(中考题型专练)(人教版)概率初步(八大类型)(原卷版)【题型1:事件类型】【题型2:可能性大小】【题型3:概率的意义】【题型4:几何意义】【题型5:概率公式】【题型6:列表法与树状图法】【题型7:游戏的公平性】【题型8:用频率估计概率】【题型1:事件类型】1.(2022秋•恩施市期末)下列成语描述的事件为随机事件的是()A.守株待兔B.水涨船高C.水中捞月D.缘木求鱼2.(2023春•江岸区校级月考)一只不透明的袋子中装有5个黑球和3个白球,这些除颜色外无共他差别,从中任意摸出5个球,下列事作是必然事件的为()A.至少有1个球是白球B.至少有2个球是白球C.至少有1个球是黑球D.至少有2个球是黑球3.(2022秋•华容区期末)下列事件是必然事件的是()A.任意画一个三角形,其内角和为180°B.篮球队员在罚球线上投篮一次,未投中C.经过有交通信号灯的路口,遇到红灯D.投一次骰子,朝上的点数是64.(2022秋•路北区校级期末)下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上;③长为3cm,4cm,5cm的三条线段能围成一个三角形,其中必然事件有()A.0个B.1个C.2个D.3个5.(2023春•高新区校级期末)从数学的观点看,对以下成语或诗句中的事件判断正确的是()A.诗句“清明时节雨纷纷”是必然事件B.诗句“离离原上草,一岁一枯荣”是不可能事件C.成语“守株待兔”是随机事件D.成语“水中捞月”是随机事件【题型2:可能性大小】6.(2022秋•雨花区期末)哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,若和为奇数,则弟弟胜;若和为偶数,则哥哥胜,你认为获胜的可能性更大.7.(2022秋•徐汇区期末)一副52张的扑克牌(无大王、小王),从中任意取出一张,抽到“K”的可能性的大小是.【题型3:概率的意义】8.(2023•岳池县模拟)下列说法正确的是()A.一组数据2,2,3,4的众数是2,中位数是2.5B.了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查C.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定D.可能性是1%的事件在一次试验中一定不会发生9.(2023春•无锡期末)下列说法中正确的是()A.要反映一个家庭每年用于旅游的费用占总支出的百分比宜采用条形统计图B.概率很小的事件是不可能事件C.检查“天舟一号”飞船各零件的安全性,可采用抽样调查的办法D.射击运动员射击一次,命中靶心是随机事件【题型4:几何意义】10.(2023春•贵州期末)如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,(每次飞镖均落在纸板上),则击中阴影区域的概率是()A.B.C.D.11.(2023•东营区一模)一只蜘殊爬到如图所示的一面墙上,停留位置是随机的,则停留在阴影区域上的概率是()A.B.C.D.12.(2023春•牡丹区期末)一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.13.(2023•安徽模拟)如图,平行四边形ABCD的对角线AC,BD相交于点O,过点O的直线交AB于点E,交CD于点F,米粒随机撒在平行四边形ABCD 上,那么米粒最终停留在阴影部分的概率是()A.B.C.D.14.(2023•五河县校级模拟)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,事件“指针所落扇形中的数大于3”的概率为()A.B.C.D.15.(2023•顺德区三模)如图是由6个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.B.C.D.1 16.(2023春•济阳区期末)某商场为吸引顾客设计了如图所示的自由转盘,当指针指向阴影部分时,该顾客可获奖品一份,那么该顾客获奖的概率为()A.B.C.D.【题型5:概率公式】17.(2023春•江岸区校级月考)一天晚上,小华帮助妈妈清洗两个只有颜色不同的有盖茶杯(杯、盖形状不同),突然停电了,小慧只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是()A.B.C.D.18.(2023春•蔡甸区月考)某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,则现年20岁的这种动物活到25岁的概率为()A.0.375B.0.625C.0.75D.0.8 19.(2023•锡林浩特市二模)质检人员从编号为1,2,3,4,5的五种不同产品中随机抽取一种进行质量检测,所抽到的产品编号不小于4的概率为()A..B.C.D.20.(2023春•莱州市期末)随机抽检一批毛衫的合格情况,得到如下的频数表.下列说法错误的是()抽取件数(件)1001502005008001000合格频数a141190475764950合格频率0.900.94b0.950.9550.95 A.抽取100件的合格频数是90B.抽取200件的合格频率是0.95C.任抽一件毛衫是合格品的概率为0.90D.出售2000件毛衫,次品大约有100件21.(2022秋•南川区期末)一个布袋里装有8个只有颜色不同的球,其中2个红球,6个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.22.(2023•城中区模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.23.(2023•兴宁区校级模拟)抛掷一枚质地均匀的正方体骰子,骰子各面分别标有数字1、2、3、4、5、6,则出现朝上的数字小于3的概率是()A.B.C.D.24.(2023•佛山模拟)从甲、乙、丙三名男生和A、B两名女生中随机选出一名学生参加问卷调查,则选出女生的可能性是()A.B.C.D.25.(2023春•江岸区校级月考)九年级某班班主任为获得“学习标兵”称号的学生小阳、小华和小雅三个照相,他们三人随意排成一排进行拍照,小雅恰好排在中间的概率是()A.B.C.D.【题型6:列表法与树状图法】26.(2023•延津县三模)某市举行中学生合唱大赛,决赛阶段只剩下甲、乙、丙三所学校,通过抽签确定三所学校的出场顺序,则甲、乙两校排到前两个出场的概率是()A.B.C.D.27.(2023•小店区校级模拟)如图所示,电路图上有3个开关S1,S2,S3和2个小灯泡L1,L2,同时闭合开关S1,S2,S3可以使小灯泡L1,L2发光.对于“小灯泡发光”这个事件,下列结论错误的是()A.闭合开关S1,S2,S3中的1个,灯泡L1发光是不可能事件B.闭合开关S1,S2,S3中的2个,灯泡L2发光是随机事件C.闭合开关S1,S2,S3中的2个,灯泡L1发光是必然事件D.闭合开关S1,S2,S3中的2个,灯泡L1、L2发光的概率相同28.(2023•兴宁市校级一模)用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.29.(2023•阜新模拟)一个袋子中有4个珠子,除颜色外,其它特征均相同.其中2个红色,2个蓝色,若在这个袋子中任取2个珠子,都是红色的概率是()A.B.C.D.30.(2023春•中江县期中)从1、2、3三个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0 没有实数根的概率为()A.B.C.D.【题型7:游戏的公平性】31.(2023•白云区模拟)小颖、小明两人做游戏,掷一枚硬币,双方约定:正面朝上小颖胜,反面朝上小明胜,则这个游戏()A.公平B.对小颖有利C.对小明有利D.无法确定32.(2023•新华区校级二模)在联欢会上,三名同学分别站在锐角△ABC的三个顶点位置上,玩“抢凳子”的游戏,游戏要求在△ABC内放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子最适合摆放的位置是△ABC的()A.三边垂直平分线的交点B.三条中线的交点C.三条角平分线的交点D.三条高所在直线的交点33.(2023•长安区模拟)甲、乙两人一起玩如图的转盘游戏,将两个转盘各转一次,指针指向的数的和为正数,甲胜,否则乙胜,这个游戏()A.公平B.对甲有利C.对乙有利D.公平性不可预测34.(2023春•罗源县校级期中)小明和小颖按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则.(填“公平”或“不公平”)35.(2023•灞桥区校级开学)现有电影票一张,明明和磊磊打算通过玩掷骰子的游戏决定谁拥有,游戏规则是:在一枚质地均匀的正方体骰子的每个面上分别标上数字1、2、3、4、5、6.明明和磊磊各掷一次骰子,若两次朝上的点数之和是3的倍数,则明明获胜,电影票归明明所有;否则磊磊获胜,电影票归磊磊所有.(1)明明掷一次骰子,使得向上一面的点数为3的倍数的概率是.(2)这个游戏公平吗?请用列表或树状图的方法说明理由.【题型8:用频率估计概率】36.(2022秋•商河县期末)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球和黑球共()A.12个B.16个C.20个D.30个37.(2022秋•章丘区期末)不透明的口袋中装有3个黄球、1个红球和n个蓝球,这些小球除颜色外其余均相同.课外兴趣小组每次摸出一个球记录下颜色后再放回,大量重复试验后发现,摸到蓝球的频率稳定在0.6,则n的值最可能是()A.4B.5C.6D.7 38.(2023•定远县校级一模)两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率39.(2022秋•洛阳期末)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为3cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量反复实验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为()A.0.6cm2B.1.8cm2C.5.4cm2D.3.6cm240.(2022秋•武安市期末)在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.4左右,则袋中白球约有()A.5个B.10个C.15个D.25个41.(2023春•盐都区月考)某植物种子在相同的条件下发芽试验的结果如下:每批粒数501003004005001000发芽的频数4596283380474948则该植物种子发芽的概率的估计值是.(结果精确到0.01)42.(2023•阳山县二模)本月某市进行九年级学生体育中考,将目标效果测试中第二类选考项目(足球运球、篮球运球、排球垫球任选一项)的情况进行统计,并将统计结果绘制成统计图,请你结合图中所给信息解答下列问题:(1)学校参加本次测试的人数有人,参加“排球垫球”测试的人数有人,“篮球运球成绩”的中位数落在等级;(2)学校准备从“排球垫球”成绩较好的两男两女四名学生中,随机抽取两名学生为全校学生演示动作,请用列表法或画树状图法求恰好抽取到一名男生和一名女生的概率.43.(2023•涵江区一模)某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况、从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)求这次被调查的学生共有多少名,并将条形统计图补充完整.(2)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率.。
九年级数学上册《第二十五章 随机事件与概率》同步练习题及答案(人教版)
九年级数学上册《第二十五章随机事件与概率》同步练习题及答案(人教版)一、选择题(共8题)1.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6投掷一次,朝上一面的数字是偶数的概率为( )A.16B.13C.12D.232.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为( )A.12B.13C.14D.153.下列事件中,必然事件是( )A.抛掷1枚质地均匀的骰子,向上的点数为6B.两直线被第三条直线所截,同位角相等C.抛一枚硬币,落地后正面朝上D.实数的绝对值是非负数4.一个袋子里有16个除颜色外其他完全相同的球,若摸到红球的机会为34,则可估计袋中红球的个数为( )A.12B.4C.6D.不能确定5.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.10 B.8 C.5 D.36.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何—个点的机会都相等),则飞镖落在阴影区域的概率是( )A.12B.13C.14D.167.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A.16B.13C.12D.568.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.23二、填空题(共5题)9.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.10.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.11.有三张外观完全相同的卡片,在卡片的正面分别标上数字-1,0,-2,将正面朝下放在桌面上,现随机翻开一张卡片,则卡片上的数字为负数的概率为.12.某小区共有学生200人,随机抽查50名学生,其中有30人看中央电视台的晚间新闻.在该小区随便问一位学生,他看中央电视台晚间新闻的概率大约是.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是1,则黄球的个数为个.3三、解答题(共6题)14.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1) 当x=3时,谁获胜的可能性大?(2) 当x为何值时,游戏对双方是公平的?15.在一个不透明的袋中装有红、黄、白三种颜色的球共50个,且红球比黄球多5个,它们除颜色外都相同.已知从袋中随机摸出一个球,摸到的球是白球的概率为3.10(1) 求原来袋中白球的个数.(2) 现从原来装有50个球的袋中随机摸出一个球,求摸到的球是红球的概率.16.一个质地均匀的正方体骰子,其中一个面上标有“1”,两个面上标有“2”,三个面上标有“3”,求将这个骰子掷出后:(1) 朝上的概率最大的数是什么,并求出其概率.(2) 如果规定朝上的数为1或2时,甲胜;朝上的数为3时,乙胜,则这个游戏是否公平?.17.已知一纸箱中放有大小均匀的x只白球和y只黄球,从箱中随机地取出一只白球的概率是25(1) 试写出y与x的函数关系式.(2) 当x=10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P.18.一个不透明的袋中,装有10个红球、2个黄球、8个蓝球,它们除颜色外都相同.(1) 求从袋中摸出一个球是红球的概率.(2) 现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是2,问取出了多少个红球?519.现有足够多除颜色外均相同的球,请你从中选9个球设计摸球游戏.(1) 使摸到红球的概率和摸到白球的概率相等.(2) 使摸到红球、白球、黑球的概率都相等.(3) 使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.答案1. C2. B3. D4. A5. B6. C7. A8. D9. 12 10. 3711. 2312. 35 13. 2414.(1) 当 x =3 时,甲同学获胜可能性为 316,乙同学获胜可能性为 16−3−616=716∵ 316<716∴ 当 x =3 时,乙同学获胜可能性大.(2) 游戏对双方公平必须有:x 16=16−3x 16,解得:x =4答:当 x =4 时,游戏对双方是公平的.15.(1) 已知摸到的球为白球的概率为 310,则白球共 50×310=15(个).(2) 已知白球 15 个,则红球和黄球一共 50−15=35 个设红球有 x 个,则黄球有 x −5 个∴x +x −5=35∴x =20从而摸到为红球的概率为 2050=25.16.(1) 根据已知条件可知,此正方体骰子共有 6 个面上面标有“1”、“2”、“3”的面各有 1,2,3 个.“2”朝上的概率为 26=13;“1”朝上的概率为 16,“3”朝上的概率为 36=12.∵16<13<12 ∴ 朝上概率最大的数为“3”.(2) 朝上的数字为 1 或 2 时的概率为1+26=12 朝上数字为 3 的概率为 12.∴ 甲、乙获胜的概率一样∴ 这样的规定对甲、乙来说公平.17.(1) 由题意得 x y+x =25 即 5x =2y +2x∴y =32x . (2) 由(1)知当 x =10 时y =32×10=15 ∴ 取得黄球的概率 P =1510+20+15=1545=13.18.(1) ∵ 一个不透明的袋中,装有 10 个红球、 2 个黄球、 8 个蓝球,它们除颜色外都相同∴ 从袋中摸出一个球是红球的概率为:1010+2+8=12.(2) 设取出了 x 个红球根据题意得:2+x 10+2+8=25,解得:x =6,答:取出了 6 个红球.19.(1) 9个球中,有4个红球,4个白球,1个黑球可使摸到红球的概率和摸到白球的概率相等.(2) 9个球中,有3个红球,3个白球,3个黑球可使摸到红球、白球、黑球的概率都相等.(3) 9个球中,有2个红球,2个白球,5个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.。
人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案
人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案一、选择题1.连续掷三枚质地均与的硬币,三枚硬币都是正面朝上的概率是()A.12B.14C.18D.192.有三张正面分别写有数字1,2,−3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是()A.12B.13C.23D.593.盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是()A.23B.13C.29D.124.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.595.有三张正面分别写有数字﹣2,3,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为点P的横坐标,然后放回再从这三张卡片中随机抽取一张,以其正面的数字作为点P的纵坐标,则点P在第三象限的概率是()A.49B.13C.19D.296.骰子是一种正方体玩具,它的六个面上各写有1,2,3,4,5,6,每面写一个数,每个数写一面,且相对两面的两个数的和为7.用七颗骰子投掷后,规定向上的七个面上的数的和是10时甲胜,如果向上的七个面上的数的和是39时则乙胜.则甲乙二人获胜的可能性是()A.甲大B.乙大C.同样大D.无法确定谁大7.王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是()A.13B.49C.59D.238.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.13B.12C.23D.34二、填空题9.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除颜色外其他均相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的可能结果有种.10.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.11.某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是.12.从1,2,3,4四个数中,随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率是.13.“双减”政策后,各校积极探索“课内提质增效,课后丰富多彩”的有效策略,某校的课后服务活动设置了四大板块课程:A.体育活动;B劳动技能;C经典阅读;D科普活动.若小明和小亮两人随机选择一个板块课程,则两人所选的板块课程恰好相同的概率是.三、解答题14.一个纸箱内装有三张正面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.15.在学校组织的国学比赛中,小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中抽取一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示);第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示).求小明参加总决赛抽取题目都是成语题目(成语故事,成语接龙,成语听写)的概率.16.将5个完全相同的小球分装在甲.乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上的数之和为5的概率.(2)摸出的两个球上的数之和为多少时的概率最大?17.我校开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;补全条形统计图;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,请用列表法或画树状图法分析甲和乙同学同时被选中的概率.参考答案1.C2.D3.B4.B5.C6.C7.C8.C9.210.1311.2312.1213.1414.解:列树状图如下所示:由树状图可知一共有9种等可能性的结果数∵|−4|=4,|4|=4,|6|=6∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等∴由树状图可知两次取得数字的绝对值相等的结果数有5种.∴P两次取得数字的绝对值相等=5915.解:画树状图如下:共有12种等可能的结果,其中小明参加总决赛抽取题目都是成语题目的结果有2种∴小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率为212=16.16.(1)解:根据题意画出树状图如下:所有等可能的结果总数为6,其中和为5的结果为1种所以摸出的两个球上的数之和为5的概率为16;(2)解:所有可能的结果总数为6,其中和为5的结果为1种,和为4的结果为1种,和为6的结果为2种,和为7的结果为1种,和为8的结果为1种∴摸出的两个球上的数之和为6的概率最大.17.(1)解:100;选择“足球”的人数为35%×100=35(名).补全条形统计图如下:(2)18°(3)解:画树状图如下:共有12种等可能的结果,其中甲和乙同学同时被选中的结果有2种∴甲和乙同学同时被选中的概率为212=16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第二十五章 概率初步》 练习题一、选择题(每小题3分,共30分)1. (08青海西宁)下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种 B.8种 C. 5种 D.13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( )A .154 B.31 C.51 D.1524.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物满100元,那么他中一等奖的概率是 ( ) A.1001 B. 10001C. 100001D. 10000111 6、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一1%图1张是数字3的概率是( ) A.61 B.31 C.21 D.327.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15 B .29C .14D .5188.如图3,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( ) A.21 B. 83 C. 41D. 319.如图4,一小鸟受伤后,落在阴影部分的概率为( ) A .21 B .31 C .41D .110.连掷两次骰子,它们的点数都是4的概率是( )A.61 B.41 C.161D.二、填空题(每小题3分,共30分)11. (08福建福州)在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .14.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为15.任意翻一下2007年日历,翻出1月6日的概率为 ;翻出4月31日的概率为 。
361图416.单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 。
17.某班的联欢会上,设有一个摇奖节目,奖品为圆珠笔、软皮本和水果,标在一个转盘的相应区域上(转盘被均匀等分为四个区域,如图5)。
转盘可以自由转动。
参与者转动转盘,当转盘停止时,指针落在哪 一区域,就获得哪种奖品,则获得圆珠笔的概率为 。
18.一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,如图6,停车场分A 、B 两区,停车场内一个停车位置正好占一个方格且一个方格除颜色外完全一样,则汽车停在A 区蓝色区域的概率是 ,停在B 区蓝色区域的概率是19.如图7表示某班21位同学衣服上口袋的数目。
若任选一位同学,则其衣服上口袋数目为5的概率是 .20.一个小妹妹将10盒蔬菜的标签全部撕掉了。
现在每个盒子看上去都一样,但是她知道有三盒玉米、两盒菠菜、四盒豆角、一盒土豆。
她随机地拿出一盒并打开它。
则盒子里面是玉米的概率是 ,盒子里面不是菠菜的概率是 。
三、解答题(共60分)21. (6分)将下面事件的字母写在最能代表它的概率的点上。
A .投掷一枚硬币时,得到一个正面。
B .在一小时内,你步行可以走80千米。
C .给你一个骰子中,你掷出一个3。
01圆珠笔 水果 水果 软皮本图5A 区B 区图610987654321123567891012131415161718192021学号口袋数图D .明天太阳会升起来。
22. (6分)一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的。
拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%。
桶里每种颜色的弹珠各有多少?23. (8分)23、在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复。
下表是活动进行中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ; (3)试估算口袋中黑、白两种颜色的球各有多少只?24. (8分)小猫在如图9所示的地板上自由地走来走去,它最终停留在红色方砖上的概率是41,你试着把每块砖的颜色涂上。
摸球的次数n100150 200 500 800 1000 摸到白球的次数m 5896116295484601摸到白球的频率nm0.58 0.64 0.58 0.59 0.605 0.601图925. (10分)如图10依据闯关游戏规则,请你探究“闯关游戏”的奥秘: (1)用列表的方法表示有可能的闯关情况; (2)求出闯关成功的概率.26.(10分)某同学抛掷两枚硬币,分10级实验,每组20次,下面是共计200次实验中记录下的结果.实验组别两个正面一个正面 没有正面第1组 6 11 3 第2组 2 10 8 第3组 6 12 2 第4组 7 10 3 第5组 6 10 4 第6组 7 12 1 第7组 9 10 1 第8组 5 6 9 第9组 1 9 10 第10组4142①在他的每次实验中,抛出_____、_____和_____都是随机事件.②在他的10组实验中,抛出“两个正面”概率最多的是他第_____组实验,抛出“两个图10正面”概率最少的是他的第_____组实验.③在他的第1组实验中抛出“两个正面”的概率是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的概率是_____.④在他的10组实验中,抛出“两个正面”的概率是_____,抛出“一个正面”的概率是_____,“没有正面”的概率是_____,这三个概率之和是_____.27. (12分)(08茂名)透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2分) (2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.(6分) 【九年级数学第二十五章概率初步测试题答案一、1.B 2.D 3.B 4.C 5.B 6.B 7.B 8.B 9.B 10.D二、11. 12.31 32 13.0.88 14.41 41 521 15. 3661 0 16.41 17.41 18.21 94 19.214 20.103 54三、21.A .21; B .0;C .61;D .1 22.解:显然拿出白色弹珠的概率是40%,红色弹珠有60×25%=15,25蓝色弹珠有60×35%=21, 白色弹珠有60×40%=24。
23.解:(1)0.6;(2)0.6;0.4;(3)黑8、白12。
24.25.解:(1)所有可能的闯关情况列表表示如下表:(2)设两个1号按钮各控制一个灯泡P (闯关成功)= 14 。
26.解:①“两个正面”“一个正面”“没有正面”;②7 9; ③10351;④20053 20043 2513 1。
27.解:参考答案】(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是31右边按钮左边按钮121 (1,1) (1,2) 2(2,1)(2,2)或P (摸到标有数字是2的球)=(2)游戏规则对双方公平.树状图法: 或列表法:1 (1,1)1 2 (1,2)3 (1,3) 1 (2,1) 开始 2 2 (2,2) 3 (2,3) 1 (3,1) 3 2 (3,2)3 (3,3)31小121 (1,1) (1,2)2 (2,1) (2,2) 3(3,1) (3,2)东 明小。