应用数理统计试题

合集下载

应用数理统计作业题及参考答案(第一章)

应用数理统计作业题及参考答案(第一章)

应⽤数理统计作业题及参考答案(第⼀章)第⼀章数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的⼦样,求最⼤顺序统计量()n X 与最⼩顺序统计量()1X 的分布函数与密度函数。

解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤= ,,,.()()()()1n n n f x F x n F x f x -'=??=.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-?-≤??-≤??-≤()11nF x =-?-()()()()1111n f x F x n F x f x -'=??=?-.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的⼦样1X ,2X ,…,5X ,试问:(i )⼦样的平均值X ⼤于13的概率为多少?(ii )⼦样的极⼩值(最⼩顺序统计量)⼩于10的概率为多少?(iii )⼦样的极⼤值(最⼤顺序统计量)⼤于15的概率为多少?解:()~124X N ,,5n =,4~125X N ??∴ ??,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-?-()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---∴<=<=<-=<-{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-? {}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成⽴。

应用数理统计试题库

应用数理统计试题库

一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。

当常数C = 1/3 时,CY 服从2χ分布。

2 设统计量)(~n t X ,则~2X F(1,n) ,~12X F(n,1) 。

3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。

4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。

对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。

5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为ˆλ= 。

6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n S n S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。

7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫ ⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。

8.某试验的极差分析结果如下表(设指标越大越好):表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。

(2)方差分析中总离差平方和的自由度为 7 。

(3)上表中的第三列表示 A B ⨯交互作用 。

9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。

则y 关于x 的线性回归模型为 ()ˆ 2.356 1.813~0,1.611yx N εε=++ 10设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 12x - ,极大似然估计量为 max{X 1,X 2,…,X n } 。

应用数理统计试题

应用数理统计试题

应 用 数 理 统 计 复 习 题1. 设总体X ~ N(20,3),有容量分别为10, 15的两个独立样本,求它们的样本均值之差的绝对值小于 的概率._ _ _ _ 1解:设两样本均值分别为 X,Y ,则X Y 〜N(0,—) 22. 设总体X 具有分布律其中 (01)为未知参数,已知取得了样本值X 1 1,X 2 2,X 3 1,求的矩估计和最大似然估计.解:(1) 矩估计:EX22 2 (1 ) 3(1)2 23令EX X ,得 ?-.6(2) 最大似然估计:得? 5 63.设某厂产品的重量服从正态分布,但它的数学期望和方差2均未知,抽查 10件,测得重量为 X斤i 1,2, ,10。

算岀给定检验水平0.05 ,能否认为该厂产品的平均重量为斤?附:(9)=(10)= (9)= (10)=解:检验统计量为T =|将已知数据代入,得所以接受H 。

4.在单因素方差分析中,因素A 有3个水平,每个水平各做 4次重复实验,完成下列方差分析表,在X - m 0 |s/、n 15.4 - 5.0t 二. __________ 10=2J3.6/ 9F O.95(2,9) 4.26 , F 7.5 4.26,认为因素A是显着的5.现收集了16组合金钢中的碳含量x及强度y的数据,求得x 0.125, y 45.7886丄拓0.3024, L xy25.5218,L yy2432.4566 .(1)建立y关于x的一元线性回归方程??,?x ;(2)对回归系数1做显着性检验(0.05).解:(1)? % 25.5218 84.3975l xx0.3024所以,? 35.2389 84.3975X(2)Q |yy ?|xy 2432.4566 84.3975 25.5218 278.4805拒绝原假设,故回归效果显着.(1)找岀对结果影响最大的因素;(2)找出“算一算”的较优生产条件;(指标越大越好)(3)写出第4号实验的数据结构模型。

应用数理统计期末试卷 (2)

应用数理统计期末试卷 (2)

应用数理统计期末试卷题目一一位医生想要调查 COVID-19 病例在抵达医院时的体温情况,他随机抽查了50 名确诊患者,记录了他们入院时的体温(单位:摄氏度),得到以下数据:37.1 37.2 38.5 37.8 38.138.2 38.4 37.9 38.3 37.638.0 38.2 37.4 38.5 38.637.3 37.9 38.9 37.8 37.538.6 37.7 38.4 37.1 38.137.4 38.3 37.9 37.7 37.638.0 38.2 38.8 37.5 38.338.1 38.5 37.8 37.9 38.737.6 37.7 37.9 38.3 38.0请根据这份数据回答以下问题:1.请计算这 50 名患者的平均体温并进行解释。

2.请建立适当的直方图并解释。

3.请计算这批数据的标准差并解释。

题目二一项关于发动机寿命的研究显示,在正常使用情况下,某型号航空发动机寿命服从均值为 1200 小时、标准差为 100 小时的正态分布。

为了确保安全,该型号发动机的安全寿命必须在 1000 小时以上。

在一架飞机上,该型号的 5 台发动机已经工作了 895、1020、1140、1260 和1375 小时。

请回答以下问题:1.五台发动机的寿命各是多少,哪台发动机应该先更换?2.如果该型号发动机的标准差为 80 小时,五台发动机的寿命各是多少,哪台发动机应该先更换?题目三在某公司的管理培训课程中,有 120 名学员参加了一次考试,总分为 100 分。

以下是这 120 名学员的成绩:49 59 63 86 71 62 75 71 82 7259 51 58 64 57 27 68 76 80 4671 67 48 64 65 45 57 69 90 5261 51 29 41 77 57 65 58 72 4150 63 73 51 55 61 83 84 92 6491 69 60 72 70 88 89 86 77 5980 80 34 52 59 73 60 69 37 4634 66 67 86 56 41 65 93 73 8958 62 54 47 83 64 44 53 40 8571 67 35 45 73 73 59 81 56 7368 55 49 65 79 69 96 47 60 34请回答以下问题:1.请计算这批成绩的平均分、中位数、众数、极差、四分位数并进行解释。

应用数理统计复习题Word版

应用数理统计复习题Word版

应用数理统计复习题一、填空题1.设总体212~(,),,,...,n X N X X X μσ为样本,样本均值及样本方差分别为,221111,()n n i i i i X X S X X n n ====-∑∑,设112,,...n n X X X X +与独立同分布,则统计量~Y =。

2.设21~(),~T t n T 则。

3.设总体X 的均值为μ,12,,...,n X X X 为样本,当a = 时,E 21()nii Xa =-∑达到最小值。

4. 设总体212~(,),,,...,n X N X X X μσ为样本,1||,()nii D XE D μ==-=∑则5.设总体X 的均值和方差分别为a , b , 样本均值及样本方差分别为221111,()n n i i i i X X S X X n n ====-∑∑,则 E (S 2 )= 。

6.在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值 X 落在4与6之间的概率 =6. 设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。

7. 设总体212~(,),,,...,n X N X X X μσ为样本,12211ˆ()n i i i c XX σ-+==-∑,若2ˆσ为2σ的无偏估计,则 c = 。

8. 设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。

9. 设总体212~(,),,,...,n X N X X X μσ为样本,μ未知,σ2已知,为使μ的置信度为1-α的置信区间长度不超过L ,则需抽取的样本的容量n 至少为 。

10. 设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2未知,则σ2的置信度为1-α的置信区间为 。

11设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 12. 设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。

应用数理统计试题

应用数理统计试题

37,27,38,则最大艇速的数学期望的无偏估计量值是 33m/s ;最大艇速的均方差
的无偏估计是 3.07m/s 。
6. 设 X1, X 2 ,×××X n 是来自[q ,q +1](q > 0) 上的均匀分布总体的一个样本,则q 的估计量

Ù
q
矩=
X
-
1
2
7. 假设检验分为两类,分别为 参数假设检验 和 分布拟合 检验。
-
ln x i
i=1
q
n
q
q
n
4.要求某种元件使用寿命(单位:小时)服从正态分布 N (1000,1002 ) 。现在从某厂生产的
这类元件中抽 25 件,测得其平均使用寿命为 950 小时,试问这个厂生产的这类元件是否合
4
格?(a =0.05)
H

0
m
= 1000, H1
:m
¹ 1000
∵U
=|
x
Ù
Ù
Ù
Ù
10. 若q 1 和q2 分别为参数q 的两个独立的无偏估计量,且q 1 的方差是q2 方差的 4 倍,则
A=1 , 5
效。
B=4 5
Ù
Ù
时,Aq 1 + Bq 2 是q 无偏估计量,并且在所有这样的线性估计中最有
二.选择题。(30 分)
1.设总体x 服从正态分布 N (m ,s 2 ), m ,s 2 为未知数,e1,e2 ×××en 是来自总体x 的随机样本,
0,
其他.
(1) 求可估计函数 1 的极大似然估计量。 q
(2) 求可估计函数 1 的有效估计量。 q
n
n
Õ Õ ( 1) L ( q ) =

专业学位研究生应用数理统计期末试题

专业学位研究生应用数理统计期末试题

专业学位研究⽣应⽤数理统计期末试题航天学院2019-2020学年第⼀学期专业学位研究⽣《应⽤数理统计》课程考试卷(A卷)考核形式:开卷部门:班级:姓名:说明:下列试题均可⽤SPSS软件计算,所有问题均要求提供纸质答案及电⼦答案。

最后⼀题要求提供数据⽂件.sav和输出⽂件.spv.⽤两种软件提供答案的试卷可适当加分。

2章参数估计⼀、随机地从A批导线中抽取4根,并从B批导线中抽取5根,测得其电阻(单位:)设测试数据分别服从正态分布,在下列两种情况下讨论两总体均值差的区间估计。

(1)两总体⽅差相等;(2)两总体⽅差不等。

3章假设检验⼆、为研究长跑运动对增强普通⾼校学⽣⼼脏功能的效果,对某⾼校15名男⽣进⾏测试,经过5个⽉的长跑训练后看其晨脉是否减少。

锻炼前后的晨脉数据如下表所⽰。

试问锻炼前后的晨脉在显著性⽔平0.05下有⽆显著性差别。

4章⽅差分析三、为了研究⽕箭燃料和推进器对⽕箭射程的影响,选⽤了4种不同燃料和3种不同推进器,将他们相互搭配并在每⼀种搭配下做了两次试验,得到⽕箭射程(海⾥)数据如下表。

在显著性⽔平0.05下,试分析燃料、推进器以及燃料和推进器这两种因素的交互作⽤对⽕箭射程的影响是否显著?6章回归分析四、国家需要⼤⼒发展国际旅游⾏业以增加国家的外汇收⼊,外汇收⼊Y 与接待的旅游⼈数X 之间构成什么样的统计关系呢?根据2004年的中国统计年鉴,得到1985—2002年间的统计数据如下表:(1)试根据上述数据建⽴外汇收⼊Y 与接待的旅游⼈数X 之间的回归模型,并进⾏回归分析,对2003年和2004年的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。

(2)试查找2005-2016年间连续6年的国家的外汇收⼊与接待的旅游⼈数的相关统计数据,分析其是否符合(1)中的模型,如不符合,试建⽴新的回归模型。

(3)利⽤(2)中的回归模型对我国2017年(可验证)和2019年(预测)的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。

应用数理统计参考题

应用数理统计参考题

应用数理统计(2000年)一、填空1 、设X1,X2,…X10 来自总体N(0,1) 的样本,若2 2 2y=k i(x i+2x2+3x3)+k2(x4+x5+…+X10) ~x (2),贝U k i= _________ k2= __________2、设x i,X2,…X2m来自总体N(4,9)的样本,若y=W(x2i-4)2,且Z= c(xi 二4),服z J y从t 分布,贝U c= ___ ,z~t( __ )3、设X i,X2,…X2m 来自总体N( p, 2)的样本,已知y=(X2-X i)2+(X4-X3)2+…+(X2m-X2m-i)2,且Z=cy为2的无偏估计,则c= ____4、上题中,Dz= __5、由总体F(x)与G(x)中依次抽得容量为i2和ii的样本,已计算的游程总个数U=i2,试在水平a =0.05下检验假设H。

:F(x)= G(x),其结论为 ___________ (U°.05(12, 11)=8)61 °X2 1二、设X i,X2,…X61 来自总体N(0,1)的样本,令y=^ x2,试求P{互兰丄}y y 15(t0.975(60)=2)三、设总体X的密度函数为(1+a)x: 0<x<1Lf(x)= F0, 其它而(X i,X2,…X n )为来自X的样本,试求〉的极大似然估计量。

2 2四、设x~N( p, 2),y~ N( p, 2)今抽取X的样本X i,X2,…X8;y的样本y i,y2, (8)计算得x =54.03,y =57.11,s;=3.25, £=2.751 .试在水平a =0.0下检验假设H0:p i=p,H i: p i> p22. 试求a =0.0时,p- p 的估计区间(t0.99(14)=2.6245)五、欲考察因子A,B,C,D及交互作用AXC,且知B也可能与其它因子存在交互作用,试在L8(27)上完成下列表头设计。

应用数理统计(201110)

应用数理统计(201110)

一、填空题1.小概率原理是 .2.在数理统计学中,我们称研究对象的全体为___________,组成总体的每个单元为_____________.3.(12,,,n ξξξ )是总体2~(3,5)N ξ的样本,则()(1,2,,)__________i E i n ξ== . 4.如果总体ξ的样本(n ξξξ,,,21 )满足下列条件:(1)n ξξξ,,,21 ________;(2)i ξ(1,2,,i n = )与总体ξ ,则称(n ξξξ,,,21 )是总体的简单随机样本. 5.设0.05是假设检验中犯第一类错误的概率,H 0为原假设,则P {拒绝H 0|H 0真}= ___________.6.评价估计量好坏的标准最常用的有________.7.设总体ξ服从参数为λ(λ>0)的泊松分布,(12,,,n ξξξ )为总体ξ的一个样本,其样本均值5ξ=,则λ的矩估计值λˆ=__________ 8.由来自正态总体(,1)N μ容量为100的简单随机样本,算得样本均值为10,则未知参数μ的置信度为0.95的置信区间是_ _____.(0.975 1.96u =)9.由来自正态总体(,1)N μ容量为100的简单随机样本,得样本均值为6,则未知参数μ的置信度为0.95的置信区间是_ _____. (0.975 1.96u =)10.设总体2~(,)N ξμσ,其中2σ未知,现由来自总体ξ的一个样本(129,,,ξξξ )算得样本均值20ξ=,修正样本标准差S =3,并查得0.95(8) 1.86t =,则μ的置信度为0.9的置信区间是 .11.设1234(,,,)ξξξξ为来自总体(0,1)N ξ 的样本,则统计量2212ξξ+ .12.设(1234,,,ξξξξ)为来自总体(0,1)N ξ 的样本,则统计量~22ξ .13.设(1234,,,ξξξξ)为来自总体(0,1)N ξ 的样本,则统计量22221234ξξξξ+++ . 14.设(123,,ξξξ)为来自总体(0,1)N ξ 的样本,则统计量222123ξξξ++ .15.已知一元线性回归方程为ˆˆ3ya x =+,且x =3,y =6,则ˆa = . 16.已知一元线性回归方程为ˆˆ3ya x =+,且x =1,y =6,则ˆa = . 17.已知一元线性回归方程为ˆˆ2ya x =+,且x =2,y =8,则ˆa = . 18.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231136Y k ξξξ=++,则当k =_______________时,Y 是()E ξ的无偏估计量.19.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231155k ηξξξ=++,则当k =_______________时,η是()E ξ的无偏估计.20.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231132k ηξξξ=++,则当k =_______________时,η是()E ξ的无偏估计量.21.12(,,,)n ξξξ 是总体)4,1(~2N ξ的样本,则__________)(1=ξD .22.设(10)t ξ ,0.95(10)t 表示t 分布的下侧分位数,则{}0.95(10)P t ξ≤= . 23.设(15)t ξ ,0.99(15)t 表示t 分布的下侧分位数,则{}0.99(15)P t ξ≤= .24.设2(8)ξχ ,20.95(8)χ表示χ分布的下侧分位数,则{}20.95(8)P ξχ≤= .25.设(0,1)N ξ ,0.99μ表示正态分布的下侧分位数,则{}0.99P ξμ≤= 26.设(nξξξ,,,21 )为总体ξ的一个样本,记11()nr r i i B n ξξ==-∑,则r B 叫做样本(n ξξξ,,,21 )的r 阶 . 设(12,,,n ξξξ )为总体ξ的一个样本,记r A =11n ri i n ξ=∑,则r A 叫做样本(12,,,n ξξξ )的r 阶 .二、单项选择题1.设2(,)N ξμσ ,12(,,,)n ξξξ 为总体ξ的一个样本,记ξ=11ni i n ξ=∑,则下列选项中正确的是A .2(,)N ξμσB .(0,1)N ξ C.(N ξμ D . 2(,)N nσξμ2.设(12100,,,ξξξ )为来自总体2(0,5)N ξ 的一个样本,ξ表示样本均值,则ξ~A .(0,5)NB .(0,25)NC .(0,0.05)ND . (0,0.25)N3.设(1,1)N ξ ,(n ξξξ,,,21 )为总体ξ的一个样本,记ξ=11ni i n ξ=∑,则下列选项中正确的是A .(0,1)N ξB .(1,1)N ξC .1(1,)N n ξ D.N ξ4.在假设检验问题中,犯第二类错误是指A .在0H 不成立的条件下,经检验0H 被拒绝B .在0H 不成立的条件下,经检验0H 被接受C .在0H 成立的条件下,经检验0H 被拒绝D .在0H 成立的条件下,经检验0H 被接受5.设总体2(,)N ξμσ ,12(,,,)n ξξξ 为总体ξ的一个样本,记2211()1nii Sn ξξ==--∑ , 则下列选项中正确的是A .22(1)~(1)n Sn χ-- B .222(1)~()n Sn χσ-C .222(1)~(1)n Sn χσ--D .222~(1)Sn χσ-6. 设总体ξ2(,)N μσ ,(12,,,n ξξξ )为总体ξ的一个样本,记2211()1nii Sn ξξ==--∑ ,则在下列各式中,正确的是A. 222(1)(1)n Sn χσ-- B.22(1)(1)n Sn χσ--C. 222(1)()n Sn χσ- D.22(1)()n Sn χσ-7.设总体ξ2(,)N μσ ,(12,,,n ξξξ )为总体ξ的一个样本, 记2211()nii S nξξ==-∑,则下列选项中正确的是A .22~(1)nS n χ- B .222~(1)nS n χσ-C .222(1)~(1)n S n χσ--D .22(1)~(1)n S n χσ--8.设总体ξ2(,)N μσ ,(n ξξξ,,,21 )为总体ξ的一个样本, 记2211()nii S nξξ==-∑,则下列选项中正确的是A .22~()nS t n σ B .22~(1)nS t n σ-C .222~()nS n χσD .222~(1)nS n χσ-9.(,)F m n α表示F 分布的下侧α分位数,则0.95(3,7)F =A .0.95(7,3)FB . 0.951(3,7)FC .0.051(7,3)FD .0.051(3,7)F10. (,)F m n α表示F 分布的下侧α分位数,则正确的是A. 11(,)(,)F n m F n m αα-=B. 111(,)(,)F n m F m n αα--=C. 1(,)(,)F n m F m n αα=D. ),(1),(1n m F m n F αα-=11.(,)F m n α表示F 分布的下侧α分位数,则0.975(10,7)F =A .0.975(7,10)FB .0.9751(10,7)FC .0.0251(7,10)FD .0.0251(10,7)F12.(,)F m n α表示F 分布的下侧α分位数,则0.91(1,2)F =A .0.9(2,1)FB .0.9(1,2)FC .0.1(2,1)FD .0.1(1,2)F13.设总体ξ2(,)N μσ ,2σ为已知,12(,,,)n ξξξ 为总体ξ的一个样本,ξ=11ni i n ξ=∑,2211()1nii Sn ξξ==--∑ ,欲检验假设0010:,:H H μμμμ=≠,则检验用的统计量是Aξ BξC .22101()nii ξμσ=-∑D .220(1)n Sσ-14.设总体ξ(0,1)N ,(126,,,ξξξ)为总体ξ(2)t ,则c =A .1B .2CD .1215.设总体ξ(0,1)N ,(1234,,,ξξξξ)为总体ξ的一个样本,(3)t ,则k =A .2B .3CD16.设总体ξ(0,1)N ,(126,,,ξξξ)为总体ξ(5)t ,则k =A .2B .6CD17.设总体2(,)N ξμσ ,其中μ已知,2σ未知,123(,,)ξξξ是总体ξ的一个样本,则下列各式中不是统计量的是A .3ξB .122ξξ+C .1233ξξξμ++-D . 2221232ξξξσ++18.设(1234,,,ξξξξ)是总体ξ2(,)N μσ 的一个样本,其中μ未知,2σ已知,11ηξμ=-,1222ξξη+=,22212332ξξξησ++=,123444ξξξξμησ+++-=,则1234,,,ηηηη中统计量的个数是A.1B. 2C.3D. 419.设总体ξ2(,)N μσ ,其中μ和2σ均未知,(123,,ξξξ)是总体ξ的一个样本,则下列各式中是统计量的是A .2221232ξξξσ++ B .3ξC .1233ξξξμ++-D .1ξμ-20.设总体ξ2(,)N μσ ,其中μ已知,2σ未知,(n ξξξ,,,21 )是总体ξ的一个样本,则下列各式中不是统计量的是A .1ξB .21ni i ξ=∑C .22122ξξσ+ D . {}12min ,,,n ξξξ21.设总体2(,)N ξμσ ,其中μ未知,1234(,,,)ξξξξ为来自总体ξ的一个样本,则以下关于μ的四个估计112341ˆ()4μξξξξ=+++,2123123ˆ555μξξξ=++,31211ˆ63μξξ=+,411ˆ7μξ=中,μ的无偏估计是A .1ˆμB .2ˆμC .3ˆμD .4ˆμ22.设(123,,ξξξ)是来自总体ξ的一个容量为3的样本,则下列关于()E ξ的无偏估计量中,最有效的估计量是A .123212555ξξξ++B .1231()3ξξξ++ C .123111442ξξξ++D .123124777ξξξ++23.设总体ξ2(,)N μσ ,其中μ未知,(12345,,,,ξξξξξ)为来自总体ξ的一个样本,11234511ˆ(),45μξξξξξ=++++22323ˆ,55μξξ=+31211ˆ,63μξξ=+41234512111ˆ77777μξξξξξ=++++,μ的无偏估计是A .1ˆμB .2ˆμC .3ˆμD .4ˆμ24.设随机变量~(0,1),~(0,1)N N ξη,且ξ与η相互独立,则22ξη服从的分布是A .)2,0(NB .)2(tC .)2(2χD .)1,1(F25.设ξ服从参数为λ的泊松分布()P λ,(12,,,n ξξξ )为总体ξ的一个样本,ξ为样本均值,则λ的矩估计ˆλ= A .ξ B .2ξ C .2ξ D .1ξ26.设(1234,,,ξξξξ)是来自正态总体(0,1)N 的样本,则统计量22122234ξξξξ++服从A .正态分布B .F 分布C .t 分布D .2χ分布27.设总体ξ2(,)N μσ ,μ未知,(n ξξξ,,,21 )为总体ξ的一个样本,ξ=11ni i n ξ=∑,2211()1nii Sn ξξ==--∑ ,欲检验假设22220010:,:H H σσσσ=≠,则检验用的统计量是 Aξ B .220(1)n S σ-C .22101()nii ξμσ=-∑ Dξ三、 计算题1. 若从自动车床加工的一批零件中随机抽取10件, 测得其尺寸与规定尺寸的偏差(单位: um)分别为: 2, 1, -2, 3, 2, 4, -2, 5, 3, 4, 零件尺寸的偏差设为ξ, 假 定2(,)N a ξσ ,试求置信度为0.9的a 的置信区间. (0.95(9) 1.8331t =)2.设总体ξ服从泊松分布()P λ, 即{},1,2,!k P k e k k λλξ-=== ,(1, 1, 1, 0)是总体ξ的一组样本观测值. 求λ的极大似然估计值.3.已知某班的应用数理统计的考试成绩服从正态分布2(,7)N a , 现从该班中抽取了9名同学, 测得成绩为: 75, 78, 80,81, 84, 86, 88, 90, 93. 求置信度为0.95的总体平均值a 的置信区间. )96.1(975.0=μ4.某台机床加工的产品的直径ξ服从正态分布2(,)N a σ, 今从该台机床加工的产品中随机抽取5件, 测得其直径(单位: 毫米)为: 20.1, 20.2, 20.3, 20.8, 21, 试在置信度0.95下, 求2σ的置信区间. )484.0)4(,143.11)4((025.02975.02==χχ5. 设罐头番茄汁中维生素C 含量服从正态分布. 按照规定, 维生素C 的平均含量约为21mg. 现从一批罐头中随机抽取16罐, 计算得23ξ= mg ,标准差 3.9S = mg. 问这批罐头的维生素C 含量是否合格?0.975(0.05,(15) 2.1315)t α==设各个工人的日产量都服从正态分布且方差相同, 试问在显著水平0.05=下, 操作工人之间的差异是否显著? )14.5)6,2((95.0=F(2)检验y 与x 的线性是否显著?0.95(0.05,(1,3)10.01)F α==。

应用数理统计试题

应用数理统计试题

应用数理统计试题一、填空(3分×10=30分)1.设X为一个连续型随机变量,分布函数为F,若有β-=≥1)(mXP,则m是F的()点。

2.参数估计中的矩估计法是用()矩近似()矩的方法。

3.歌唱比赛中选手的最后成绩是在去掉最高分和最低分后的平均成绩,这是根据估计量的()准则而设定的。

4.在极大似然估计中,我们是把被估计量θ视为()变量,而在Bayes估计中,我们是把被估计量θ视为()变量。

5.假设检验中可能存在的两类错误是()和()。

其中,()的概率因不同问题而不确定,()的概率等于显著性水平α。

二、选择(4分×5=20分)1. 正确描述假设检验中原假设与备选假设的地位的是()A相等的B原假设受到保护C备选假设受到保护D具有不确定性2.设X为一个连续型随机变量,其密度为)(xf,则X的k阶中心矩为()。

A)(kXE B⎰∞∞--dxXExxf k))()((C)(kEXXE-D⎰∞∞--dxxfXEx k)())((3.两个事件A 与B ,若有P (A )>0,P (B )>0,且两个事件是互不相容的,则这两个事件是( )的。

A 一定互相独立B 不一定相互独立C 不相关的D 一定不相互独立 4.一元线性回归模型⎩⎨⎧===++=相互独立为有限, ,i i i i i E ni x y εσεεεββ210)(0,,2,1 ,其中参数的最小二乘估计是根据( )最小的原则计算得到的。

A 回归平方和 B 总的离差平方和 C 残差平方和 D 观测点到回归直线的距离 5. 设),(~n t T 则~)1(2T( )。

A ),1(n F B)1,(n FC)(2n χ D)1(2+n χ三、(15分)设总体X 服从正态分布,数学期望为12,方差为4,若,12-=X Y 现抽取容量为5的Y 的样本54321,,,,Y Y Y Y Y ,计算 (1) 概率)08.6(512∑=≥i i Y P ;(2))(51∑=i i Y E ; 四、(10分)以往一台机器生产的垫圈的一组平均厚度为0.05cm ,为了检查这台机器是否处于正常工作状态,现抽取10个垫圈的样本,测得平均厚度为0.053,样本方差为0.00322,在显著性水平α为(1)0.05,(2)0.01下,检验机器是否处于正常工作状态,即均值是否与以往相同。

数理统计试题及答案

数理统计试题及答案

数理统计试题及答案一、单项选择题(每题3分,共30分)1. 下列哪个选项是随机变量的期望值?A. 随机变量的众数B. 随机变量的中位数C. 随机变量的平均值D. 随机变量的方差答案:C2. 以下哪个分布是离散分布?A. 正态分布B. 均匀分布C. 泊松分布D. 指数分布答案:C3. 以下哪个统计量是度量数据离散程度的?A. 均值B. 方差C. 标准差D. 众数答案:B4. 以下哪个统计量是度量数据集中趋势的?A. 极差B. 方差C. 标准差D. 均值答案:D5. 以下哪个选项是中心极限定理的描述?A. 样本均值的分布是正态分布B. 样本方差的分布是正态分布C. 样本大小的分布是正态分布D. 总体均值的分布是正态分布答案:A6. 以下哪个选项是二项分布的参数?A. 样本大小B. 总体均值C. 成功概率D. 总体方差答案:C7. 以下哪个选项是描述总体的?A. 样本均值B. 样本方差C. 总体均值D. 总体方差答案:C8. 以下哪个选项是描述样本的?A. 总体均值B. 总体方差C. 样本均值D. 样本方差答案:C9. 以下哪个选项是描述变量之间关系的?A. 相关系数B. 标准差C. 方差D. 均值答案:A10. 以下哪个选项是描述变量内部关系的?A. 相关系数B. 标准差C. 方差D. 均值答案:C二、填空题(每题4分,共20分)1. 随机变量X服从标准正态分布,其均值为______,方差为______。

答案:0,12. 样本容量为n的样本均值的方差为总体方差σ²除以______。

答案:n3. 两个独立的随机变量X和Y的协方差为______。

答案:04. 相关系数ρ的取值范围在______和______之间。

答案:-1,15. 泊松分布的参数λ表示单位时间内发生事件的______。

答案:平均数三、简答题(每题10分,共20分)1. 简述中心极限定理的内容。

答案:中心极限定理指出,对于足够大的样本容量,样本均值的分布将趋近于正态分布,无论总体分布的形状如何。

应用数理统计复习题

应用数理统计复习题

一、 填空:1、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛-4.01.03.02.05101,则E (2-3ξ)=( 1.4 )2、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛-25.013.02.005.037.073101,则η=2+ξ的分布列是(⎪⎪⎭⎫ ⎝⎛25.013.02.005.037.095321) 3、已知A ,B 是样本空间Ω中的两事件,且Ω={1,2,3,4,5,6,7,8},A={2,4,6,8},B={2,3,4,5,6,7},则A+B={ 2,3,4,5,6,7,8 }4、由事件A 与B 同时发生构成的事件,称为事件A 与B 的积事件,记为( AB )5、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛2.05.015.01.005.091.74.532,则方差D ξ=( 3.8454 )6、由事件A 与B 至少发生一个构成的事件,称为事件A 与B 的和事件,记为( A+B )7、在数理统计中,把( 考察对象)的全体称为总体,而把( 构成总体的每个成员 )称为个体。

8、已知甲、乙射手的命中率分别为0.77与0.84,它们各自独立地向同一目标射击一次,则目标被击中的概率是( 0.9632 )9、对于任意事件A ,有P (A )+P (A )=( 1 )10、已知随机变量ξ有分布列⎪⎪⎭⎫⎝⎛--3.01.04.02.03014,则P{-3<ξ≤3}=( 0.8 )11、两点分布b(1,p)的数学期望是( p )方差是( pq )12、一口袋内有11个黑球、7个白球,不放回地从中任抽2次,每次取出1球。

记事件A=“第一次取出黑球”,B=“第二次取出黑球”,则P (A B)=( 10/17 )13、分布函数的基本性质中:F (-∞)=( 0 );F (+∞)=( 1 )14、已知A ,B 是样本空间Ω中的两事件,且Ω={1,2,3,4,5,6,7,8},A={2,4,6,8},B={2,3,4,5,6,7},则A-B={ 8 }15、假设独立随机变量ξ与η的方差D ξ与D η都存在,则有D (ξ+η)=(D ξ+D η)16、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛-25.013.02.005.037.073101,则η=ξ2+3的分布列是( ⎪⎪⎭⎫ ⎝⎛25.013.057.005.0521243)17、假设R.V.ξ存在方差D ξ,则对于任意常数k,c,有D (k ξ+c )=( k 2D ξ )18、把一枚不对称的硬币投掷一次,若出现正面,则再掷一次;…。

《应用数理统计》考试试题与参考答案

《应用数理统计》考试试题与参考答案

《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。

自学考试专题-应用数理统计练习题

自学考试专题-应用数理统计练习题

自 考 复 习1 设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则11X -服从什么分布? (1~(0,1)1X N -) 2 在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,,αβ是如何变化的?(,αβ其中一个减小,另一个会增大;)3 置信概率表达了区间估计的什么性质? (可靠性)4 设总体X 服从N (μ,σ2),X 1,X 2,…,X n 为来自X 的简单随机样本,X 是样本均值,记222212112222341111(), (),111(), ()1n n i i i i n ni i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑则服从自由度为n -1的t 分布的随机变量是什么样的随机变量?(X t S μ-=) 5 方差分析中在由样本推断总体性质时,原假设是什么?(各分类间均值相等)6 在方差分析中,随机误差存在于什么样的情况?(既存在于自变量平方和中,又存在于残差平方和中)7 在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则ˆCov()ε等于多少? (1ˆ]σ-''-εX X 2n Cov()=[()I X X ; ) 8 设12(,,,)(2)n X X X n ≥为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则2122(1)nii n X X=-∑服从什么分布?(2122(1)(1,1)nii n X F n X=--∑ )9 若总体2(,)X N μσ,其中2σ已知,当置信度1α-保持不变时,如果样本容量n 增大,则μ的置信区间如何变化?(长度变小;)10 “拒绝原假设的理由是充分的,接受原假设的理由是不充分的”是否正确?不正确11 对于单因素试验方差分析的数学模型,设T S 为总偏差平方和,e S 为误差平方和,A S 为因子平方和,则三者有何关系? T e A S S S =+12 已知甲、乙两班学生统计学考试成绩:甲班平均分为70分,标准差为7.5分;乙班平均分为75分,标准差为7.5分。

数理统计试题及答案

数理统计试题及答案

数理统计试题及答案一、单项选择题(每题3分,共30分)1. 在概率论中,随机变量X的数学期望E(X)表示的是()。

A. X的众数B. X的中位数C. X的均值D. X的方差答案:C2. 以下哪项是描述性统计中常用的数据集中趋势的度量方法?()。

A. 极差B. 方差C. 标准差D. 偏度答案:A3. 假设检验中,原假设H0通常表示的是()。

A. 研究者想要证明的假设B. 研究者想要否定的假设C. 研究者认为正确的假设D. 研究者认为错误的假设答案:C4. 在回归分析中,如果自变量X与因变量Y之间存在线性关系,则回归系数β1表示的是()。

A. X每增加一个单位,Y平均增加β1个单位B. X每增加一个单位,Y平均减少β1个单位C. X每减少一个单位,Y平均增加β1个单位D. X每减少一个单位,Y平均减少β1个单位答案:A5. 以下哪项是统计学中用于衡量数据离散程度的指标?()。

A. 均值B. 中位数C. 众数D. 方差答案:D6. 抽样分布是指()。

A. 总体数据的分布B. 样本数据的分布C. 样本统计量的分布D. 总体统计量的分布答案:C7. 在统计学中,置信区间是用来估计()。

A. 总体均值B. 总体方差C. 总体标准差D. 以上都是答案:D8. 以下哪项是统计学中用于衡量数据分布形态的指标?()。

A. 均值B. 方差C. 偏度D. 峰度答案:C9. 假设检验中,如果p值小于显著性水平α,则()。

A. 拒绝原假设B. 接受原假设C. 无法做出决策D. 需要更多的数据答案:A10. 在方差分析中,如果F统计量大于临界值,则()。

A. 拒绝原假设B. 接受原假设C. 无法做出决策D. 需要更多的数据答案:A二、多项选择题(每题5分,共20分)1. 下列哪些是统计学中常用的数据收集方法?()。

A. 观察法B. 实验法C. 调查法D. 抽样法答案:ABCD2. 描述性统计中,以下哪些是数据的集中趋势的度量方法?()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用数理统计复习题
1.设总体~(20,3)X N ,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率.
解:设两样本均值分别为,X Y ,则1~(0,)2
X Y N - (||0.3)(0.424)(0.424)0.328P X Y -<=Φ-Φ-= 2.
其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,求θ的矩估计和最大似然估计.
解:(1)矩估计:2
2
22(1)3(1)23EX θθθθθ=+⨯-+-=-+
14
(121)33
X =++=
令EX X =,得5ˆ6
θ=. (2)最大似然估计:
2
2
5
6
()2(1)22L θθθθθθθ=⋅⋅-=-
45ln()
10120d d θθθθ=-= 得5ˆ6
θ= 3. 设某厂产品的重量服从正态分布,但它的数学期望μ和方差2
σ均未知,抽查10件,测得重量为i X 斤10,,2,1 =i 。

算出
10
1
1 5.410i i X X ===∑
10
21
() 3.6i
i X
X =-=∑
给定检验水平0.05 α=,能否认为该厂产品的平均重量为5.0斤?
附:t 1-0.025(9)=2.2622 t 1-0.025(10)=2.2281 t 1-0.05(9)=1.8331 t 1-0.05(10)=1.8125 解: 检验统计量为0
|
|/X T
S n
将已知数据代入,得 5.4 5.0
10
23.6/9t
1
/2
0.975(1)
(9)
2.2622
2t n t
所以接受0H 。

4. 在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平0.05α=下对因素A 是否显著做检验。

解: 0.95(2,9) 4.26F =,7.5 4.26F =>,认为因素A 是显著的.
5. 现收集了16组合金钢中的碳含量x 及强度y 的数据,求得
0.125,45.7886,0.3024,25.5218xx xy x y L L ====,2432.4566yy L =.
(1)建立y 关于x 的一元线性回归方程01
ˆˆˆy x ββ=+; (2)对回归系数1β做显著性检验(0.05α=).
解:(1)1
25.5218
ˆ84.39750.3024
xy xx
l l β==
=
01
ˆˆ35.2389y x ββ=-= 所以,ˆ35.238984.3975y
x =+ (2)1ˆ2432.456684.397525.5218278.4805e yy xy Q l l β=-=-⨯= 2278.4805
ˆ19.8915214
e Q n σ
===- ˆ 4.46σ
==
10.4060t ===
0.025(14) 2.1604t =
10.4060 2.1604t =>
拒绝原假设,故回归效果显著.
6.
(2) 找出“算一算”的较优生产条件;(指标越大越好) (3) 写出第4号实验的数据结构模型。

解:
(2) “算一算”的较优生产条件为221A B C (3) 4号实验的数据结构模型为
2214y a b c με=++++,24~(0,)N εσ
7.设总体1122~(,),~(,)p p G N G N μμ∑∑,样品为X .已知
1 1.02.25.4μ⎛⎫ ⎪= ⎪ ⎪⎝⎭,
2 4.25.56.8μ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1
2.300.250.470.250.600.040.470.040.60-⎛⎫
⎪∑= ⎪ ⎪⎝⎭,123 1.83.67.0x X x x ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭
(1) 求线性判别函数()X μ;
(2) 对样品X 的归属做判别.
解:(1)1
12 2.300.250.47 3.28.8()0.250.600.04 3.3 2.80.470.040.60 1.4 2.5αμμ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=∑-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭
2.6
3.96.1μ⎛⎫

= ⎪ ⎪⎝⎭
123()()8.8( 2.6) 2.8( 3.9) 2.5( 6.1)T X X x x x μαμ=-=------;
(2)()8.8(0.8) 2.8(0.3) 2.50.9 5.630X μ=-⨯--⨯--⨯=> 所以,1X G ∈.
8.掷一枚硬币100次,观察到正面出现58次,能否认为该枚硬币是均匀的?(0.05)α= 解:设正面出现的概率为p ,则
0:0.5H p =
222
(5850)(4250) 2.565050
χ--=+=
20.05(1)(1) 3.841r αχχ-==
20.052.56(1)χ<,故接受0H ,可以认为该枚硬币是均匀的.
9.设总体的密度函数(1)
(;),,0p x c x
x c c θ
θθθ-+=>>,c 为已知参数,0θ>为未知参数.
当样本容量为n 时,求θ的C R -下界. 解:ln (;)ln ln (1)ln p x c x θθθθ=+-+
ln (;)1
ln ln p x c x θθθ
∂=+-∂
222
ln (;)1
p x θθθ∂=-∂
22
2ln (;)1()p x I E θθθθ
⎛⎫∂=-= ⎪∂⎝⎭. 所以,θ的C R -下界为2
1()nI n
θθ=.
10.假设回归直线过原点,即一元线性回归模型为,1,2,
,i i i y x i n βε=+=,
2~(0,)i N εσ且相互独立,求β的最小二乘估计.
解:令 2
1
()
n
i
i
i Q y x β==
-∑
1
2()0n
i i i i Q
y x x ββ=∂=---∂∑ 解得 1
21
ˆn
i i
i n
i
i x y
x
β
===∑∑.
11.设121,,
,,n n X X X X +是来自2
(,)N μσ的样本,1
1n
n i i X X n ==∑,
2
2
1
1()1n n
i n i S X X n ==--∑,试求常数C ,使得1n c
n X X t c S +-=服从t 分布,并指出分布的自由度.
解:2
2
1~(0,)n n X X N n
σσ+-+

2
22
(1)~(1)n
n S n χσ
--
故~(1)n
t t n =
-
,c =
. 12.总体~(,2)X U θθ,其中0θ>是未知参数,1,
,n X X 是取自该总体的样本,X 为样
本均值,证明:2
ˆ3
X θ=是参数θ的无偏估计和相合估计. 证明:2ˆ3E E X θ⎛⎫=
⎪⎝⎭
=2
22332EX θθθ+== 所以ˆθ
是θ的无偏估计. 2
444ˆ099912D DX DX n n
θθ===→⨯ 所以ˆθ
是θ的相合估计.
13.总体2
~(,)X N μσ,2
σ已知,问样本容量n 取多大时才能保证μ的置信水平为95%的
置信区间的长度不大于k .
解:μ的置信水平为1α-
的置信区间为1/2
1/2
[x u x u αα---+
1/2
2L u k α-=≤2
2
221/22 3.92n u k k ασσ-⎛⎫⎛⎫
⇒≥= ⎪ ⎪⎝⎭⎝⎭
14.设1,
,n X X 是来自(,4)N μ的样本,考虑如下假设检验问题
01:2,
:5H H μμ==
若拒绝域为{3}W X =≥,样本容量16n =时,求该检验犯两类错误的概率. 解:(3|2)P X αμ=≥=
11(2)=-Φ=-Φ;
(3|5)P X βμ=<=
1(4)=Φ=-Φ
15.为了检验事件A 发生的概率是否为p ,对A 进行了n 次观察,结果A 发生了A n 次,若检验水平为α,试写出检验统计量和拒绝域. 解:设1,0A X A ⎧=⎨
⎩发生,不发生
即要检验X 的分辨率是否为
根据卡方检验法,检验统计量
222
2
()()()A A A n np n n nq n np np nq npq
χ----=+=
拒绝域:22
(1)n αχχ≥-。

相关文档
最新文档