应用数理统计复习题Word版
应用数理统计作业题及参考答案(第一章)
应⽤数理统计作业题及参考答案(第⼀章)第⼀章数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的⼦样,求最⼤顺序统计量()n X 与最⼩顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤= ,,,.()()()()1n n n f x F x n F x f x -'=??=.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-?-≤??-≤??-≤()11nF x =-?-()()()()1111n f x F x n F x f x -'=??=?-.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的⼦样1X ,2X ,…,5X ,试问:(i )⼦样的平均值X ⼤于13的概率为多少?(ii )⼦样的极⼩值(最⼩顺序统计量)⼩于10的概率为多少?(iii )⼦样的极⼤值(最⼤顺序统计量)⼤于15的概率为多少?解:()~124X N ,,5n =,4~125X N ??∴ ??,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-?-()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---∴<=<=<-=<-{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-? {}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成⽴。
应用数理统计试题库
一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12X F(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为ˆλ= 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n S n S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫ ⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
则y 关于x 的线性回归模型为 ()ˆ 2.356 1.813~0,1.611yx N εε=++ 10设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 12x - ,极大似然估计量为 max{X 1,X 2,…,X n } 。
应用数理统计基础
应用数理统计基础(庄楚强)考试共8道题1、样本的数据期望与方差2、2χ分布的概念与性质3、一连续型函数(只有一个未知参数)的无偏估计4、一正态分布的置性区间5、两个未知参数函数的矩估计6、①求一离散型的总体似然估计②求未知参数的信息量③求得的似然估计是否是最小方差估计7、正态分布的假设检验8、一离散型总体的假设检验第二章、数理统计的基本概念与抽样分布第一节、数理统计的几个基本概念重点:统计量,书中例题2、习题第四题第三节、常用统计分布重点:常用统计分布(2χ、t、F)的定义及性质第四节、抽样分布重点:定理1及推论、定理4及推论本章习题4、5、7、9、13、19、20第三章、参数估计掌握:矩估计、极大似然估计、区间估计本章习题1、2、3、4、10、11、15、16、18、27、29第四、章假设检验重点:第二节、一个正态总体均值与方差的检验第三节、两个正态总体均值与方差的检验第四节、非正态总体均值的假设检验书上的例题、习题37、38、39、40第一章概率论复习与补充1、概率2、期望数据期望的性质性质1:常量的期望就是这个常量本身, 即E(c)=c.推论:E(Eξ)= Eξ性质2:随机变量ξ与常量 c 之和的数学期望等于ξ的期望与这个常量 c 的和E(ξ+c)=Eξ+c性质3:E(cξ) = cE ξ性质4:随机变量的线性函数的数学期望等于这个随机变量期望的同一线性函数E(k ξ+c)=k E ξ+c3、方差方差的性质性质1:常量的方差等于零.即:设c为常数,则Dc = 0性质2:随机变量与常量之和的方差就等于随机变量的方差本身即:D(X+c)=DX性质3:常量与随机变量乘积的方差,等于常量的平方与随机变量方差的乘积。
即:D(cX )=c2DX性质4:设k ,b为常数,则:D(kX +b)=k2DX性质5:两个独立随机变量和(差)的方差,等于这两个随机变量方差的和。
即:D(X Y ) = DX +DY第二章数理统计的基本概念与抽样分布1、统计量(第一题样本数据期望与方差)预测类似题目可能会有二项分布B(n,p)、0—1分布B(1,p)、均匀分布R[a,b]、指数分布E(λ)、正态分布N(μ,σ2)。
应用数理统计试题
应 用 数 理 统 计 复 习 题1. 设总体X ~ N(20,3),有容量分别为10, 15的两个独立样本,求它们的样本均值之差的绝对值小于 的概率._ _ _ _ 1解:设两样本均值分别为 X,Y ,则X Y 〜N(0,—) 22. 设总体X 具有分布律其中 (01)为未知参数,已知取得了样本值X 1 1,X 2 2,X 3 1,求的矩估计和最大似然估计.解:(1) 矩估计:EX22 2 (1 ) 3(1)2 23令EX X ,得 ?-.6(2) 最大似然估计:得? 5 63.设某厂产品的重量服从正态分布,但它的数学期望和方差2均未知,抽查 10件,测得重量为 X斤i 1,2, ,10。
算岀给定检验水平0.05 ,能否认为该厂产品的平均重量为斤?附:(9)=(10)= (9)= (10)=解:检验统计量为T =|将已知数据代入,得所以接受H 。
4.在单因素方差分析中,因素A 有3个水平,每个水平各做 4次重复实验,完成下列方差分析表,在X - m 0 |s/、n 15.4 - 5.0t 二. __________ 10=2J3.6/ 9F O.95(2,9) 4.26 , F 7.5 4.26,认为因素A是显着的5.现收集了16组合金钢中的碳含量x及强度y的数据,求得x 0.125, y 45.7886丄拓0.3024, L xy25.5218,L yy2432.4566 .(1)建立y关于x的一元线性回归方程??,?x ;(2)对回归系数1做显着性检验(0.05).解:(1)? % 25.5218 84.3975l xx0.3024所以,? 35.2389 84.3975X(2)Q |yy ?|xy 2432.4566 84.3975 25.5218 278.4805拒绝原假设,故回归效果显着.(1)找岀对结果影响最大的因素;(2)找出“算一算”的较优生产条件;(指标越大越好)(3)写出第4号实验的数据结构模型。
应用统计学复习试题(doc 8页)
应用统计学复习试题(doc 8页)1. 统计指数按其所反映现象的特征不同,可以分为:数量指数和质量指数。
2. 统计指数中总指数的计算形式有:综合指数 _和平均数指数 _两种。
3. 总量指标按其反应的时间状况不同,可分为:时期指标和时点指标。
4. 增减1%的绝对值的最简单的计算形式是:.5. 平均发展速度是:各期环比发展速度的几何平均数.6. 测定长期趋势的方法主要有:时距扩大法,移动平均法,数学模型法.7. 动态数列的水平指标是指:发展水平,平均发展水平以及增长量、平均增长量。
8. 动态数列的速度指标是指:发展速度,平均发展速度以及增长速度、平均增长速度。
9.对全国各铁路交通枢纽的货运量、货物种类调查以了解全国铁路货运概况,这种调查属于:重点调查。
1. 在确定统计总体时必须注意( A )。
A. 构成总体的单位,必须是同质的B. 构成总体的单位,必须是不同的C. 构成总体的单位,不能有差异D. 构成总体的单位,必须是不相干的单位2. 有200个公司全部职工每个人的工资资料,如要调查这200个公司职工的工资水平情况,则统计总体为( A )。
A.200个公司的全部职工B.200个公司C.200个公司职工的全部工资D.200个公司每个职工的工资3.指出下列哪个是数量标志( C )A. 健康状况B.学历C.月工资 D.性别4.重点调查中重点单位是指(A )。
A.标志总量在总体中占有很大比重的单位B.具有典型意义或代表性的单位C.那些具有反映事物属性差异的品质标志的单位 D.能用以推算总体标志总量的单位5.下列调查中,调查单位与填报单位一致的是( D )。
A企业设备调查 B人口普查C农村耕地调查D工业企业现状调查6.统计分组的关键在于( D )。
A.确定组中值 B.确定组距C.确定组数 D.选择分组标志和划分各组界限7.次数分布中的次数是指( C )。
A.划分各组的数量标志 B.分组的组数C.分布在各组的单位数 D.标志变异个数8.简单分组与复合分组的区别是( C )。
应用数理统计试题及答案
课程考试(考查)试题卷试卷编号:考试课程:应用数理统计 考试时间:110 分钟 课程代码: 7102551 试卷总分: 100分1(10分)、设总体随机变量2~(150,25)X N ,从中抽取容量为25的简单随机子样,求(1)X 的分布;(2){}140147.5P X <≤。
2(10分)、设12n X X X (,,,)是取自正态总体2N(,)μσ的一个子样,求2μσ及的最大似然估计。
3(10分)、某地为研究农业家庭与非农业家庭的人口状况,独立、随机的调查了50户农业居民和60户农业居民,经计算知农业居民家庭平均每户4.5人,非农业居民家庭平均每户3.75人。
已知农业居民家庭人口分布为21N(,1.8)μ,非农业居民家庭人口分布为22N(,2.1)μ。
试问12μμ-的99%的置信区间。
4(10分)、已知某铁矿区的磁化率服从正态分布2N(,)μσ,现根据容量n 52=的子样可得X 0.132,S 0.0735==。
若给定0.05α=,试求该区磁化率的数学期望的区间估计。
5(10分)、某地区磁场强度2~(56,20)X N ,现有一台新型号的仪器,用它对该地区进行磁测。
抽查41个点,算得平均强度为X 61.1,=。
若标准差不变。
试以显著水平(0.05)α=检验该仪器测量值有无系统偏差?6(10分)、已知维尼纶丝度在正常条件下服从正态分布2~(,0.048)X N μ。
某日抽取5个样品,测得丝度为:1.32,1.55,1.36,1.40,1.44 。
试问生产是否正常(0.05)α=? 7(10分)、给出正交表安排试验的步骤。
8(15分)、对某种药剂是否适应是通过对患者两项指标的测试来判断的。
设总体1X 表示“适应该药剂”和2X 表示“不适应该药剂”。
1X 和2X 分别服从正态分布1212N(,V)N(,V)V μμμμ和,其中,,均未知。
但根据已有的资料估计出 122411V 6214μμ∧∧∧⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,试求(1)Bayes 判别;(2)3X 5⎛⎫= ⎪⎝⎭属哪个总体?(3)错判概率9(15分)、设有8个二维向量,数据如下:试用欧氏距离和最长距离法分类123456782244X X X X 5343-4-2-3-1X X X X 322-3⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,,,,附表1:标准正态分布表9772.09750.0995.09505.09608.06915.0)(296.1575.265.176.15.0x x Φ附表2:t 分布临界值表:α=>α)}()({n t n t p2281.28125.1102622.28331.193060.28595.18025.005.0==ααn附表3:2χ分布临界值表:α=χ>χα)}()({22n n p831.0145.1833.12071.115484.0711.0143.11488.94216.0352.0348.9815.73975.095.0025.005.0====ααααn1、解: (1): 26.3(52,)36X N =;(5分) (2) {}1.86 1.2650.853.8(1.71)(1.14)16.3 6.30.95640.872910.8293P X ⨯-⨯⎛⎫⎛⎫<≤=Φ-Φ=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭=+-=(5分) 2、解:由题意,似然函数为: /1211111(,,,;)()exp[()]i nnx n i ni i L x x x ex θθθθθ-===∏=-∑ ;(3分) 21111ln ln ;ln nni i i i d n L n x L x dx θθθθ===--=-+∑∑(3分)解似然方程:2110ni i nx θθ=-+=∑,(2分) 得最大似然估计值为:11ni i x n θ∧==∑(2分)3、解:由题意知,20.05,12,10, 1.96(4),1.96121.962;138.3,(4)2139X n ασμ==-<=⨯⎛⎫===≈ ⎪⎝⎭0.0250.025查表得:Z 分由于Z 分所以至少需要调查人(2分)4、解010:0.6;:0.60.6,60,0.551.645,0.79 1.64560%H p H p U p n p Z U α∧∧≥<=======->-假设:(2分)其中(3分)计算(3分)可以认为执行环保条例的厂家不低于(2分)5、解:/23.5811141617.5220|212223173.52.551.96 2.55,X T U Z α=+++++⨯++++====<(3分)计算(3分)因为(3分)因此认为两总体差异显著(1分)6、解 :)2(3046.03225.5)2(3225.5,3046.05.120722.366)2(4.1060,5.12072;2.366)2(,6.4161,5.24502,10098,5222,36575)2(,13760,4.20,204,5.49,4952122121221212111分分分分分x y x b y a L L b ny yL x n xL y x n y x L ny x n y x n yxy x Y y X xxxxy ni iyy ni ixx ni i i xy ni ini ini i i ni i ni i+=∴=-=====-=-==-===========-∧-∧∧-==-=--=----===-=-=∑∑∑∑∑∑∑∑7、解:正交表用符号()mp L n 表示(2分),其中L 表示正交表;p 表示试验次数,在表中则表示行数(2分),m 表示最多可安排的因素数,在表中则表示列数(2分);n 表示水平数(2分)。
(完整word版)应用统计学练习题(含答案)
应用统计学练习题第一章绪论一、填空题1.统计工作与统计学的关系是__统计实践____和___统计理论__的关系。
2.总体是由许多具有_共同性质_的个别事物组成的整体;总体单位是__总体_的组成单位。
3.统计单体具有3个基本特征,即__同质性_、__变异性_、和__大量性__。
4.要了解一个企业的产品质量情况,总体是_企业全部产品__,个体是__每一件产品__。
5.样本是从__总体__中抽出来的,作为代表_这一总体_的部分单位组成的集合体。
6.标志是说明单体单位特征的名称,按表现形式不同分为__数量标志_和_品质标志_两种。
7.8.统计指标按其数值表现形式不同可分为__总量指标__、__相对指标_和__平均指标__。
9.指标与标志的主要区别在于:(1)指标是说明__总体__特征的,而标志则是说明__总体单位__特征的。
(2)标志有不能用__数量__表示的_品质标志_与能用_数量_表示的_数量标志_,而指标都是能用_数量_表示的。
10.一个完整的统计工作过程可以划分为_统计设计_、_统计调查_、_统计整理_和__统计分析__4个阶段。
二、单项选择题1.统计总体的同质性是指(A)。
A.总体各单位具有某一共同的品质标志或数量标志B.总体各单位具有某一共同的品质标志属性或数量标志值C.总体各单位具有若干互不相同的品质标志或数量标志D.总体各单位具有若干互不相同的品质标志属性或数量标志值2.设某地区有800家独立核算的工业企业,要研究这些企业的产品生产情况,总体是( D)。
A.全部工业企业B.800家工业企业C.每一件产品D.800家工业企业的全部工业产品3.有200家公司每位职工的工资资料,如果要调查这200家公司的工资水平情况,则统计总体为(A)。
A.200家公司的全部职工B.200家公司C.200家公司职工的全部工资D.200家公司每个职工的工资4.一个统计总体( D)。
A.只能有一个标志B.可以有多个标志C.只能有一个指标D.可以有多个指标5.以产品等级来反映某种产品的质量,则该产品等级是(C)。
应用数理统计试题
37,27,38,则最大艇速的数学期望的无偏估计量值是 33m/s ;最大艇速的均方差
的无偏估计是 3.07m/s 。
6. 设 X1, X 2 ,×××X n 是来自[q ,q +1](q > 0) 上的均匀分布总体的一个样本,则q 的估计量
是
Ù
q
矩=
X
-
1
2
7. 假设检验分为两类,分别为 参数假设检验 和 分布拟合 检验。
-
ln x i
i=1
q
n
q
q
n
4.要求某种元件使用寿命(单位:小时)服从正态分布 N (1000,1002 ) 。现在从某厂生产的
这类元件中抽 25 件,测得其平均使用寿命为 950 小时,试问这个厂生产的这类元件是否合
4
格?(a =0.05)
H
:
0
m
= 1000, H1
:m
¹ 1000
∵U
=|
x
Ù
Ù
Ù
Ù
10. 若q 1 和q2 分别为参数q 的两个独立的无偏估计量,且q 1 的方差是q2 方差的 4 倍,则
A=1 , 5
效。
B=4 5
Ù
Ù
时,Aq 1 + Bq 2 是q 无偏估计量,并且在所有这样的线性估计中最有
二.选择题。(30 分)
1.设总体x 服从正态分布 N (m ,s 2 ), m ,s 2 为未知数,e1,e2 ×××en 是来自总体x 的随机样本,
0,
其他.
(1) 求可估计函数 1 的极大似然估计量。 q
(2) 求可估计函数 1 的有效估计量。 q
n
n
Õ Õ ( 1) L ( q ) =
应用数理统计复习资料
一、填空题1.小概率原理是 .2.在数理统计学中,我们称研究对象的全体为总体母体,组成总体的每个单元为个体。
3.(12,,,n ξξξ )是总体2~(3,5)N ξ的样本,则()(1,2,,)__________i E i n ξ== 3 4.如果总体ξ的样本(n ξξξ,,,21 )满足下列条件:(1)n ξξξ,,,21 相互独立;(2)i ξ(1,2,,i n = )与总体ξ 同分布 ,则称(n ξξξ,,,21 )是总体的简单随机样本. 5.设0.05是假设检验中犯第一类错误的概率,H 0为原假设,则P {拒绝H 0|H 0真}= __0.05__.6.评价估计量好坏的标准最常用的有________无偏性、有效性、一致性7.设总体ξ服从参数为λ(λ>0)的泊松分布,(12,,,n ξξξ )为总体ξ的一个样本,其样本均值5ξ=,则λ的矩估计值λˆ=____5____ 8.由来自正态总体(,1)N μ容量为100的简单随机样本,算得样本均值为10,则未知参数μ的置信度为0.95的置信区间是_(9.804,10.196)_.(0.975 1.96u =)9.由来自正态总体(,1)N μ容量为100的简单随机样本,得样本均值为6,则未知参数μ的置信度为0.95的置信区间是_(5.804,6.196) . (0.975 1.96u =)10.设总体2~(,)N ξμσ,其中2σ未知,现由来自总体ξ的一个样本(129,,,ξξξ )算得样本均值20ξ=,修正样本标准差S =3,并查得0.95(8) 1.86t =,则μ的置信度为0.9的置信区间是 (18.14,21.86) .11.设1234(,,,)ξξξξ为来自总体(0,1)N ξ 的样本,则统计量2212ξξ+ .12.设(1234,,,ξξξξ)为来自总体(0,1)N ξ 的样本,则统计量~22ξ .13.设(1234,,,ξξξξ)为来自总体(0,1)N ξ 的样本,则统计量22221234ξξξξ+++ . 14.设(123,,ξξξ)为来自总体(0,1)N ξ 的样本,则统计量222123ξξξ++ .15.已知一元线性回归方程为ˆˆ3ya x =+,且x =3,y =6,则ˆa = -3 . 16.已知一元线性回归方程为ˆˆ3ya x =+,且x =1,y =6,则ˆa = 3 . 17.已知一元线性回归方程为ˆˆ2ya x =+,且x =2,y =8,则ˆa = 4 . 18.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231136Y k ξξξ=++,则当k =_______________时,Y 是()E ξ的无偏估计量.19.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231155k ηξξξ=++,则当k =_______________时,η是()E ξ的无偏估计.20.设总体ξ的数学期望()E ξ存在,(123,,ξξξ)为总体ξ的样本,1231132k ηξξξ=++,则当k =_______________时,η是()E ξ的无偏估计量.21.12(,,,)n ξξξ 是总体)4,1(~2N ξ的样本,则__________)(1=ξD 1622.设(10)t ξ ,0.95(10)t 表示t 分布的下侧分位数,则{}0.95(10)P t ξ≤= 0.95 . 23.设(15)t ξ ,0.99(15)t 表示t 分布的下侧分位数,则{}0.99(15)P t ξ≤= 0.99 . 24.设2(8)ξχ ,20.95(8)χ表示χ分布的下侧分位数,则{}20.95(8)P ξχ≤= 0.95 .25.设(0,1)N ξ ,0.99μ表示正态分布的下侧分位数,则{}0.99P ξμ≤= 0.99 26.设(nξξξ,,,21 )为总体ξ的一个样本,记11()nr r i i B n ξξ==-∑,则r B 叫做样本(n ξξξ,,,21 )的r 阶 中心矩 . 设(12,,,n ξξξ )为总体ξ的一个样本,记r A =11n ri i n ξ=∑,则r A 叫做样本(12,,,n ξξξ )的r 阶 原点 .二、单项选择题1.设2(,)N ξμσ ,12(,,,)n ξξξ 为总体ξ的一个样本,记ξ=11ni i n ξ=∑,则下列选项中正确的是A .2(,)N ξμσB .(0,1)N ξ C.(N ξμ D . 2(,)N nσξμ2.设(12100,,,ξξξ )为来自总体2(0,5)N ξ 的一个样本,ξ表示样本均值,则ξ~A .(0,5)NB .(0,25)NC .(0,0.05)ND . (0,0.25)N3.设(1,1)N ξ ,(n ξξξ,,,21 )为总体ξ的一个样本,记ξ=11ni i n ξ=∑,则下列选项中正确的是A .(0,1)N ξB .(1,1)N ξC .1(1,)N n ξ D.N ξ 4.在假设检验问题中,犯第二类错误是指A .在0H 不成立的条件下,经检验0H 被拒绝B .在0H 不成立的条件下,经检验0H 被接受C .在0H 成立的条件下,经检验0H 被拒绝D .在0H 成立的条件下,经检验0H 被接受5.设总体2(,)N ξμσ ,12(,,,)n ξξξ 为总体ξ的一个样本,记2211()1nii Sn ξξ==--∑ , 则下列选项中正确的是A .22(1)~(1)n Sn χ-- B .222(1)~()n Sn χσ-C .222(1)~(1)n Sn χσ--D .222~(1)Sn χσ-6. 设总体ξ2(,)N μσ ,(12,,,n ξξξ )为总体ξ的一个样本,记2211()1nii S n ξξ==--∑ ,则在下列各式中,正确的是A. 222(1)(1)n Sn χσ-- B.22(1)(1)n Sn χσ--C. 222(1)()n Sn χσ- D.22(1)()n Sn χσ-7.设总体ξ2(,)N μσ ,(12,,,n ξξξ )为总体ξ的一个样本, 记2211()nii S nξξ==-∑,则下列选项中正确的是A .22~(1)nS n χ- B .222~(1)nS n χσ-C .222(1)~(1)n S n χσ--D .22(1)~(1)n S n χσ--8.设总体ξ2(,)N μσ ,(n ξξξ,,,21 )为总体ξ的一个样本, 记2211()nii S nξξ==-∑,则下列选项中正确的是A .22~()nS t n σ B .22~(1)nS t n σ-C .222~()nS n χσD .222~(1)nS n χσ-9.(,)F m n α表示F 分布的下侧α分位数,则0.95(3,7)F =A .0.95(7,3)FB . 0.951(3,7)FC .0.051(7,3)FD .0.051(3,7)F10. (,)F m n α表示F 分布的下侧α分位数,则正确的是A. 11(,)(,)F n m F n m αα-=B. 111(,)(,)F n m F m n αα--=C. 1(,)(,)F n m F m n αα=D. ),(1),(1n m F m n F αα-=11.(,)F m n α表示F 分布的下侧α分位数,则0.975(10,7)F =A .0.975(7,10)FB .0.9751(10,7)FC .0.0251(7,10)FD .0.0251(10,7)F12.(,)F m n α表示F 分布的下侧α分位数,则0.91(1,2)F =A .0.9(2,1)FB .0.9(1,2)FC .0.1(2,1)FD .0.1(1,2)F13.设总体ξ2(,)N μσ ,2σ为已知,12(,,,)n ξξξ 为总体ξ的一个样本,ξ=11ni i n ξ=∑,2211()1nii Sn ξξ==--∑ ,欲检验假设0010:,:H H μμμμ=≠,则检验用的统计量是Aξ BξC .22101()nii ξμσ=-∑D .220(1)n Sσ-14.设总体ξ(0,1)N ,(126,,,ξξξ)为总体ξ(2)t ,则c =A .1B .2CD .1215.设总体ξ(0,1)N ,(1234,,,ξξξξ)为总体ξ的一个样本,(3)t ,则k =A .2B .3CD16.设总体ξ(0,1)N ,(126,,,ξξξ)为总体ξ(5)t ,则k =A .2B .6CD17.设总体2(,)N ξμσ ,其中μ已知,2σ未知,123(,,)ξξξ是总体ξ的一个样本,则下列各式中不是统计量的是A .3ξB .122ξξ+C .1233ξξξμ++-D . 2221232ξξξσ++18.设(1234,,,ξξξξ)是总体ξ2(,)N μσ 的一个样本,其中μ未知,2σ已知,11ηξμ=-,1222ξξη+=,22212332ξξξησ++=,123444ξξξξμησ+++-=,则1234,,,ηηηη中统计量的个数是A.1B. 2C.3D. 419.设总体ξ2(,)N μσ ,其中μ和2σ均未知,(123,,ξξξ)是总体ξ的一个样本,则下列各式中是统计量的是A .2221232ξξξσ++ B .3ξC .1233ξξξμ++-D .1ξμ-20.设总体ξ2(,)N μσ ,其中μ已知,2σ未知,(n ξξξ,,,21 )是总体ξ的一个样本,则下列各式中不是统计量的是A .1ξB .21ni i ξ=∑C .22122ξξσ+ D . {}12min ,,,n ξξξ21.设总体2(,)N ξμσ ,其中μ未知,1234(,,,)ξξξξ为来自总体ξ的一个样本,则以下关于μ的四个估计112341ˆ()4μξξξξ=+++,2123123ˆ555μξξξ=++,31211ˆ63μξξ=+,411ˆ7μξ=中,μ的无偏估计是A .1ˆμB .2ˆμC .3ˆμD .4ˆμ22.设(123,,ξξξ)是来自总体ξ的一个容量为3的样本,则下列关于()E ξ的无偏估计量中,最有效的估计量是A .123212555ξξξ++B .1231()3ξξξ++ C .123111442ξξξ++D .123124777ξξξ++23.设总体ξ2(,)N μσ ,其中μ未知,(12345,,,,ξξξξξ)为来自总体ξ的一个样本,11234511ˆ(),45μξξξξξ=++++22323ˆ,55μξξ=+31211ˆ,63μξξ=+41234512111ˆ77777μξξξξξ=++++,μ的无偏估计是A .1ˆμB .2ˆμC .3ˆμD .4ˆμ24.设随机变量~(0,1),~(0,1)N N ξη,且ξ与η相互独立,则22ξη服从的分布是A .)2,0(NB .)2(tC .)2(2χD .)1,1(F25.设ξ服从参数为λ的泊松分布()P λ,(12,,,n ξξξ )为总体ξ的一个样本,ξ为样本均值,则λ的矩估计ˆλ= A .ξ B .2ξ C .2ξ D .1ξ26.设(1234,,,ξξξξ)是来自正态总体(0,1)N 的样本,则统计量22122234ξξξξ++服从A .正态分布B .F 分布C .t 分布D .2χ分布27.设总体ξ2(,)N μσ ,μ未知,(n ξξξ,,,21 )为总体ξ的一个样本,ξ=11ni i n ξ=∑,2211()1nii Sn ξξ==--∑ ,欲检验假设22220010:,:H H σσσσ=≠,则检验用的统计量是 Aξ B .220(1)n S σ-C .22101()nii ξμσ=-∑ Dξ三、 计算题1. 若从自动车床加工的一批零件中随机抽取10件, 测得其尺寸与规定尺寸的偏差(单位: um)分别为: 2, 1, -2, 3, 2, 4, -2, 5, 3, 4, 零件尺寸的偏差设为ξ, 假 定2(,)N a ξσ ,试求置信度为0.9的a 的置信区间. (0.95(9) 1.8331t =)2.设总体ξ服从泊松分布()P λ, 即{},1,2,!k P k e k k λλξ-=== ,(1, 1, 1, 0)是总体ξ的一组样本观测值. 求λ的极大似然估计值.3.已知某班的应用数理统计的考试成绩服从正态分布2(,7)N a , 现从该班中抽取了9名同学, 测得成绩为: 75, 78, 80,81, 84, 86, 88, 90, 93. 求置信度为0.95的总体平均值a 的置信区间. )96.1(975.0=μ4.某台机床加工的产品的直径ξ服从正态分布2(,)N a σ, 今从该台机床加工的产品中随机抽取5件, 测得其直径(单位: 毫米)为: 20.1, 20.2, 20.3, 20.8, 21, 试在置信度0.95下, 求2σ的置信区间. )484.0)4(,143.11)4((025.02975.02==χχ5. 设罐头番茄汁中维生素C 含量服从正态分布. 按照规定, 维生素C 的平均含量约为21mg. 现从一批罐头中随机抽取16罐, 计算得23ξ= mg ,标准差 3.9S = mg. 问这批罐头的维生素C 含量是否合格?0.975(0.05,(15) 2.1315)t α==设各个工人的日产量都服从正态分布且方差相同, 试问在显著水平0.05=下, 操作工人之间的差异是否显著? )14.5)6,2((95.0=F(2)检验y 与x 的线性是否显著?0.95(0.05,(1,3)10.01)F α==。
概率与数理统计复习题.doc
概率论与数理统计复习题一、填空题1.设()0.5 , ()0.6 , P A P B A ==, 则()P AB = 。
2.设2(),(),E X D x μσ==由切比雪夫不等式知{}22P X μσμσ-<<+≥ .3.设总体),(~2σμN X ,2σ未知,检验假设00:μμ=H 的检验统计量为 。
4.已知,A , B 两个事件满足条件)()(B A P AB P Y =,且p A P =)(,则=)(B P 。
5.设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用X 表示取出的3件产品中的次品件数,则{}==2X P .6.同时抛掷3枚硬币,以X 表示出正面的个数,则X 的概率分布为 。
7.设随机变量X 的概率密度为⎩⎨⎧<<=,,0,10,2)(其他x x x f 用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则{}==2Y P 。
8.设随机变量X~ B(2,p),若95)1(=≥X P ,则p = .9.设随机变量(,)~(0,1,2,3,0)X Y N ,则(31)D X Y -+= 。
10.若二维随机变量(X , Y )的区域{}22(,)|1D x y x y =+≤上服从均匀分布,则(X ,Y )的密度函数为11.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0,1,1,),(21其他y x x e y x f y则=)(x f X 。
12.设随机变量X 的分布律为=)(2X E 。
13.设随机变量X 的概率密度为⎪⎩⎪⎨⎧+∞<<=其他,01,)(3x x Ax f 则A = 。
14.设)4,1(~N X ,则=)(X E ,=)(X D 。
15.已知离散型随机变量X 服从参数为2的泊松分布,X Y 312-=,则=)(Y D 。
16.从一批零件的毛坯中随机抽取8件,测得它们的重量(单位:kg )为230,243,185,240,228,196,246,200则样本均值=x ,样本方差=2S 。
《应用统计》期末考试复习题.doc
《应用系统》一、单项选择题1、从一幅52张的扑克牌(去掉大小王)中,任意取5张,其中没有K 字牌的概率为( B ) A 、5248 B 、552548C CC 、52548CD 、555248 2、事件A 与B 互不相容,,3.0)(0.4,)(==B P A P 则=)(B A P ( A ) A 、0.3B 、0.12C 、0.42D 、0.73、设B A 、为两个随机事件,则B A -不等于( A ) A 、B AB 、B AC 、AB A -D 、B B A -⋃)(4、设B A 、为两个随机事件,则B A AB ⋃等于( C ) A 、ΦB 、ΩC 、AD 、B A ⋃5、已知事件A 与事件B 互不相容,则下列结论中正确的是( A ) A 、)()()(B P A P B A P +=+ B 、)()()(B P A P AB P ⋅= C 、A 与B ,A 与B 相互独立D 、)(1)(B P A P -=6、已知事件A 与B 相互独立,则下列等式中不正确的是( D ) A 、P(B|A)=P(B)B 、P(A|B)=P(A)C 、P(AB)=P(A)P(B)D 、P(A)=1-P(B)7、设电灯泡使用寿命在2000小时以上的概率为0.15,欲求12个灯泡在使用2000小时以后只有一个不坏的概率,则只需用什么公式即可算出( D ) A 、全概率公式 B 、古典概型计算公式 C 、贝叶斯公式D 、贝努利概型计算公式8、随意地投掷一均匀骰子两次,则两次出现的点数之和为8的概率为( C ) A 、363 B 、364 C 、365 D 、362 9、盒中有10个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有3个红色7个蓝色,现从盒中任取一球,用A 表示“取到蓝色球”,用B 表示“取到玻璃球”,则P(B|A)=( D ) A 、106B 、166 C 、74 D 、114 10、6本中文书和4本外文书,任意在书架上摆放,则4本外文书放在一起的概率是( C ) A 、!10)!6!4( B 、107 C 、!10)!7!4( D 、104 11、设随机变量X 的分布列为)(x F 为其分布函数,则=)2(F ( C )A 、0.2B 、0.4C 、0.8D 、112、在相同条件下,相互独立地进行5次射击,每次射中的概率为0.6,则击中目标的次数X 的概率分布为( A )A 、二项分布B(5,0.6)B 、泊松分布P(2)C 、均匀分布U(0.6,3)D 、正态分布)5,3(2N)(),(),,(y F x F y x F Y X 分别是二维连续型随机变量),(Y X 的分布函数和边缘分布函数,),,(y x f ),(x f X )(y f Y 分别是),(Y X 的联合密度和边缘密度,则一定有( C )A 、)()(),(y F x F y x F Y X =B 、)()(),(y f x f y x f Y X =C 、X 与Y 独立时,)()(),(y F x F y x F Y X =D 、对任意实数y x 、,有)()(),(y f x f y x f Y X =14、设随机变量X 对任意参数满足2)]([)(X E X D =,则X 服从什么分布( B ) A 、正态B 、指数C 、二项D 、泊松15、X 服从参数为1的泊松分布,则有( C ) A 、)0(11}|1{|2>-≥≥-εεεX P B 、)0(11}|1{|2>-≤≥-εεεX PC 、)0(11}|1{|2>-≥<-εεεX PD 、)0(1}|1{|2>≤<-εεεX P16、设二维随机变量),(Y X 的分布列为则==}0{XY P ( D ) A 、121 B 、61 C 、31 D 、32 17、若)(),(,)(),(21X E X E Y E X E 都存在,则下面命题中错误的是( D ) A 、))]())(([(),(Y E Y X E X E Y X Cov --= B 、)()()(),(Y E X E XY E Y X Cov -= C 、),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+D 、),()-,(Y X Cov Y X Cov =18、若D(X),D(Y)都存在,则下面命题中不一定成立的是( C ) A 、X 与Y 独立时,D(X+Y)=D(X)+D(Y) B 、X 与Y 独立时,D(X-Y)=D(X)+D(Y) C 、X 与Y 独立时,D(XY)=D(X)D(Y)D 、D(6X)=36D(X)19、设)()(x X P x F ≤=是连续型随机变量X 的分布函数,则下列结论中不正确的是( A )A 、F(x)是不增函数B 、0≤F(x)≤1C 、F(x)是右连续的D 、F(-∞)=0,F(+∞)=120、每张奖券中尾奖的概率为101,某人购买了20张奖券,则中尾奖的张数X 服从什么分布( A ) A 、二项B 、泊松C 、指数D 、正态21、设θˆ是未知参数θ的一个估计量,若θθ≠)ˆ(E ,则θˆ是θ的( D ) A 、极大似然估计 B 、矩估计C 、有效估计D 、有偏估计22、设总体22),,(~σσu N X未知,通过样本n x x x ,,,21 检验00:u u H =时,需要用统计量( C )A 、nu x u /-0σ=B 、1-/-0n u x uσ=C 、ns u x t /-0=D 、su x t 0-=23、设4321,,,x x x x 是来自总体),(2σu N 的样本,其中u 已知,2σ未知,则下面的随机变量中,不是统计量的是( D ) A 、41-x xB 、u x x -221+C 、4323-x x x +D 、)(14212x x x ++σ设总体X 服从参数为λ的指数分布,其中0>λ为未知参数,n x x x ,,,21 为其样本,∑==ni i x n x 11,下面说法中正确的是( A ) A 、x 是)(x E 的无偏估计 B 、x 是)(x D 的无偏估计 C 、x 是λ的矩估计D 、x 是2λ的无偏估计25、作假设检验时,在哪种情况下,采用t 检验法( B ) A 、对单个正态总体,已知总体方差,检验假设00u u H =: B 、对单个正态总体,未知总体方差,检验假设00u u H =:C 、对单个正态总体,未知总体均值,检验假设2020σσ=:HD 、对两个正态总体,检验假设22210σσ=:H26、设随机变量 ,,,,21n X X X 相互独立,且),,,2,1( n i X i =都服从参数为1的泊松分布,则当n 充分大时,随机变量∑==ni i X n X 11的概率分布近似于正态分布( C )A 、)1,1(NB 、),1(n NC 、)1,1(nN D 、)1,1(2n N 27、设n x x x ,,,21 是来自总体X 的样本,)1,0(~N X ,则∑=ni ix12服从( B )A 、)1-(2n χB 、)(2n χC 、)1,0(ND 、),0(n N28、设总体X 服从),(2σu N ,n x x x ,,,21 为其样本,x 为其样本均值,则212)-(1x x ni i∑=σ服从( A )A 、)1-(2n χB 、)(2n χC 、)1-(n tD 、)(n t29、设总体X 服从),(2σu N ,n x x x ,,,21 为其样本,212)-(1-1x x n s n i i ∑==,则22)1-(σs n 服从( A ) A 、)1-(2n χB 、)(2n χC 、)1-(n tD 、)(n t答案:A30、10021,,,x x x 是来自总体)(22,1~N X 的样本,若)1,0(~,10011001N b x a y x x i i +==∑=,则有( A ) A 、5-,5==b a B 、5,5==b aC 、51-,51==b a D 、51,51==b a 31、对任意事件A,B ,下面结论正确的是( D ) A 、0)(=AB P ,则=A Ø或=B Ø B 、1)(=⋃B A P ,则Ω=A 或Ω=B C 、)()()(B P A P B A P -=-D 、)()()(AB P A P B A P -=32、已知事件A 与B 相互独立,6.0)(,5.0)(==B P A P ,则)(B A P ⋃等于( B ) A 、0.9B 、0.7C 、0.1D 、0.233、盒中有8个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有4个红色4个蓝色,现从盒中任取一球,用A 表示“取到蓝色球”,用B 表示“取到玻璃球”,则=)|(A B P ( D )A 、53B 、83 C 、74 D 、31 34、设321,,A A A 为任意的三事件,以下结论中正确的是( A ) A 、若321,,A A A 相互独立,则321,,A A A 两两独立 B 、若321,,A A A 两两独立,则321,,A A A 相互独立C 、若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立D 、若1A 与2A 独立,2A 与3A 独立,则31,A A 独立35、若)](1)][(1[)(B P A P B A P --=⋃,则A 与B 应满足的条件是( D ) A 、A 与B 互不相容 B 、B A ⊃C 、A 与B 互不相容D 、A 与B 相互独立36、设B A ,为随机事件,且B A ⊂,则AB 等于( C )A 、B A B 、BC 、AD 、A37、设C B A ,,为随机事件,则事件“C B A ,,都不发生”可表示为( A ) A 、C B AB 、BC AC 、C B AD 、C AB38、甲、乙、丙三人独立地破译一密码,他们每人译出的概率都是41,则密码被译出的概率为( C ) A 、41 B 、641 C 、6437 D 、6463掷一颗骰子,观察出现的点数,则“出现偶数”的事件是( D ) A 、基本事件 B 、必然事件 C 、不可能事件 D 、随机事件 若A,B 之积为不可能事件,则称A 与B( B )A 、相互独立B 、互不相容C 、对立D 、A=Ø或B=Ø41、下列函数中可以作为某个二维随机变量的分布函数的是( D ) A 、⎩⎨⎧<+≥+=0,10,0),(1y x y x y x FB 、⎩⎨⎧<+≥+=0,20,1),(2y x y x y x FC 、⎩⎨⎧>>=其他,5.00,0,1),(3y x y x FD 、⎩⎨⎧>>--=--其他,00,0),1)(1(),(4y x e e y x F y x42、设(X,Y)的联合分布列为则下面错误的是( C ) A 、152,101==q p B 、51,301==q p C 、51,151==q p D 、61,151==q p 43、下列函数中,可以作为某个二维连续型随机变量的密度函数的是( B ) A 、21),(,sin ),(R y x x y x f ∈=B 、⎩⎨⎧>>=+-其他,00,0,),()(2y x e y x f y xC 、⎩⎨⎧->>=+-其他,10,0,),()(3y x e y x f y xD 、⎪⎩⎪⎨⎧≤≤≤≤=其他,010,10,21),(4y x y x f44、设(X,Y)的联合分布列为则关于X 的边缘分布列为( A )A 、B 、C 、45、若随机变量X 服从[0,2]上的均匀分布,则=2)]([)(X E X D ( B )A、21 B 、31 C 、121 D 、41 46、某人打靶的命中率为0.8,现独立地射击5次,那么5次中有2次命中的概率为( D ) A 、2.0)8.0(2⨯B 、2)8.0(C 、3225)8.0()2.0(CD 、3225)2.0()8.0(C47、设c b a ,,为常数,b X E a X E ==)(,)(2,则=)(cX D ( C ) A 、)(2b ac -B 、)(2a b c -C 、)(22a b c-D 、)(22b a c -48、设),(~2σu N X i 且i X 相互独立,n i ,,2,1 =,对任意∑==>ni i X n X 11,0ε所满足的切比雪夫不等式为( B )A 、22}|{|εσεn nu X P ≥<-B 、221}|{|εσεn u X P -≥<-C 、221}|{|εσεn u X P -≤≥-D 、22}|{|εσεn u X P ≥<-49、若随机变量X 的方差存在,由切比雪夫不等式可得≤≥-}1|)({|X E X P ( A ) A 、)(X DB 、)(1X DC 、)(XD εD 、)(1X D ε若随机变量X 服从二项分布B(n,p),且E(X)=6,D(X)=3.6,则有( A )A 、p=0.4,n=15B 、p=0.6,n=15C 、p=0.4,n=10D 、p=0.6,n=10 51、设总体X 服从泊松分布, 2,1,0,!}{===-k e k k XP kλλ,其中0>λ为未知参数,n x x x ,,,21 为X 的一个样本,∑==ni i x n x 11,下面说法中错误的是( D )A 、x 是)(x E 的无偏估计B 、x 是)(x D 的无偏估计C 、x 是λ的矩估计D 、x 是2λ的无偏估计52、总体X 服从正态分布)1,(u N ,其中u 为未知参数,321,,x x x 为样本,下面四个关于u 的无偏估计中,有效性最好的是( D ) A 、213132x x + B 、321412141x x x ++ C 、316561x x + D 、321313131x x x ++ 53、样本n x x x ,,,21 取自总体X ,且2)(,)(σ==X D u X E ,则总体方差2σ的无偏估计是( B )A 、21)(1x x n n i i -∑=B 、21)(11x x n ni i --∑= C 、211)(11x x n n i i --∑-= D 、211)(1x x n n i i -∑-=54、对总体),(~2σu N X的均值u 作区间估计,得到置信度为0.95的置信区间,意义是指这个区间( C )A 、平均含总体95%的值B 、平均含样本95%的值C 、有95%的机会含u 的值D 、有95%的机会含样本的值设3621,,,x x x 为来自总体X 的一个样本,)36,(~u N X ,则u 的置信度为0.9的置信区间长度为( A )(645.105.0=u )A 、3.29B 、1.645C 、u 2D 、4.93556、设总体22),,(~σσu N X未知,通过样本n x x x ,,,21 检验00:u u H =时,需要用统计量( C )A 、nu x u /0σ-=B 、1/0--=n u x uσC 、ns u x t /0-=D 、su x t 0-=57、对假设检验问题0100:,:u u H u u H ≠=,若给定显著水平0.10,则该检验犯第一类错误的概率为( B ) A 、0.05B 、0.10C 、0.90D 、0.09558、从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若想知这批零件的直径是否符合标准直径5cm ,因此采用了t 检验法,那么,在显著性水平α下,接受域为( A ) A 、)99(||2αt t ≤B 、)100(||2αt t <C 、)99(||2αt t ≥D 、)100(||2αt t ≥59、总体服从正态分布),(2σu ,其中2σ已知,随机抽取20个样本得到的样本方差为100,若要对其均值u 进行检验,则用( A )A 、u 检验法B 、2χ检验法 C 、t 检验法 D 、F 检验法 60、下列说法中正确的是( D )A 、如果备择假设是正确的,但作出拒绝备择假设结论,则犯了拒真错误B 、如果备择假设是错误的,但作出接受备择假设结论,则犯了取伪错误C 、如果原假设是错误的,但作出接受备择假设结论,则犯了取伪错误D 、如果原假设是正确的,但作出接受备择假设结论,则犯了拒真错误二、判断题(本大题共60小题,每小题2分,共120分)1、若事件B A 、互不相容,则A B A P =⋃)(。
应用数理统计复习题
一、 填空:1、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛-4.01.03.02.05101,则E (2-3ξ)=( 1.4 )2、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛-25.013.02.005.037.073101,则η=2+ξ的分布列是(⎪⎪⎭⎫ ⎝⎛25.013.02.005.037.095321) 3、已知A ,B 是样本空间Ω中的两事件,且Ω={1,2,3,4,5,6,7,8},A={2,4,6,8},B={2,3,4,5,6,7},则A+B={ 2,3,4,5,6,7,8 }4、由事件A 与B 同时发生构成的事件,称为事件A 与B 的积事件,记为( AB )5、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛2.05.015.01.005.091.74.532,则方差D ξ=( 3.8454 )6、由事件A 与B 至少发生一个构成的事件,称为事件A 与B 的和事件,记为( A+B )7、在数理统计中,把( 考察对象)的全体称为总体,而把( 构成总体的每个成员 )称为个体。
8、已知甲、乙射手的命中率分别为0.77与0.84,它们各自独立地向同一目标射击一次,则目标被击中的概率是( 0.9632 )9、对于任意事件A ,有P (A )+P (A )=( 1 )10、已知随机变量ξ有分布列⎪⎪⎭⎫⎝⎛--3.01.04.02.03014,则P{-3<ξ≤3}=( 0.8 )11、两点分布b(1,p)的数学期望是( p )方差是( pq )12、一口袋内有11个黑球、7个白球,不放回地从中任抽2次,每次取出1球。
记事件A=“第一次取出黑球”,B=“第二次取出黑球”,则P (A B)=( 10/17 )13、分布函数的基本性质中:F (-∞)=( 0 );F (+∞)=( 1 )14、已知A ,B 是样本空间Ω中的两事件,且Ω={1,2,3,4,5,6,7,8},A={2,4,6,8},B={2,3,4,5,6,7},则A-B={ 8 }15、假设独立随机变量ξ与η的方差D ξ与D η都存在,则有D (ξ+η)=(D ξ+D η)16、已知R.V.ξ~⎪⎪⎭⎫ ⎝⎛-25.013.02.005.037.073101,则η=ξ2+3的分布列是( ⎪⎪⎭⎫ ⎝⎛25.013.057.005.0521243)17、假设R.V.ξ存在方差D ξ,则对于任意常数k,c,有D (k ξ+c )=( k 2D ξ )18、把一枚不对称的硬币投掷一次,若出现正面,则再掷一次;…。
应用数理统计题目
应用数理统计题目
应用数理统计题目:
1、利用抽样统计分析研究某市青少年参与文化活动的情况,确定青少
年参与文化活动需求。
2、探讨网络社区中用户活跃度与用户性别、地域、年龄等(多元面向)相关性及其影响。
3、围绕学校学生对宿舍质量评价指标研究,实现对学校宿舍质量控制
和合理评价。
4、研究一批毕业生的职业发展,以了解毕业生的职业发展情况及其原因。
5、以某市的某类住宅为研究对象,探讨房价背景下不同人群的消费行
为与消费偏好。
6、运用相关性及回归分析,深入探讨市场销售对客户满意度的影响。
7、基于时间序列分析方法,研究某市经济发展趋势变化。
8、研究行业动态与投资者及机构投资决策之间的关系和影响。
9、利用卡方检验研究城乡居民满意度指标相关性分析。
10、研究外贸企业国际市场拓展中的风险和机遇,提出科学有效的运
营策略。
数理统计复习题
3.
设 X 1 , X 2 , , X 5 是总体 X ∼ N (0,1) 的样本. (1) 试确定 c1 , d1 ,使得 c1 ( X 1 + X 2 ) 2 + d1 ( X 3 + X 4 + X 5 ) 2 ~ χ 2 (n) ,并求出 n; (2) 试确定 c2 ,使得 c2 ( X 12 + X 22 ) / ( X 3 + X 4 + X 5 ) 2 ~ F ( m, n) ,并求出 m, n.
(2) 设正常生产时的零件平均高度为 30 毫米( H 0 : μ = 30 毫米) , 试在显著性水平为 5%的条件下, 检验现在的样品是否为正常. 3. 某工厂生产的固体燃料推进器的燃烧率服从正态分布 N ( μ ,σ 2 ) , μ = 40cm / s , σ = 2cm / s .现在 用新方法生产了一批推进器.从中随机取 n=25 只,测得燃烧率的样本均值为 x = 41.25cm / s .设 在新方法下总体均方差仍为 2cm / s ,问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有 显著的提高?取显著性水平 α = 0.05 . 4. 已知我国 14 岁女生的平均体重为 43.38kg, 从该年龄的女生中随机抽取 10 名运动员测
其体重,得 39 36 43 43 40 46 45 45 42 41 经计算 x = 42, s 2 = 37.95 ,问这些运动员的平均体重与 14 岁女生的平均体重的差异是 否显著?( α = 0.05) (14 岁女生的体重 X ~ N ( μ , σ 2 ) ). 5. 测量 20 位青年男子和 20 位老年男子的血压值, 青年男子:总体 X ~ N ( μ1 , σ 1 ) 经算 x = 128, s1 = 193.3684 ,
(完整word版)北航数理统计大作业1-线性回归分析
应用数理统计作业一学号:姓名:电话:二〇一四年十二月国内生产总值的多元线性回归模型摘要:本文首先选取了选取我国自1978至2012年间的国内生产总值为因变量,并选取了7个主要影响因素,进一步利用统计软件SPSS对以上数据进行了多元逐步线性回归。
从而找到了能反映国内生产总值与各因素之间关系的“最优”回归方程.然后利用多重线性的诊断找出存在共线性的自变量,剔除缺失值较多的因子.再次进行主成份线性回归分析,找出最优回归方程。
所得结论与我国当前形势相印证。
关键词:多元线性回归,逐步回归法,多重共线性诊断,主成份分析目录0符号说明 (1)1 介绍 (2)2 统计分析步骤 (3)2。
1 数据的采集和整理 (3)2。
2采用多重逐步回归分析 (7)2.3进行共线性诊断 (17)2。
4进行主成分分析确定所需主成份 (24)2。
5进行主成分逐步回归分析 (27)3 结论 (30)参考文献 (31)致谢 (32)0符号说明1 介绍文中主要应用逐步回归的主成份分析方法,对数据进行分析处理,最终得出能够反映各个因素对国内生产总值影响的最“优”模型及线性回归方程.国内生产总值是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标.它不但可反映一个国家的经济表现,还可以反映一国的国力与财富。
2012年1月,国家统计局公布2011年重要经济数据,其中GDP增长9.2%,基本符合预期。
2012年10月18日,统计显示,2012年前三季度国内生产总值353480亿元,同比增长7.7%;其中,一季度增长8.1%,二季度增长7。
6%,三季度增长7.4%,三季度增幅创下2009年二季度以来14个季度新低。
中国的GDP核算历史不长,上世纪90年代之前通常用“社会总产值”来衡量经济发展情况。
上世纪80年代初中国开始研究联合国国民经济核算体系的国内生产总值(GDP)指标。
应用数理统计试题库总结
应用数理统计复习题(2010)一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12XF(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 2.1 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n S n S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
应用数理统计复习题(2010)
应用数理统计复习题(2011)一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X,~12X。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ 。
5.设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ 令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 8.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为 。
(2)方差分析中总离差平方和的自由度为 。
(3)上表中的第三列表示 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
表3 最大积雪深度与灌溉面积的10年观测数据则y 关于x 的线性回归模型为 x y813.1356.2ˆ+= 10设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
11设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 。
应用统计学试题与答案(doc 7页)
应用统计学试题与答案(doc 7页)点单位D.使用部分单位的指标数值去推断和估计总体的指标数值E.通常会产生偶然的代表性误差,但这类误差事先可以控制或计算2.某种产品单位成本计划比上年降低5%,实际降低了4%,则下列说法正确的是()A.单位成本计划完成程度为80%B. 单位成本计划完成程度为101.05%C.没完成单位成本计划D.完成了单位成本计划E.单位成本实际比计划少降低了1个百分点3.数据离散程度的测度值中,不受极端数值影响的是()A.极差B.异众比率C.四分位差D.标准差E.离散系数4.下列指标属于时点指标的是()A.增加人口数B.在校学生数C.利润额D.商品库存额E.银行储蓄存款余额5.两个变量x与y之间完全线性相关,以下结论中正确的是()A.相关系数|r|=1B.相关系数|r|=0C.估计=0标准误差Sy=1 E.判定系数r2=1 F.判定 D.估计标准误差Sy系数r2=0四、填空题(每空1分,共10分)1.有10个人的年龄资料:10,20,15,20,25,30,15,20,30,25岁。
由该资料确定的中位数为,众数为,极差为。
2.平均指标反映总体分布的趋势,标志变异指标反映总体分布的趋势。
3.某地国民生产总值1988年比1980年增长了1倍,若计划到2005年国民生产总值将达到1980年的5倍,则1988年以后的17年间与1988年相比总增长速度应为 %,年平均增长速度应为 %。
4. 某地本年与上年相比粮食总产量增长了10%,粮食作物播种面积增加了7%,则粮食作物单位面积产量增长了 %。
5. 相关系数r是说明两变量之间的方向和紧密程度的统计指标,其取值范围是。
五、简答题(5分)加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。
六、计算题(共60分)1.某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:每包重量(克)包数(包)148—149 149—150 150—151 151—152 10 20 50 20合计100要求:(1)计算该样本每包重量的均值和标准差;(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);(3)在α=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364);(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);(写出公式、计算过程,标准差及置信上、下限保留3位小数)(24分)2.某商业企业商品销售额1月、2月、3月分别为216,156,180.4万元,月初职工人数1月、2月、3月、4月分别为80,80,76,88人,试计算该企业1月、2月、3月各月平均每人商品销售额和第一季度平均每月人均销售额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用数理统计复习题一、填空题1.设总体212~(,),,,...,n X N X X X μσ为样本,样本均值及样本方差分别为,221111,()n n i i i i X X S X X n n ====-∑∑,设112,,...n n X X X X +与独立同分布,则统计量~Y =。
2.设21~(),~T t n T 则。
3.设总体X 的均值为μ,12,,...,n X X X 为样本,当a = 时,E 21()nii Xa =-∑达到最小值。
4. 设总体212~(,),,,...,n X N X X X μσ为样本,1||,()nii D XE D μ==-=∑则5.设总体X 的均值和方差分别为a , b , 样本均值及样本方差分别为221111,()n n i i i i X X S X X n n ====-∑∑,则 E (S 2 )= 。
6.在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值 X 落在4与6之间的概率 =6. 设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。
7. 设总体212~(,),,,...,n X N X X X μσ为样本,12211ˆ()n i i i c XX σ-+==-∑,若2ˆσ为2σ的无偏估计,则 c = 。
8. 设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
9. 设总体212~(,),,,...,n X N X X X μσ为样本,μ未知,σ2已知,为使μ的置信度为1-α的置信区间长度不超过L ,则需抽取的样本的容量n 至少为 。
10. 设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2未知,则σ2的置信度为1-α的置信区间为 。
11设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 12. 设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
13. 设n X X ,,1 是来自正态总体),(2σμN 的样本,2,σμ均未知,05.0=α. 则μ的置信度为α-1的置信区间为 ;若μ为已知常数,则检验假设,::20212020σσσσ<↔≥H H (20σ已知),的拒绝域为 。
14.设X 服从p 维正态),(∑μp N 分布,是来自n X X X ,,,21 X 的样本,则∑的最小方差无偏估计量=∑ˆ ;μ-X 服从 分布。
15设(X 1,…,X n )为来自正态总体),(~∑μp N X 的一个样本,∑已知。
对给定的检验水平为α,检验假设0100::μμμμ≠↔=H H ,(0μ已知)的统计量为 拒绝域为 。
16.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为。
(2)方差分析中总离差平方和的自由度为。
(3)上表中的第三列表示。
17.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
表3 最大积雪深度与灌溉面积的10年观测数据则y关于x的线性回归模型为二、简述题1.检验的显著性水平及检验的p值。
2.参数的点估计的类型、方法、评价方法。
3.假设检验的思想、推理依据及参数假设检验的步骤。
4.方差分析的目的及思想(结合单因素)。
5.简述正交实验设计中的数据分析方法 6主成分分析。
7.典型相关分析。
8.贝叶斯判别法。
9.聚类,分类。
10.线性回归分析的主要内容及应用中注意的问题。
11.系统聚类法的算法思想及步骤。
12.如何看待多元统计方法在实际数据处理中的作用与地位。
三、计算及证明题1.设总体X 的概率密度为1,0(,)00x x e x f x x αλαλλ--⎧>=⎨≤⎩,其中λ>0是未知参数,α>0是已知常数,12,,...,n X X X 为样本,求λ的矩估计和极大似然估计。
2. 设总体X 的概率密度为22(),0(,)0x x f x θθθθ-⎧<<⎪=⎨⎪⎩其它,其中θ>0是未知参数,12,,...,n X X X 为样本,求1)θ极大似然估计,2)总体均值μ的极大似然估计。
3. 设总体X 的概率密度为233,0(,)0x x f x θθθ⎧<<⎪=⎨⎪⎩其它,其中θ>0是未知参数, 12,X X 为样本。
1)证明:11221227(),(,)36T X X T max X X =+=都是θ的无偏估计。
2)比较12,T T 的有效性。
4. 设总体X 服从参数为λ的泊松分布,对于假设01:0.5,:2H H λλ==,0H 的拒绝域为12{3}D X X =+≥,试求此检验问题犯第一类错误(弃真)及犯第二类错误(取伪)的概率。
5.考虑一元线性回归模型: 01,1,2,..i i i Y X i n ββε=++=,其中i ε相互独立且服从2(0,)N σ分布,求参数01,ββ的极大似然估计,并证明它们是无偏估计。
6. 考虑一元线性回归模型:01,1,2,..i i i Y X i n ββε=++=,其中i ε相互独立且服从2(0,)N σ分布,记11122121ˆˆ{...,,...,}/n nnA c Y c Y c Y c c c E βββ==+++=为常数,且,求A 中使得1ˆ()D β最小的1ˆβ 7. 某种产品在生产时产生的有害物质的重量(单位:克)Y 与它的燃料消耗量(单位:千① 求经验线性回归方程;② 试进行线性回归的显著性检验(01.0=α); ③ 试求x 0=340时Y 0的预测区间(05.0=α). ④若要求有害物质的重量在250~280um 之间,问燃料消耗量应如何控制?(05.0=α) 8在某锌矿的南北两支矿脉中,各抽取样本容量分别为10与9的样本分析后, 算得其样本含锌(%)平均值及方差如下: 南支:1x =0.252,21S =0.140,1n =10 北支:2x =0.281,22S =0.182,2n =9若南北两支锌含量均服从正态分布,且两样本相互独立,在α=0.05的条件下, 问南北两支矿脉含锌量的平均值是否有显著差异?已知:2439.0)8,9(975.0=F ,3572.4)8,9(025.0=F ,1098.2)17(025.0=t9设由一组观测数据(,)1,2,,i i x y i n =,,计算得到150,200x y ==,25,75xx xy l l ==,求y 对x 的线性回归方程。
10设有三台机器A 、B 、C 制造同一种产品。
对每台机器观察5天的日产量。
记录如下(单位:件) A : 41,48, 41, 57, 49 B : 65,57, 54 ,72, 64 C : 45,51, 48, 56, 48 试问:在日产量上各台机器之间是否有显著差异?(05.0=α), 已知:79.3)12,2(05.0=F11设),(i i x Y 满足线性模型 i i i x x Y εββ+-+=)(10, ),0(~2σεN i ,n i ,2,1=,∑==ni i X n x 11,诸i ε相互独立。
试求(1)参数T ),(10βββ=的最小二乘估计T )ˆ,ˆ(ˆ10βββ=; (2)10ˆ,ˆββ的方差;(3)2σ的无偏估计。
12单因素方差分析的数学模型为i j i j i i j i n j r i N X ,...,2,1;,...,2,1),,0(~,2==+=σεεμ,n n i ni =∑=1。
诸j i ε相互独立。
(1)试导出检验假设r r H H μμμμμμ,...,,::211210↔=== 中至少由两个不相等的统计量。
(2)求2σ的一个无偏估计量。
(3)设μμμμ====r 21,∑==in j ji i i Xn X 11,求常数C 使统计量∑=-=ri i X C 1||ˆμσ为σ的无偏估计.13车间里有5名工人,3台不同型号的机器生产同一种产品,现在让每个工人轮流在3台机试问这5位工人技术之间和不同型号机器之间对产量有无显著影响?)84.3)8,4(,46.4)8,2(,05.0(05.005.0===F F α14设有线性模型77665544332211332εεεεεεε+-=++=+-=++=+-=+-=++=b a Y b a Y b a Y b a Y b a Y b a Y b a Y其中7654321,,,,,,εεεεεεε相互独立且同服从正态),0(2σN 分布,(1)试求的最小二b a ,乘估计量b aˆ,ˆ; (2)试求b a Yˆ5ˆˆ+=的概率分布。
15某数理统计教师随机地选取18名学生把他们分为3组,每一组各采用一种特殊的教学方假设学生成绩服从正态分布,试问:在显著水平05.0=α下这三种教学方法的教学效果有无显著差异?哪种教学效果最好?注:70.2)15,2(05.0=F(注:可编辑下载,若有不当之处,请指正,谢谢!)。