北航2010应用数理统计考试题及参考解答

合集下载

北航数理统计大作业2-聚类与判别分析讲解

北航数理统计大作业2-聚类与判别分析讲解

应用数理统计作业二学号:姓名:电话:二〇一四年十二月对NBA球队的聚类分析和判别分析摘要:NBA联盟作为篮球的最高殿堂深受广大球迷的喜爱,联盟的30支球队大家也耳熟能详,本文选取NBA联盟30支球队2013-2014常规赛赛季场均数据。

利用spss软件通过聚类分析对27个地区进行实力类型分类,并利用判断分析对其余3支球队对分类结果进行验证。

可以看出各球队实力类型与赛季实际结果相吻合。

关键词:聚类分析,判别分析,NBA目录1. 引言 (4)2、相关统计基础理论 (5)2.1、聚类分析 (5)2.2,判别分析 (6)3.聚类分析 (7)3.1数据文件 (7)3.2聚类分析过程 (9)3.3 聚类结果分析 (11)4、判别分析 (12)4.1 判别分析过程 (12)4.2判别检验 (17)5、结论 (20)参考文献 (21)致谢 (22)1. 引言1896年,美国第一个篮球组织"全国篮球联盟(简称NBL)"成立,但当时篮球规则还不完善,组织机构也不健全,经过几个赛季后,该组织就名存实亡了。

1946年4月6日,由美国波士顿花园老板沃尔特.阿.布朗发起成立了“美国篮球协会”(简称BAA)。

1949年在布朗的努力下,美国两大篮球组织BAA和NBL合并为“全国篮球协会”(简称NBA)。

NBA季前赛是 NBA各支队伍的热身赛,因为在每个赛季结束后,每支球队在阵容上都有相当大的变化,为了让各队磨合阵容,熟悉各自球队的打法,确定各队新赛季的比赛阵容、同时也能增进队员、教练员之间的沟通,所以在每个赛季开始之前,NBA就举办若干场季前赛,使他们能以比较好的状态投入到漫长的常规赛的比赛当中。

为了扩大NBA在全球的影响,季前赛有约三分之一的球队在美国以外的国家举办。

从总体上看,NBA的赛程安排分为常规赛、季后赛和总决赛。

常规赛采用主客场制,季后赛和总决赛采用七场四胜制的淘汰制。

[31]NBA常规赛从每年的11月的第一个星期二开罗,到次年的4月20日左右结束。

应用数理统计复习题及答案()

应用数理统计复习题及答案()

应用数理统计复习题(2010)一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。

当常数C = 1/3 时,CY 服从2χ分布。

2 设统计量)(~n t X ,则~2X F(1,n) ,~12XF(n,1) 。

3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。

4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。

对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。

5.设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 2.1 。

6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n Sn S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。

7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。

8.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。

(2)方差分析中总离差平方和的自由度为 7 。

(3)上表中的第三列表示 A B ⨯交互作用 。

9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。

北航应用数理统计大作业多元线性回归

北航应用数理统计大作业多元线性回归

多元线性回归分析摘要:本文查找2011年《中国统计年鉴》,取我国31个省市自治区直辖市2010年的数据,利用SPSS软件对影响居民消费的因素进行讨论构造线性回归模型。

并对模型的回归显著性、拟合度、正态分布等分别进行检验,最终得到最优线性回归模型,寻找影响居民消费的各个因素。

关键字:回归分析;线性;相关系数;正态分布1. 引言变量与变量之间的关系分为确定性关系和非确定性关系,函数表达确定性关系。

研究变量间的非确定性关系,构造变量间经验公式的数理统计方法称为回归分析。

回归分析是指通过提供变量之间的数学表达式来定量描述变量间相关关系的数学过程,这一数学表达式通常称为经验公式。

一方面,研究者可以利用概率统计知识,对这个经验公式的有效性进行判定;另一方面,研究者可以利用经验公式,根据自变量的取值预测因变量的取值。

如果是多个因素作为自变量的时候,还可以通过因素分析,找出哪些自变量对因变量的影响是显著的,哪些是不显著的。

回归分析目前在生物统计、医学统计、经济分析、数据挖掘中得到了广泛的应用。

通过对训练数据进行回归分析得出经验公式,利用经验公式就可以在已知自变量的情况下预测因变量的取值。

实际问题的控制中往往是根据预测结果来进行的,如在商品流通领域,通常用回归分析商品价和与商品需求之间的关系,以便对商品的价格和需求量进行控制。

本文查找2011年《中国统计年鉴》,取我国31个省市自治区直辖市2010年的数据,利用SPSS软件对影响居民消费的因素进行讨论构造多元线性线性回归模型。

以探求影响居民消费水平的各个因素,得到最优线性回归模型。

随后,我们对模型的回归显著性、拟合度、正态分布等分别进行检验,以考察线性回归模型的可信度。

本文将分为5章进行论述。

在第2章,我们介绍多元线性回归模型的概念。

第3章,我们进行模型的建立与数据的收集和整理。

我们在第4章对数据进行处理,得出多元线性回归模型,并对其进行检验。

在第5章,我们进行总结。

北航数理统计期末考试题

北航数理统计期末考试题

材料学院研究生会学术部2011年12月2007-2008学年第一学期期末试卷一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。

三、(8分)设总体X 的密度函数为其中1α>-,是位置参数。

x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。

四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。

x 1,x 2,…,x n 是来自总体X 的简单样本。

(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。

五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。

为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。

基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。

应用数理统计课后答案

应用数理统计课后答案

(n

2)
1
1 n

(x0
x)2 lxx
)
所以 当 0.05 时,有:

(
x0
)

ˆ
t 12
(n

2)
1
1 n

(
x0
lxx
x
)
2
0.466 2.2281
1

1 12

(225 205)2 14300
1.09455
即得 所求预测区间为: ( 77.5855, 79.7746) 。

5852 15
832
S A

3 i1
1 5
Ti2

T2 n
23430.6
5852 15
615.6
Se ST S A 832 615 .6 216 .4
所以
F

SA Se
(r 1) (n r)

615.6 (3 1) 216.4 (15 3)
4-47. 甲、乙两个车间生产同一种产品,要比较这种产品的某项指标波动的情况,从这两个
车间连续 15 天取得反映波动大小的数据如下表:
甲 1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 1.57
乙 1.21 1.31 0.99 1.59 1.41 1.48 1.31 1.12 1.60 1.38 1.60 1.84 1.95
(n1k) (k)
a(k )
a(k)[x(n1k) x(k)]
1
10.18 10.82
2

北航数理统计期末考试题

北航数理统计期末考试题

材料学院研究生会学术部2011 年12 月2007-2008学年第一学期期末试卷一、(6 分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( , 2) 的样本,令2(x1 x2)T(x3 x4)2 (x5 x6)2 ,试证明T 服从t-分布t(2)二、( 6 分, B 班不做 ) 统计量F-F(n,m) 分布,证明1的 (0< <1)的分位点x 是1。

F F1 (n,m) 。

三、(8分)设总体X 的密度函数为其中1,是位置参数。

x1,x2,⋯,x n是来自总体X 的简单样本,试求参数的矩估计和极大似然估计。

四、(12分)设总体X 的密度函数为1xexp ,xp(x; )0 , 其它其中, 已知,0, 是未知参数。

x1,x2,⋯,x n 是来自总体X 的简单样本。

1)试求参数的一致最小方差无偏估计;2) 是否为的有效估计?证明你的结论。

五、(6分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( 1, 12) 的简单样本,y1,y2,⋯,y n 是来自正态总体N( 2, 22) 的简单样本,且两样本相互独立,其中1, 12, 2, 22是未知参数,1222。

为检验假设H0 :可令z i x i y i, i 1,2,..., n ,1 2 ,1 2, H1 : 1 2,则上述假设检验问题等价于H0 : 1 0, H1: 1 0,这样双样本检验问题就变为单检验问题。

基于变换后样本z1,z2,⋯,z n,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6 分,B 班不做)设x1,x2,⋯,x n是来自正态总体N( 0, 2) 的简单样本,0 已知,2未知,试求假设检验问题H0: 202, H1: 202的水平为的UMPT。

七、(6 分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6 分)设方差分析模型为总离差平方和试求E(S A ) ,并根据直观分析给出检验假设H0 : 1 2 ... P 0的拒绝域形式。

北航2011《应用数理统计》试题及参考答案

北航2011《应用数理统计》试题及参考答案

北航2011《应用数理统计》考试题及参考解答一、填空题(每小题3分,共9分)1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ .解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 二、单项选择题(每小题3分,共9分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)X N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦. 另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .。

北航2010-2015年研究生数值分析报告期末模拟试卷与真题

北航2010-2015年研究生数值分析报告期末模拟试卷与真题

北航2010-2015年研究生数值分析报告期末模拟试卷与真题数值分析模拟卷A一、填空(共30分,每空3分)1 设-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________.3 设≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则?=10)(dx x xq k ________,=)(2x q ________.5 设=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f , (1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1)证明R x ∈?0均有?∞→=x x n x lim (?x 为方程的根);(2)取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分)设有常微分方程的初值问题=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分)已知方程组b Ax =,其中= ??=21,13.021b A ,(1)试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性.(2)若有迭代公式)()()()1(b Ax a x x k k k ++=+,试确定一个的取值围,在这个围任取一个值均能使该迭代公式收敛.七、(8分)方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明 .其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟卷B填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字;2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知???? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:?-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________.8. 求积公式)]2()1([23)(30f f dx x f +≈?是否是插值型的__________,其代数精度为___________。

《应用数理统计》习题解答

《应用数理统计》习题解答

2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。

北航数学分析期中考题-答案

北航数学分析期中考题-答案

北京航空航天大学2010-2011 学年第一学期期中《工科数学分析(I) 》试卷班号学号姓名成绩2010年11月25日一 计算下面各题(满分40分,每个题目5分)1) 计算极限1x x e ®-解:()2lim11sin 1x x x e xx x =-++ ………….. (3分)=12……………(2分)2) 求下面无穷小的阶)x -?. 解:1sin 1x 骣÷ç+÷ç÷ç桫=(3分)01sin 1cos lim 2x x x x®骣÷ç+÷ç÷ç桫= 为1阶 (2分) 3) 假设()()cos sin 0xf x x p =<< 求()'f x .解:()cos cos lnsin sin xx x f x e == ……………….. (2分)()2''c o sl n s in c o s l n s i n2c o sc o s s i n l n s i n s i n c o s s i n s i n l n s i n s i n x x x x x x f e e x x x x xx x x 骣÷ç==-+÷ç÷ç÷桫骣÷ç=-+÷ç÷÷ç桫……….(3分)4) 假设sin ,cos .x t t y t t ì=ïïíï=ïî求dydx.解:dy dy dx dx dtdt= (2分)cos sin cos sin t t tt t t+=- (3分)5) 假设()()223,x f x x x e -=++求()().n f x解:()()()()()()()()()()()()()()()()2'10212''22223232323n n x n n x x nnn x nfx x x e C xx eCx x eCxx e------轾=++犏臌=++++++++(3分)()()()()()()()()212221231221112133nx n n x x nx x x e n x e n n e e x n x n n ------=-+++-++--轾=---+-+犏臌(2分)6) 求()ln f x x =在2x =的n 阶Taylor 展开,并写出peano 余项.解:()()2ln ln 22ln 2122ln 2ln 12x f x x x x 轾-轾犏==-+=+臌犏臌轾-犏=++犏臌 (2分)()()1122ln 2ln 1ln 21222knk nk x x o x -=轾骣--÷ç犏=++=+-+-÷ç÷ç犏桫臌å (3分) 7) 假设函数()x f x e =, 判断函数的凹凸性.解()()''''x x f x ee == (4分)凸函数 (1分)8)已知()1sin ,0,0,0.m x x f x m x x ìïï¹ï=íïï=ïî为正整数. 求: m 满足什么条件,函数在0x =连续,m 满足什么条件,函数在0x =可导.解:1m ³,函数在0x =连续 (2分)2m ³,函数在0x =可导数 (3分)二 证明下面问题(10分)假设1110,0,,2n n nx x x x s s +骣÷ç÷>>=+ç÷ç÷桫 证明数列{}n x证明: 1) 数列单调递减有下界(5分)111121110222n n n n n n n n n nn x x x x x x x x x x x s s s +++骣÷ç÷=+蕹ç÷ç÷桫骣骣骣鼢珑鼢-=+-=-?=珑鼢珑鼢桫桫2)分)11lim 2n n x b b b bs +骣÷ç=?=÷ç÷ç桫,b =三. 证明下面问题(10分) 假设数列{}n x 满足112n n n x x +-<, 用Cauchy 收敛定理证明{}n x 收敛.证明 1) (5分)112112121, (1)11........22211111112........1.1222222n Pn n P n P n P n P n nn P n P npn P P n n p N x x x x x x x x +++-+-+-++-+----"??+-++-?++骣骣÷ç÷ç÷ç-÷÷çç÷ç÷骣骣桫ç÷鼢珑ç=+++=?÷鼢珑ç÷鼢珑桫桫÷ç÷ç÷ç÷ç÷桫2) 柯西定理写正确5分10,l n /l n 21,,,n pnN n N p N x x e e e+轾犏">$=+>"?<犏臌四. 证明下面不等式 (10 分)()2sin 1,0,2xx ex x p -+<+?.证明: 1) 下面每个式子2分,共6分()()()()()()2'''1sin ,0,2cos ,0,1sin ,0,x x x x F x e x x F x x e x x F x e x x p p p -=+--?=+-?=++? 2) (2分)()()''0,0,,F x x p >?()'00F =因此()()'0,0,F x x p >?3) (2分)()00F =,()()21sin 0,0,2x x F x e x x p -=+-->? 五. (10分)假设函数()f x 和()g x 在[],a b 存在二阶导数,并且()''0g x ¹,且()()()()0f a f b g a g b ====,证明下面问题:1)在(),a b 内()0g x ¹;2) 在(),a b 内至少存在一点在,q 满足()()()()''''f fg g q q q q =. 证明: 1) 下面每个式子2分,共6分用反证法证明,假设()(),,0a b g q q $?. 则()()()()()()()()()()()()()()()()()()''111''222''''''12312331200,,00,,00,g a g g x a g x x a g b g g x b g x x b g x g x g x x x g x x x x q q q q q q -=-=??-=-=??-=-=??矛盾,结论得证. 2) 令()()()()()''F x f x g x f x g x =- …….. ( 2分)()()()()()'''''F x f x g x f x g x =-………………(2分)()()0F a F b ==()()()()()'''''0F f g f g q q q q q =-=…………(1分)六 (10分) 假设函数()f x 在[]0,1存在二阶导数,()()00,11,f f ==并()()''010,f f ==求解和证明下面问题.1) 写出()f x 在0,1x x ==的Lagrange 余项的Taylor 公式;2) 证明在()0,1至少存在一点()0,1q Î满足()''4f q ³.证明 1) 下面每个式子2分()()()()'''211100,2f x f f x f x x x =++介于0,x 之间.()()()()()()2'''1211111,2f x f f x f x x x =+-+-介于,1x 之间.2)()()()()()()()()'''2''2112''11100221112f x f f x f x f x f x f x x x x üïï=++=ïïýïï=+-ïïïþ2分()()()()()()()(){}()()()2''2''112''2''112''''2111111221111221max ,12f x f x f x f x f f x x x x x x x x üïï=+-?ïïïïïï?-ýïïïïï?-ïïïþ2分 而()221x x +-在[]0,1区间上的最大值12, (2分)因此()(){}''''11max , 4.f f x x ³七 (10分)证明下面问题假设()f x 定义在(),a b 上. 如果对(),a b 内任何收敛的点列{}n x 都有()lim n nf x 存在, 则f在(),a b 上一致连续.证明: 1) 写出不一致连续定义3分 如果f在(),a b 上不一致连续, 则()()()0010,,,,,n n nn n n s t a b s t f s f t ne e $>$???2) 写出下面3分(有界数列必存在收敛子列){}(),,,n n s t a b Î则存在{}(),,,lim lim kkkk n n nn k ks t a b s t a?=3) 下面结论4分构造{}{}11,,.......,,..........k k n n n n n st s t z =数列收敛且极限为a, (2分)则有已知条件()lim n nf z 存在, 因此()()limlim k k n n kkf s f t = (2分)与1)矛盾.八 (10分)附加题 (下面两个题目任选其一)1) 假设函数()()11cos nn f x x =--, 证明下面问题a) 对于任意的自然数n , 方程()12n f x =在0,2p 骣÷ç÷ç÷ç桫中仅有一根. b) 设0,,2n x p 骣÷çÎ÷ç÷ç桫满足()12n nf x =, 则lim .2n n x p =证明: 1) 5分()01,02n n f f p 骣÷ç==÷ç÷ç桫,由介值定理()10,,22n nn x f x p 骣÷ç$?÷ç÷ç桫. (3分)()()1'sin 1cos 0,0,2n n f x n x x x p -骣÷ç=--<?÷ç÷ç桫 (2分) 因此根唯一.2) 5分由于1111arccos 11,lim arccos 1,nn n n f f e n n n-骣骣骣鼢?珑?=--=-鼢?珑?鼢?珑?桫桫桫(2分)由极限的保号性()11,,arccos 211arccos 2n n n n N n N f n f f x n ü骣ï÷ïç$>>÷ïç÷çï桫ïýï骣ï÷ç>=ï÷ç÷ïç桫ïþ(2分)单调性1arccos 2n x n p <<和夹逼定理lim .2n n x p= (1分)2) 用有限覆盖定理证明下面问题 假设函数()f x 定义在[],a b , 对于[]0,x a b "?, ()0lim x x f x ®都存在, 则()f x 在[],a b 上有界.证明: 1)4分()0lim x x f x ®存在,根据函数局部有界性[]()()(),,,,,,x x x x x a b U x t U x f t M d d "?危2)3分根据有限覆盖定理[]()[],,,x x a b U x a b d ÎÉU ,存在有限个()[]1,,i kx i i U x a b d =ÉU3)3分取1max i x i kMM #=,则[],x a b "?,()1,i kx i i x U x d =ÎU ,则()f x M £。

北航-工科数学分析2010-2011期末试题

北航-工科数学分析2010-2011期末试题

A一、计算题(每小题6分,共60分)1、已知函数2u x yz =+,求梯度grad u 及其梯度的散度().div grad u 解:,2,,u u u x z y x y z∂∂∂===∂∂∂{2,,},grad u x z y =---------------------------------------------------------3分()()()() 2.grad u grad u grad u div grad u x y z∂∂∂=++=∂∂∂--------------------3分2、设曲线22:=14x L y +的周长为l ,求2(2).Lx y ds +⎰ 解:222(2)(4)444.LLLLx y ds x y ds xyds ds l +=++==⎰⎰⎰⎰ 3、设D 是由1,0==y x 及x y =围成的区域,计算22.y Dx e dxdy -⎰⎰解:因为2_y e dy ⎰无法用初等函数表示,所以积分时必须考虑次序,2222321112_2200..3312(1).3yy y y y Dy y x edxdy dy x edx ee dy e---====-⎰⎰⎰⎰⎰⎰4、设222:,r D x y r +≤求22201lim cos().rx y r D ex y dxdy r+-→+⎰⎰解:由积分中值定理,存在(,),r D ξη∈使得22222cos()cos().rx y D e x y dxdy e r ξηξηπ--+=+⎰⎰于是原式=2220lim cos()..r e r ξηξηππ+-→+=5、设Ω为椭球体,1222222≤++c z b y a x 计算2().x y z dxdydz Ω++⎰⎰⎰解法一:作广义极坐标变换:Asin cos :sin sin cos x ar T y br z cr ϕθϕθϕ=⎧⎪=⎨⎪=⎩则T 的Jacobi 行列式为2J(,,)sin r abcr ϕθϕ=所以2222222()[()222]()x y z dxdydzx y z xy xz yz dxdydz x y z dxdydzΩΩΩ++=+++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰2122222222402222222222002222220222(sin cos sin sin cos )sin 2(sin cos sin sin cos )sin 52(2cos 2sin )54().15d d a b c abcr drabc d a b c d abc a b c d abc a b c πππππθϕϕθϕθϕϕθϕθϕθϕϕϕθθθπ=++=++=++=++⎰⎰⎰⎰⎰⎰解法二因为2222()()222,x y z x y z xy xz yz ++=+++++且,,xy xz yz 分别关于,,x y z 的奇函数,所以20,20,20.xydxdydz xzdxdydz yzdxdydz ΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰于是2222222()[()222]()x y z dxdydzx y z xy xz yz dxdydz x y z dxdydzΩΩΩ++=+++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰又因为22zccD z dxdydz z dz dxdy-Ω=⎰⎰⎰⎰⎰⎰其中222222{(,)|1}.z x y z D x y a b c=+≤-于是2222324(1),15zccc c D z z dxdydz z dz dxdy ab z dz abc c ππ--Ω==-=⎰⎰⎰⎰⎰⎰⎰同理,232344,1515x dxdydz a bc y dxdydz ab c ππΩΩ==⎰⎰⎰⎰⎰⎰故22224()().15x y z dxdydz abc a b c πΩ++=++⎰⎰⎰6、计算积分22(),x y dxdydz Ω+⎰⎰⎰其中Ω是由2z z ==围成的区域.解:作柱面坐标变换:cos ,sin ,T x r y r z zθθ===则积分区域Ω的表达式变为{(,,)|2,02,02},r z r z r θθπΩ=≤≤≤≤≤≤因此222223016().5rx y dxdydz dr d r dz πθπΩ+==⎰⎰⎰⎰⎰⎰7、计算22,Lxydx x dy +⎰其中L 为有向折线OAB ,这里,,O A B 依次是点(0,0),(1,0),(1,1).解:222222LOAABxydx x dy xydx x dy xydx x dy+=+++⎰⎰⎰100(2.01)1.y dy=++=⎰8、设Ω是由球面2224x y z ++=和平面0,0,0x y z ===所围成的在第一卦限的空间区域,则三重积分222()d f x y z V Ω++⎰⎰⎰在球坐标系下的累次积分为解222220()sin d d f r r drππϕθθ⎰⎰⎰9、计算曲面积分222,x dydz y dzdx z dxdy ∑++⎰⎰其中∑是球面2222(0)x y z R z ++=≥的上侧.解法一:因为∑是关于Oyz 平面对称的上半球面,所以∑上关于Oyz 平面对称的元素i ∆∑在Oyz 平面上的有向投影i σ∆正好抵消,被积函数关于x 是偶函数,故由定义可得,20.x dydz ∑=⎰⎰同理,20.y dzdx ∑=⎰⎰所以原式=22222222224()().2Rx y R z dxdy R x y dxdy d R r rdr R π∑πθ+≤=--=-=⎰⎰⎰⎰⎰⎰解法二222222224()().2xyxyD D Rz dxdy z dxdy R x y dxdyd R r rdr R ∑ππθ==--=-=⎰⎰⎰⎰⎰⎰⎰⎰又2222222()()0,yzyzD D x dydz R z y dydz R z y dydz ∑=-----=⎰⎰⎰⎰⎰⎰同理,2222222()()0,zxzxD D x dydz R z x dydz R z x dydz ∑=-----=⎰⎰⎰⎰⎰⎰所以,原式4.2R π=解法三原式=22222222222240{((}00()().2xyD Rx y Rx y z dxdyR x y dxdy d R r rdr ππθ+≤+-+=++--=-=⎰⎰⎰⎰⎰⎰10求向量场222(,,)A x yz xy z xyz =的旋度.解:222222222((),(),())ij k rotA x z y y x z z y x x y z x yzx y zx yz ∂∂∂==---∂∂∂二、(本题满分10分)设(,)f x y 在2214x y +≤上具有连续的二阶偏导数,L 是椭圆2214x y +=的顺时针方向,求[3(,)](,)xyLy f x y dx fx y dy ++⎰的值.(利用Green 公式)解:(,)3(,),(,)(,),x y P x y y f x y Q x y f x y =+=---------------------------------------2分则(,)(,)3(,),(,),xy yx P x y Q x y f x y f x y yx∂∂=+=∂∂----------------------------4分由Green 公式得,[3(,)](,)36.xyLDy f x y dx fx y dy dxdy π ++=--=⎰⎰⎰-----------------------10分三、(本题满分10分)利用Gauss 公式计算32222cos cos cos ,()x y z dS x y z αβγ∑++++⎰⎰其中∑是包含原点的曲面222(1)(2)(3)191625x y z ---++=的外侧,cos ,cos ,cos αβγ是其外法线向量的方向余弦.解:332222222232222(,,)(,,),()()(,,)()x y P x y z Q x y z x y z x y z z R x y z x y z ==++++=++-----------------------2分对充分小的0,ε>取22221:x y z ε∑++=(取内侧),-------------------------------4分使1∑位于∑内的内区域中,记Ω为∑与1∑所围有界区域,则11332222222232222cos cos cos cos cos cos ()()cos cos cos ()x y z x y z dS dSx y z x y z x y z dS x y z αβγαβγαβγ∑∑+∑∑++++=++++++-++⎰⎰⎰⎰⎰⎰-------7分1222233++10(cos cos cos )134.x y z dV x y z dSdV εαβγεπεΩ∑≤=-++==⎰⎰⎰⎰⎰⎰⎰⎰---------------------------------------------10分四、(本题满分10分)利用Stokes 公式计算积分222222()()()I y z dx z x dy x y dz Γ=-+-+-⎰ ,其中Γ为平面1x y z ++=与三个坐标平面的交线,从第一卦限向原点看逆时针方向.四、解:222222P(,,)=,(,,)R(,,)=,x y z y z Q x y z x z x y z y x +=++,且cos αβγ===---------------------------------------------4分则222222cos cos cos 3().2SSI dS x y z dS dS xyzy z z x x yαβγ∂∂∂==-++=-=-∂∂∂---⎰⎰-------10分或222222Sdydzdzdx dxdyI x y z y z z x x y∂∂∂∴=∂∂∂---⎰⎰2()()()...S y z dydz z x dzdx x y dxdy =-+++++=⎰⎰.五、(本题满分10分)设曲线积分2()Lxy dx yf x dy +⎰与路径无关,其中()f x 具有连续导数,且(0)0,f =求()f x 的表达式并计算(2,2)2(0,0)()xy dx yf x dy +⎰的值.解:令2P(,)=,(,)()x y xy Q x y yf x =则'P(,)(,)2,()x y Q x y xy y f x y x∂∂==∂∂------------------------------------2分因为P(,)(,),x y Q x y y x∂∂=∂∂所以有'2(),x f x =-------------------------------------------------4分解得,2(),f x x C =+又由于(0)0,f =知20,().C f x x ==----------------------------------------------------------6分(2,2)(2,2)222(0,0)(0,0)222()(..)8.xy dx yf x dy xy dx yx dyx x x x dx +=+=+=⎰⎰⎰-------------------------------------------10分六、(附加题满分10分)设22:0L x y x y +++=的方向为逆时针方向,证明:22sin +cos 2L y x dx x y dy π≤-≤⎰证明:令由22:0L x y x y +++=围成的区域为,D 由GREEN 公式得222222sin +cos (sin cos )sin cos LDDDy x dx x y dy x y dxdyx dxdy x dxdy-=+=+⎰⎰⎰⎰⎰⎰⎰---------4分2),4Dx dxdy π=+⎰⎰-----------------------------------------6分又(,),x y D ∈于是有1||,2x ≤从而2,2x π≤所以23,444x πππ<+≤------------------------------------------------------8分于是2sin(1,24x π<+≤且2(),2S D ππ==---------------------------------------10分故命题得证.。

北航2011《应用数理统计》试题

北航2011《应用数理统计》试题

北航2011《应用数理统计》考试题及参考解答一、填空题(每小题3分,共9分)1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ . 解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 二、单项选择题(每小题3分,共9分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)X N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他, 似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦. 另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .。

北航研究生数理统计答案完全版

北航研究生数理统计答案完全版

n

ˆ 于是, 的极大似然估计
⑵ 似然函数

1 。 x x0
L( x0 ; x1 , x 2 , , x n ) n e
( xi x0 )
i 1
n
n e n ( x0 x ) , xi x0 0 ( i 1 , 2,, n )
当 已知时,为 x 0 的单调递增函数,于是由极大似然估计定义可知,
书后部分习题解答整理版
即 ~ t (n 1) .
5. (P35.28) 设 x1 , x 2 ,…, x m 和 y1 , y 2 ,…, y n 分别是从 N ( 1 , 2 ) 和 N ( 2 , 2 ) 总 体中抽取的独立样本, 和 是两个实数,试求
( x 1 ) ( y 2 )
北航研究生数理统计 课后答案完全版
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
P{ xi2 1.44} P{ (
i 1
10
xi 2 1.44 ) } 0.09 i 1 0.3 10 x 1 P{ ( i ) 2 16} i 1 0.3 1 0.9 0.1
2 1m
2

2 (n 1) S 2 n
2
( x 1 ) ( y 2 )
2 (m 1) S12m (n 1) S 2 n mn2
2
m

2
n
~ t (m n 2) 。
6. ( P80.1)设总体 X 服从两点分布 B(1, ) , 0 1 , x1 , x 2 ,…, x n 为简单随机样 本,⑴ 求 q( ) Var ( x ) ;⑵ 求 q( ) 的频率估计。

北航概率统计2010.1

北航概率统计2010.1
2、解 设 A 恰好 n 次取得白球,
400
Wi
第 i 次取得白球, Ri 第 i 次取得红球,
r w , P ( Ri ) , i 1,2, , 根 据 题 意 知 A W1W2 Wn Rn 1 , 且 rw rw w n r W1 ,W2 ,Wn , Rn 1 相互独立,从 P ( A) P(W1 ) P(W2 ) P (Wn ) P( Rn 1 ) ( . ) rw rw
试求:(1) X 的概率密度
f ( x)
; (2)求 E[Y (t )] , E[Y (t1 ) Y (t2 )] , E[(Y (t ))
2
];
(3)问 Y (t ) 是否为广义平稳过程? (满分 8 分) [七]、 (此题仅学过 1 至 9 章的学生做;学过 1 至 9 章和 11-13 章的学生不做) 设随机变量 X 和 Y 相互独立,且都服从标准正态分布, Z X Y ,
)时,
ˆ 2 X 2 cQ 2 是 2 的无偏估计量, 其中 X
n 1 n X i , Q 2 ( X i X )2 。 n i 1 i 1
(A)
1 n(n 1)
, (B)
1 1 1 , ( C) 2 , ( D ) 。 n 1 n (n 1) 2
(B) E[(
(A) ( X 1 , X 2 ) 必服从二维正态分布; (C) X
1
X1
)2 (
2
X2
)2 ] 2 ;
1X 2
0;
) 。 ;
2 (D) D( X 1 X 2 ) 12 2 。
5、设随机变量 X 存在数学期望 EX 和方差 DX 下列不等式恒成立的是( (A) P{|

北航2010《应用数理统计》考试题及参考解答

北航2010《应用数理统计》考试题及参考解答

北航2010《应用数理统计》考试题及参考解答09B一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ .解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计ˆβ的协方差矩阵ˆβCov()=_______ . 解:1ˆσ-'2Cov(β)=()X X . 二、单项选择题(每小题3分,共15分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ .(A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的;(D )拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-;(C )/(1)(1,)/()A e S r F r n r S n r ----; (D )A S 与e S 相互独立.5,在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则___B____ . (A )ˆn E ()=0ε; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )ˆˆ1n p '--εε是2σ的无偏估计; (D )(A )、(B )、(C )都对.三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Yt n n=+-.四、(本题10分)设总体X的概率密度为1, 0,21(;),1,2(1)0,xf x xθθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<(未知,12()nX X X,,,是来自总体的一个样本,X是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X不是2θ的无偏估计量.解:(1)11()(,)22(1)42x xE X xf x dx dx dxθθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X=,代入上式得到θ的矩估计量为1ˆ22Xθ=-.(2)222211141(4)44[()]4()424E X EX DX EX DX DXn nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D Xθ≥>,,所以22(4)E Xθ>.故24X不是2θ的无偏估计量.五、(本题10分)设总体X服从[0,](0)θθ>上的均匀分布,12(,,)nX X X是来自总体X的一个样本,试求参数θ的极大似然估计.解:X的密度函数为1,0;(,)0,xf xθθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n ix i nLθθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()Lθ是单调减函数,而{}12max,,,nx x xθ≥,所以{}12ˆmax,,,nX X Xθ=是θ的极大似然估计.六、(本题10分)设总体X服从(1,)B p分布,12(,,)nX X X为总体的样本,证明X是参数p的一个UMVUE.证明:X的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦. 另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .七、(本题10分)某异常区的磁场强度服从正态分布20(,)N μσ,由以前的观测可知056μ=.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得261, 400x s ==, 问此仪器测出的结果与以往相比是否有明显的差异(α=0.05).附表如下:t 分布表 χ2分布表解:设0H :560==μμ.构造检验统计量)15(~0t ns X t μ-=, 确定拒绝域的形式2t t α⎧⎫>⎨⎬⎩⎭.由05.0=α,定出临界值1315.2025.02/==t t α,从而求出拒绝域{}1315.2>t .而60,16==x n ,从而 ||0.8 2.1315t ===<,接受假设0H ,即认为此仪器测出的结果与以往相比无明显的差异.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2221 , []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则222221211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭,所求2221σσ的置信度为α-1的置信区间为 222212121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.。

2010-北航-应用数理统计-习题参考答案

2010-北航-应用数理统计-习题参考答案

~ N (0,1).
x n 1 x

n 1 n

(n 1)

2
2 Sn 相互独立,从而
x n 1 x

(n 1)
n 1 n S 2 (n 1)

n ( x n 1 x ) ~ t (n 1). n 1 S

2
第 2 页 /第 23 页
北京航空航天大学
研究生应用数理统计
对数似然函数是
ln L( ) n ln ( 1) ln xi
i 1 n ln L( ) n ln xi 0 i 1 n
解得

n
ln x
i 1
n
i
10. ( P81.8)
第 5 页 /第 23 页
北京航空航天大学
研究生应用数理统计
m , n
m n

ˆz 于是有,
1
m n
1 2 ,0 x 1 8. ( P80.5) 设总体 X 服从的概率密度函数为 f ( x, ) , x 1 ,其中 , 2 ( 1 ) 0, 其他
0 1,是未知参数,x1 ,x 2 ,…,x n 为来自总体的简单样本。试求参数 的矩估计 ˆ 。
书后部分习题解答整理版
即 ~ t (n 1) .
5. (P35.28) 设 x1 , x 2 ,…, x m 和 y1 , y 2 ,…, y n 分别是从 N ( 1 , 2 ) 和 N ( 2 , 2 ) 总 体中抽取的独立样本, 和 是两个实数,试求
( x 1 ) ( y 2 )
第 3 页 /第 23 页

09-10数理统计研究生试卷

09-10数理统计研究生试卷

南昌航空大学2009-2010学年第一学期期终考试卷 课程名称:应用数理统计(研究生)A 卷2009/11/12一)(15分)设921,,,X X X 是来自)4,8(N 的样本,试求下列概率: 1))10()9(>X P ;2))5()1(>X P二)(15分)机床厂某日从两台机器加工的同一种零件中,分别抽取若干个样品,测得零件尺寸如下:第一台机器:6.2 5.7 6.5 6.0 6.3 5.8 5.7 6.0 6.0 5.8 6.0 第二台机器: 5.6 5.9 5.6 5.7 5.8 6.0 5.5 5.7 5.5假设两台机器加工的零件尺寸均服从正态分布,且方差相同,求两台机器加工的零件尺寸之差的置信度为0.95的置信区间。

三)(10分) 设i X 服从),(i βαΓ,n i 2.1=,且相互独立,证明∑=ni iX1服从∑=Γni i 1),(βα四)(20分)设实验所得两组数据如下:第一组:2.36 3.14 7.52 3.48 2.76 5.43 6.54 7.41 第二组:4.38 4.25 6.54 3.28 7.21 6.54试用两种方法说明这两组数所是否来自同一个总体(05.0=α)。

五) (20分)现收集了16组合金钢中碳含量x 及强度y 的数据,求得:0.125,45.7886,0.3024,25.5218,2432.4566xx xy yy x y l l l =====1)建立y 对x 的一元线性回归方程:01x y ββ+=;2)写出01,ββ的分布;3)列出对回归方程作显著性检验的方差分析表(0.05α=);4)给出1β的0.95的置信区间;5)在0.15x =时求对应的y 的0.95的置信区间。

六)(10分)设21,xx 是来自)8,0(N 的样本,求22121)(x x x x Y -+=的分布。

七)(5分)请你就数理统计谈谈其在实际生活中的运用,越详细越好,最好结合自身的学习工作情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北航2010《应用数理统计》考试题及参考解答
09B
一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而12
15(,,)X X X 是来自X 的样本,则22
110
22
11152()
X X U X X ++=++服从的分布是_______ .
解:(10,5)F .
2,ˆn
θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n n
n n E θθθ→∞
→∞
==. 3,分布拟合检验方法有_______ 与____ ___. 解:2
χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .
解:推断各因素对试验结果影响是否显著.
5,多元线性回归模型=+Y βX ε中,β的最小二乘估计ˆβ的协方差矩阵ˆβCov()=_______ . 解:1ˆσ-'2Cov(β)
=()X X . 二、单项选择题(每小题3分,共15分)
1,设总体~(1,9)X N ,129(,,
,)X X X 是X 的样本,则___B___ .
(A )
1~(0,1)3X N -; (B )1
~(0,1)1X N -; (C )
1
~(0,1)
9X N -; (D ~(0,1)N . 2,若总体2(,)X
N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的
置信区间____B___ .
(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.
3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;
(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的.
4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .
(A )T e A S S S =+; (B )22
(1)A
S r χσ
-;
(C )
/(1)(1,)/()
A e S r F r n r S n r ----; (D )A S 与e S 相互独立.
5,在多元线性回归分析中,设ˆβ
是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则___B____ . (A )ˆn E ()=0ε
; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )
ˆˆ1
n p '--εε是2
σ的无偏估计; (D )(A )、(B )、(C )都对.
三、(本题10分)设总体21(,)X
N μσ、22(,)Y N μσ,112(,,
,)n X X X 和212(,,,)n Y Y Y 分别
是来自X 和Y 的样本,且两个样本相互独立,X Y 、和2
2
X Y S S 、分别是它们的样本均值和样本方差,证明
12(2)X Y t n n +-,
其中22
2
1212(1)(1)2
X Y
n S n S S n n ω-+-=+-.
证明:易知
2
2
121
2
(,
)X Y
N n n σσμμ--+

(0,1)X Y U N =

由定理可知
2
2
112
(1)(1)X
n S n χσ
--,
2
2222
(1)(1)Y
n S n χσ
--.
由独立性和2
χ分布的可加性可得
2
2
212122
2
(1)(1)(2)X
Y
n S n S V n n χσσ--=
+
+-.
由U 与V 得独立性和t 分布的定义可得
12(2)X Y t n n =
+-.
四、(本题10分)设总体X 的概率密度为1
, 0,21
(;), 1,2(1)
0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩
其他,其中参数01)θ
θ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证
明2
4X 不是2
θ的无偏估计量.
解:(1)
10
1()(,)22(1)42
x x E X xf x dx dx dx θθθ
θθθ+∞-∞
==+=+-⎰

⎰,
令()X E X =,代入上式得到θ的矩估计量为1ˆ22
X θ
=-. (2)
22221114
1 (4)44[()]4()424E X EX DX EX DX DX n n
θθθ⎡⎤==+=++=+++⎢⎥⎣⎦,
因为()00D X θ≥>,,所以2
2
(4)E X θ>.故2
4X 不是2θ的无偏估计量.
五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个
样本,试求参数θ的极大似然估计. 解:X 的密度函数为
1
,0;(,)0,x f x θ
θθ≤≤⎧=⎨⎩
其他,
似然函数为
1
,0,1,2,,,
()0,
n i x i n L θθθ<<=⎧⎪=⎨
⎪⎩其它
显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12
ˆmax ,,,n X X X θ=是θ的
极大似然估计.
六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一
个UMVUE .
证明:X 的分布律为
1(;)(1),0,1x x f x p p p x -=-=.
容易验证(;)f x p 满足正则条件,于是
2
1
()ln (;)(1)I p E f x p p p p ⎡⎤∂==
⎢⎥∂-⎣⎦
. 另一方面
1(1)1
Var()Var()()
p p X X n n nI p -=
==, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .
七、(本题10分)某异常区的磁场强度服从正态分布2
0(,)N μσ,由以前的观测可知056μ=.现有
一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得2
61, 400x s ==, 问此仪器测出的结果与以往相
比是否有明显的差异(α=0.05).附表如下:
t 分布表 χ2
分布表
解:设0H :560==μμ.构造检验统计量
)15(~0
t n
s X t μ-=
, 确定拒绝域的形式2
t t α⎧⎫>⎨⎬⎩

.由05.0=α,定出临界值1315.2025.02/==t t α,从而求出拒绝域{}1315.2>t .
而60,
16==x n ,从而 ||0.8 2.1315t =
==<,接受假设0H ,即认为此仪器测出的结果与以往相比无明显的差异.
八、(本题10分)已知两个总体X 与Y 独立,2
11~(,)X μσ,2
22~(,)Y μσ,2
2
1212, , , μμσσ未知,
112(,,
,)n X X X 和2
12(,,
,)n Y Y Y 分别是来自X 和Y 的样本,求2
122
σσ的置信度为1α-的置信区间.
解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2
2
21 , []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则
22222
1211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭

所求222
1σσ的置信度为α-1的置信区间为 2222
12121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭

九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.。

相关文档
最新文档