应用数理统计课后习题参考答案
清华大学杨虎应用数理统计后习题的参考答案.doc
清华大学杨虎应用数理统计后习题的参考答案练习1:设定总体的样本量,并写出以下4种情况下样本的联合概率分布。
2);3);4)溶液总体的样本是,1)对于总体,其中:2)就整体而言,其中:3)对于整个4)对于整个2为了研究玻璃产品在集装箱运输过程中的损坏,我们随机选取了XXXX年的人类身高来获取数据(单位: Cm),如下所示:组的下限165 167 169 171 173 175 177组的上限167 169 171 173 175 177 179人3 10 21 23 22 11 5尝试绘制原点高度的直方图,无论它是否近似遵循正态分布密度函数的图形。
为了求解图1.2中的数据直方图,它近似遵循平均值为172、方差为5.64的正态分布。
那是。
4假设总体x的方差为4,平均值为。
现在取容量为100的样本,并尝试确定常数k,以满足。
解因子k更大。
根据中心极限定理: 那么:查找表:,5从总体中抽取容量为36的样本,并计算样本平均值介于50.8和53.8之间的概率。
解决方案6从总体中抽取两个容量分别为10和15的独立样本,并计算它们的平均值之差的绝对值大于0.3的概率。
解决方案6假设两个独立的样本是:并且,相应的样本均值为:还有。
从这个问题的含义来看:并且相互独立;,7集是种群的样本,试确定C,使。
那么,溶液和每个样品是相互独立的,有:那么:检查卡方分位数表:如果c/4=18.31,则c=73.24.8假设总体X具有连续分布函数,是总体X的样本,并定义随机变量:尝试确定统计数据的分布。
该溶液由已知条件获得:其中。
因为它们相互独立,所以它们也相互独立。
根据二项式分布的可加性,有。
9设定为来自群体X的样本,并尝试找出答案。
假设人口的分布是:1) 2) 3) 4)解决方案1) 2) 3) 4) 10从人群中抽取样本,找出总数。
解和因为,所以:11组来自正常人群,定义:能够做某事。
,则集合12是整个总体的样本,这是样本平均值。
《应用数理统计》第三章假设检验课后作业参考答案
第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
应用数理统计习题答案_孙荣恒(全)
2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP tPnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则 令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i a ξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξξξξξχχξξξξ+-+--+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。
应用数理统计习题答案西安交大施雨
应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (23)第四章方差分析与正交试验设计 (28)第五章回归分析 (31)第六章统计决策与贝叶斯推断 (34)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)XN μσ∴ 2(,)n XN σμ∴(0,1)N 分布∴(1)0.95P X P μ-<=<=又∵ 查表可得0.025 1.96u =∴ 221.96n σ=1.2 解:(1) ∵(0.0015)X Exp∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe -->==-<=-=⎰∴ 6个元件都没失效的概率为: 1.267.2()P ee --==(2)∵(0.0015)X Exp∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe--<===-⎰∴ 6个元件没失效的概率为: 4.56(1)P e-=-1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=--∏∑==πσμσ1.5证:21122)(naa x n x a x n i ni ii+-=-∑∑==∑∑∑===-+-=+-+-=ni i ni i ni i a x n x x na a x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x)(11)(1111n n n n n x x n x x x n n -++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S -+++--+--+=-+--+=-+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n -++-+-+--++=++++ ])(11S [1 ])(1[n S 11212n 212n n n n n x x n n n x x n n n -+++=-+++=++1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====-=-+-=-+--+-=-+-∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====-=-+=-+=-∑∑∑∑∑1.10 解:(1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np m p x D n x n D X D ni in i i )1()(1)1()(121-===∑∑==))(1()(122∑=-=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i --=+--+-=+-+=-=-=∑∑∑=== 同理,(2).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122-=+-+=-=∑∑==(3).2)(1)1()(11ba x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121-===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b n n x E x D n x E x D n x nE x E n S E ni i i n i i -⋅-=+-+=-=∑∑==(4).λ===∑∑==ni i ni i x E n x n E X E 11)(1)1()(nx D nx n D X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i -=+-+=-=∑∑==(5).μ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅-=+-+=-=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓXxe x xf λαααλ--Γ=∴1)()( 令kXY =ke ky k ke ky yf kyky⋅Γ=⋅Γ=∴----λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β),()1()( 11b a B x xx f b a ---=∴),(),(),()1()( 11b a B b k a B b a B x x x X E b a k k +=-=∴⎰∞+∞---),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D -=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+-++++=1.19 解:∵(,)X F n m 分布12(1)022()((1))()(1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m m m++--+≤=+≤=<-Γ=+ΓΓ⎰222212211()()()1()(1)()()11(1)(1)(,)n n m n m n mn mn mf y P Y y y y y y y yy B ++----'=≤Γ=+ΓΓ----=∴ 22(1)(,)n m n n Y X X m mβ=+分布1.20 解:∵()Xt n 分布122212()()(()2(1)n n P Y y P X y P X xdxn ++-≤=≤=≤≤Γ=+11111212122()()()(1)()1()(1)()()()n n n n nf y P Y y y yn y y n n n+++--+--'=≤Γ=+Γ=+ΓΓ∴2(1,)2nY XF =分布1.21 解: (1) ∵(8,4)XN 分布∴ 4(8,)25XN 分布,即5(8)(0,1)2X N -∴ 样本均值落在7.88.2分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P ---≤≤=≤≤=(2) 样本均值落在7.58分钟之间的概率为:5(7.58)5(8)5(88)(7.58)()2225(8)(0 1.25)20.3944X P X P X P ---≤≤=≤≤-=≤≤=若取100个样品,样本均值落在7.58分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)()2222*(0.84130.5)0.6826X P X P ---≤≤=≤≤=-=单个样品大于11分钟的概率为:110.77340.2266P =-=25个样品的均值大于9分钟的概率为210.97980.0202P =-= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =-= 所以第一种情况更有可能发生1.23 解:(1) ∵2(0,)XN σ分布∴2(0,)XN nσ分布∴22()(1)χσ∵ 22221()()ni i a X an X an σσ===∑∴21a n σ=同理 21b m σ=(2) ∵2(0,)XN σ分布∴222(1)X χσ分布由2χ分布是可加性得:2221()ni i X n χσ=∑()nic X t m ==∑∴c =(3) 由(2)可知2221()ni i X n χσ=∑2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∴ md n=1.25 证明:∵211(,)XN μσ分布∴2211()(1)i X μχσ-∴1221111()()n i i X n μχσ=-∑ 同理2222212()()n i i Y n μχσ=-∑1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====--=--∑∑∑∑第二章 参数估计 2.1 (1) ∵ ()XExp λ分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)XU a b 分布∴ ()2a bE X +=2()()12b a D X -=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =-++==∑ (22211n i i X X S n =-=∑)解得a 和b 的矩估计为:ˆˆaX bX ==(3) 110()1E X x x dx θθθθ-=*=+⎰令1ˆˆ1A X θθ==+∴ˆ1X X θ=- (4) 110()(1)!kk x kE X x x e dx k βββ--=*=-⎰令ˆkX β= ∴ ˆk Xβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为: ˆˆaX λ==- (6) ∵ (,)X B m p∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆX pm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p -==-故p 的似然函数为: 1()(1)ni i x nnL p p p =-∑=-对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑令 1ln ()1()01nii L p n x n p p p=∂=--=∂-∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它011)(N k N k x p2)(NX E =矩估计: 令7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它071011)(N N N L要使)(N L 最大,则710=N710=∴∧N2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+-Φ=∴=-Φ-∧∧∧-σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=-=R0215.005.04299.05=⨯==∴∧d R σ (2)将所有数据分为三组如下所示:0197.005.03946.005.0)05.005.005.0(316=⨯==∴=++=∴∧d R R σ2.7 解:(1)⎩⎨⎧+<<=其它 01x1)(θθx fθθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=-∧θθ (2) θ=-)21(X E 21-=∴∧X θ是θ的无偏估计 (3)22))(()())(()(θθθθ-+=-+=∧∧X E X D E D M S E41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i2132121X X +=∴∧μ最有效 2.9 证: )(~λp Xλλ==∴)( )(X D X EX 是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计 )()1()())1((2*2*S E X E S XE αααα-+=-+∴λλααλ=-+=)1(∴2*)1(SX αα-+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ**+-=+-=+--=+---=+-=-所以 2(1)X S αα*+-是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ-=(,)对于给定的1α-,查标准正态分布表可得2u α,使得 2()1P U u αα<=- 即:22()1P X p X ααα<<+=-区间的长度2d L α=<,所以22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ-=(,), 222(1)nS V n χσ=-由因为U 和V 是相互独立的, 所以(1)X T t n =-对于给定的1α-,查标t 分布表可得2t α,使得 2()1P U t αα<=-,即:2()1P X X ααμα<<=- 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α-,查标t 分布表可得t α,使得 ()1P U t αα>=-, 即:()1P X αμα<+=- 故μ的具有单侧置信上限的单侧置信区间为(,)X α-∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)-∞ 第二种航空公司的单侧上限置信区间为(,36.3103)-∞ 所以选择第二家航空公司。
应用数理统计,施雨,课后答案,
习题11.1 解:由题意95.01=⎭⎬⎫⎩⎨⎧<--u x p 可得:95.0=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<-σσn n u x p而()1,0~N u x n σ⎪⎭⎫ ⎝⎛-- 这可通过查N(0,1)分布表,975.0)95.01(2195.0=-+=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--σσn n u x p 那么96.1=σn∴2296.1σ=n1.2 解:(1)至800小时,没有一个元件失效,则说明所有元件的寿命>800小时。
{}2.10015.08000015.00800|e 0015.0800--∞+-=∞+-==>⎰e e dx x p x x 那么有6个元件,则所求的概率()2.762.1--==e e p(2)至300小时,所有元件失效,则说明所有元件的寿命<3000小时{}5.4300000015.030000015.001|e 0015.03000----=-==<⎰e e dx x p x 那么有6个元件,则所求的概率()65.41--=e p1.3解: (1) 123{(,,)|0,1,2,,1,2,3}k x x x x k χ===因为~()i X P λ,所以 112233{,,}P X x X x X x ≤≤≤112233{}{}{}P X x P X x P X x =≤≤≤1233123!!!x x x e x x x ++-λλ=其中,0,1,2,,1,2,3k x k ==(2) 123{(,,)|0;1,2,3}k x x x x k χ=≥=因为~()i X Exp λ,其概率密度为,0()0,0x e x f x x -λ⎧λ≥=⎨ <⎩所以, 123(,,)3123(,,)x x x f x x x e-λ=λ,其中0;1,2,3k x k ≥=(3) 123{(,,)|;1,2,3}k x x x a x b k χ=≤≤=因为~(,)i X U a b ,其概率密度为1,()0,|a x b f x b a x a x b⎧≤≤⎪=-⎨⎪ <>⎩所以,12331(,,)()f x x x b a =-,其中;1,2,3k a x b k ≤≤= (4) 123{(,,)|;1,2,3}k x x x x k χ=-∞<<+∞= 因为~(,1)i X N μ,其概率密度为(2(),()x f x x 2-μ)-=-∞<<+∞所以,311(2123321(,,)(2)k k x f x x x e π2=--μ)∑=,其中;1,2,3k x k -∞<<+∞=1.4解:由题意可得:()⎪⎩⎪⎨⎧∞<<=--,其它00,21)(i 2ln i i 22i x e x x f u x σσπ则∏==ni x f x x f 1i n i )(),...(=⎪⎪⎩⎪⎪⎨⎧=∞<<∏=∑--=,其它0,...1,0,1n )2()(ln 212n 12i 2i x x e i n i i u x ni σπσ1.5证: 令21()()nii F a Xa ==-∑则'1()2()nii F a Xa ==--∑,''()20F a n => 令'1()2()0ni i F a X a ==--=∑,则可解得11ni i a X X n ===∑由于这是唯一解,又因为''()20F a n =>,因此,当11ni i a X X n ===∑时,()F a 取得最小值1.6证: (1)等式左边11((nnii i i XX X X 22==-μ)=-+-μ)∑∑111(2()()(n n n i i i i i X X X X X X 22====-)+-μ-+-μ)∑∑∑21(()ni i X X n X 2==-)+-μ∑左边=右边,所以得证. (2) 等式左边22111(2nn ni iii i i XX X X X nX 2===-)=-+∑∑∑ 22212nii XnX nX ==-+∑221ni i X nX ==-∑左边=右边,所以得证.1.7证:(1)∑=-=ni i n x n x 11∑+=-++=11111n i i n x n x 那么)(11_1_n n n x x n x -+++=∑∑=+=•+-++ni i n n i i x n n x n x n 111111111 =111111+=+++∑n n i i x n x n =∑=+ni i x n 111=_1+n x ∴原命题得证(2)21221-=-=∑n n i i nx x n s211122111-++=+-+=∑n n i i n x x n s那么⎥⎦⎤⎢⎣⎡-+++-+212)(111n n n x x n s n n =∑=+n i i x n 1211--+21n x n n +212)1(++n x n n --++nn x x n n 12)1(2+22)1(-+n x n n=∑=+n i i x n 1211--+222)1(n x n n +2111++n x n -212)1(1++n x n --++n n x x n n 12)1(2=∑=+n i i x n 1211-(111++n x n +-+n x n n 1)2由(1)可得:111++n x n +-+n x n n 1=-+1n x则上式=∑=+n i i x n 1211-21-+n x =21+n s∴原命题得证1.10解: 因为2222111111,()n n n i i i i i i X X S X X X X n n n =====-=-∑∑∑所以 (1) 二项分布(,)B m p11()()()ni i i E X E X E X mp n ====∑21111(1)()()()n ni i i i mp p D X D X D X n n n ==-===∑∑222211111()(())()()(1)n n i i i i n E S E X X E X E X mp p n n n==-=-=-=-∑∑(2) 泊松分布()P λ()E X =λ, ()D X n λ=, 21()n E S n-=λ(3) 均匀分布(,)U a b()2b a E X +=, 2)()12b a D X n (-=, 221()()12n E S b a n-=-(4) 指数分布()Exp λ 1()E X =λ, 1()D X n 2=λ, 21()n E S n 2-=λ (5) 正态分布2(,)N σμ ()E X =μ, 21()D X n σ=, 221()n E S nσ-=1.11解:(1)是统计量(2)不是统计量,因为u未知 (3)统计量 (4)统计量(5)统计量,顺序统计量 (6)统计量 (7)统计量(8)不是统计量,因为u未知 1.14.解: 因为i X 独立同分布,并且~(,i X a Γλ),11ni i X X n ==∑所以1~(,nii Xna =Γλ)∑;令1nii Y X ==∑,则1X Y n =,由求解随机变量函数的概率密度公式可得 1()(),0)nana nx X f x nx e n x na --λλ=>Γ(1.15 解:(1))(m x 的概率密度为: [][])()(1)()!()!1(!)(1)(x f x F x F m n m n x f m n m m ------=又F(x)=2x 且f(x)=2x ,0<x<1则有x x x m n m n x f m n m m 2)1()!()!1(!)(2)1(2)(------=,0<x<1(2) )(1x 与)(n x 的联合概率密度为: [][])()()(1)()()11(!),(011))(1(y f x f y F x F y F n n y x f n n ----=--=y x x y n n n 22))(1(222⋅⋅---=222)()1(4---n x y xy n n 0<x<y<1对于其他x,y ,有0),())(1(=y x f n1.19证:现在要求Y=)X 1/(X m nm n +的概率密度。
《应用数理统计》习题解答
2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。
应用数理统计,施雨,课后答案,
习题11.1 解:由题意95.01=⎭⎬⎫⎩⎨⎧<--u x p 可得:95.0=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<-σσn n u x p而()1,0~N u x n σ⎪⎭⎫ ⎝⎛-- 这可通过查N(0,1)分布表,975.0)95.01(2195.0=-+=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--σσn n u x p 那么96.1=σn∴2296.1σ=n1.2 解:(1)至800小时,没有一个元件失效,则说明所有元件的寿命>800小时。
{}2.10015.08000015.00800|e 0015.0800--∞+-=∞+-==>⎰e e dx x p x x 那么有6个元件,则所求的概率()2.762.1--==e e p(2)至300小时,所有元件失效,则说明所有元件的寿命<3000小时{}5.4300000015.030000015.001|e 0015.03000----=-==<⎰e e dx x p x 那么有6个元件,则所求的概率()65.41--=e p1.3解: (1) 123{(,,)|0,1,2,,1,2,3}k x x x x k χ===因为~()i X P λ,所以 112233{,,}P X x X x X x ≤≤≤112233{}{}{}P X x P X x P X x =≤≤≤1233123!!!x x x e x x x ++-λλ=其中,0,1,2,,1,2,3k x k ==(2) 123{(,,)|0;1,2,3}k x x x x k χ=≥=因为~()i X Exp λ,其概率密度为,0()0,0x e x f x x -λ⎧λ≥=⎨ <⎩所以, 123(,,)3123(,,)x x x f x x x e-λ=λ,其中0;1,2,3k x k ≥=(3) 123{(,,)|;1,2,3}k x x x a x b k χ=≤≤=因为~(,)i X U a b ,其概率密度为1,()0,|a x b f x b a x a x b⎧≤≤⎪=-⎨⎪ <>⎩所以,12331(,,)()f x x x b a =-,其中;1,2,3k a x b k ≤≤= (4) 123{(,,)|;1,2,3}k x x x x k χ=-∞<<+∞= 因为~(,1)i X N μ,其概率密度为(2(),()x f x x 2-μ)-=-∞<<+∞所以,311(2123321(,,)(2)k k x f x x x e π2=--μ)∑=,其中;1,2,3k x k -∞<<+∞=1.4解:由题意可得:()⎪⎩⎪⎨⎧∞<<=--,其它00,21)(i 2ln i i 22i x e x x f u x σσπ则∏==ni x f x x f 1i n i )(),...(=⎪⎪⎩⎪⎪⎨⎧=∞<<∏=∑--=,其它0,...1,0,1n )2()(ln 212n 12i 2i x x e i n i i u x ni σπσ1.5证: 令21()()nii F a Xa ==-∑则'1()2()nii F a Xa ==--∑,''()20F a n => 令'1()2()0ni i F a X a ==--=∑,则可解得11ni i a X X n ===∑由于这是唯一解,又因为''()20F a n =>,因此,当11ni i a X X n ===∑时,()F a 取得最小值1.6证: (1)等式左边11((nnii i i XX X X 22==-μ)=-+-μ)∑∑111(2()()(n n n i i i i i X X X X X X 22====-)+-μ-+-μ)∑∑∑21(()ni i X X n X 2==-)+-μ∑左边=右边,所以得证. (2) 等式左边22111(2nn ni iii i i XX X X X nX 2===-)=-+∑∑∑ 22212nii XnX nX ==-+∑221ni i X nX ==-∑左边=右边,所以得证.1.7证:(1)∑=-=ni i n x n x 11∑+=-++=11111n i i n x n x 那么)(11_1_n n n x x n x -+++=∑∑=+=•+-++ni i n n i i x n n x n x n 111111111 =111111+=+++∑n n i i x n x n =∑=+ni i x n 111=_1+n x ∴原命题得证(2)21221-=-=∑n n i i nx x n s211122111-++=+-+=∑n n i i n x x n s那么⎥⎦⎤⎢⎣⎡-+++-+212)(111n n n x x n s n n =∑=+n i i x n 1211--+21n x n n +212)1(++n x n n --++nn x x n n 12)1(2+22)1(-+n x n n=∑=+n i i x n 1211--+222)1(n x n n +2111++n x n -212)1(1++n x n --++n n x x n n 12)1(2=∑=+n i i x n 1211-(111++n x n +-+n x n n 1)2由(1)可得:111++n x n +-+n x n n 1=-+1n x则上式=∑=+n i i x n 1211-21-+n x =21+n s∴原命题得证1.10解: 因为2222111111,()n n n i i i i i i X X S X X X X n n n =====-=-∑∑∑所以 (1) 二项分布(,)B m p11()()()ni i i E X E X E X mp n ====∑21111(1)()()()n ni i i i mp p D X D X D X n n n ==-===∑∑222211111()(())()()(1)n n i i i i n E S E X X E X E X mp p n n n==-=-=-=-∑∑(2) 泊松分布()P λ ()E X =λ, ()D X n λ=, 21()n E S n-=λ(3) 均匀分布(,)U a b()2b a E X +=, 2)()12b a D X n (-=, 221()()12n E S b a n-=-(4) 指数分布()Exp λ 1()E X =λ, 1()D X n 2=λ, 21()n E S n 2-=λ (5) 正态分布2(,)N σμ ()E X =μ, 21()D X n σ=, 221()n E S nσ-=1.11解:(1)是统计量(2)不是统计量,因为u未知 (3)统计量 (4)统计量(5)统计量,顺序统计量 (6)统计量 (7)统计量(8)不是统计量,因为u未知1.14.解: 因为i X 独立同分布,并且~(,i X a Γλ),11ni i X X n ==∑所以1~(,nii Xna =Γλ)∑;令1nii Y X ==∑,则1X Y n =,由求解随机变量函数的概率密度公式可得 1()(),0)nana nx X f x nx e n x na --λλ=>Γ(1.15 解:(1))(m x 的概率密度为: [][])()(1)()!()!1(!)(1)(x f x F x F m n m n x f m n m m ------=又F(x)=2x 且f(x)=2x ,0<x<1则有x x x m n m n x f m n m m 2)1()!()!1(!)(2)1(2)(------=,0<x<1(2) )(1x 与)(n x 的联合概率密度为: [][])()()(1)()()11(!),(011))(1(y f x f y F x F y F n n y x f n n ----=--=y x x y n n n 22))(1(222⋅⋅---=222)()1(4---n x y xy n n 0<x<y<1对于其他x,y ,有0),())(1(=y x f n1.19证:现在要求Y=)X 1/(X m nm n +的概率密度。
应用数理统计刘达民课后题答案
应用数理统计刘达民课后题答案
1.列举几个前沿数理统计机器学习的旧方法:
(1)线性回归:线性回归是机器学习的最常见的方法之一,主要用于分析解释变量对一个目标变量的影响。
(2)Logistic回归:Logistic回归是机器学习的另一个常见方法,它主要用于分类问题,如预测一个目标变量是否属于两个类别之一。
(3)支持向量机:支持向量机(SVM)是一种常见的机器学习算法,也可以用于分类问题,其中使用最大化超平面和核函数来支持它的模型。
(4)贝叶斯网络:贝叶斯网络是另一种类别机器学习算法,用于解决具有依赖性的多类别分类任务。
(5)K均值聚类:K均值聚类是一种常见的聚类算法,用于将数据集的点分组为若干类。
2.试论述对假设检验有效性的因素。
假设检验的有效性取决于研究者正确指定和应用有效的假设检验来解决给定的问题。
其有效性的因素包括样本容量、误差概率、置信度水平和显著程度等。
(1)样本容量:样本容量是指研究者使用的实际观察样本的数量。
如果样本容量越大,假设检验结果的精确度就越高,因此,确保够大的样本容量可以显著提高假设检验的有效性。
(2)误差概率:误差概率指研究者指定的可接受错误率,如果误差概率较低,可以有效控制假设检验结果得出正确的结论,从而提高假设检验的有效性。
(3)置信度水平:置信度水平指研究者指定的置信度百分比,如95%的置信度水平,说明允许发生的作出错的机会只有5%,这样可以有效地增强假设检验的有效性。
(4)显著程度:显著程度指研究者指定的信度限制,例如P<0.05,即接受null hypothese。
提高显著性程度,可以有效提高假设检验的有效性。
应用数理统计课后习题参考答案
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===L 不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij yi j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1) 操作工之间的差异是否显著? 2) 机器之间的差异是否显著?3) 它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4, 2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度 均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 1 1225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表6 6 5 4 0.4517 7 7 7 0.482 所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h. 通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:1 2 3 4 5 6 78身高(cm)160 159 160 157 169 162 165 154体重(kg)49 46 53 41 49 50 48 43在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫ ⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3 在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.120.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.470.66在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 8 .001 0 0 22 1 10 .002 1 0 43 6 9 .005 0 0 64 15 .010 2 0 75 2 4 .010 0 0 86 67 .027 3 0 77 1 6 .048 4 6 88 1 2 .459 7 5 99 1 3 2.572 8 0 04 1975年Dagnelie收集了11年的气象数据资料如下表变量年序x1x2x3x4其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ 试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭ 因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyzedata reduction Factor ···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫= ⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96 (1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类. 解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,15.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TTμμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
应用数理统计课后答案
t
2 i
11
t
2
3406
.681
.
i 1
i 1
所以
bˆ
lt z lt t
496 .583 3406 .681
0.146
;
Aˆ z bˆ t 0.532 .
得 zˆ 0.532 0.146 t .
换 yˆ ezˆ , aˆ e Aˆ 1.73 , x 1 t
(参考数据:)
6-2. 解:检验问题 H0 :1 2 3
工厂
寿命
Ti
Ti
2
或 i
n
i
S
2 i
甲
40 48 38 42 45 (1600 2304 1444 1764 2025
213
45369 42.6
63.2
乙
26 34 30 28 32 676 1156 900 784 1024
xi
150 160 170 180 190 200 210 220 230 240 250 260
yi
56.9 58.3 61.6 64.6 68.1 71.3 74.1 77.4 80.2 82.6 86.4 89.7
(1)求 对 x 的线性回归方程,并问:每立方米混凝土中增加 1kg 水泥时,可提高的
(4)当 x0 225 时,0 的预测值为 yˆ0 10.28 0.304 225 78.68
由于 0 的1 预测区间为: ( yˆ0 (x0) , yˆ0 (x0) )
(
yˆ0
ˆ
t 12
(n
2)
1
1 n
应用数理统计答案2
案 网
ww w. kh da w.
co
ln L(θ ) = ∑ [ln θ + ( θ − 1) ln xi ]
m
̂ =ξ θ (n)
课 后
n ∂ ln L(θ ) =− =0 θ ∂θ ⎧1 ⎧1 ⎪ n , ξ1 ,… , ξ n ≤ θ ⎪ n , ξ ( n ) ≤ θ ∵ L(θ ) = ⎨θ = ⎨θ ⎪ ⎪ 0, other ⎩ ⎩ 0, other 1 1 ≤ , L(θ ) ≤ L(ξ ( n ) ) n n θ ξ( n )
co
m
(3)
α2 = ∫
+∞
θ1
1 e θ2
2
−
x −θ1 θ2
n 1 ⋅ x 2 dx = A2 = ∑ X i2 = θ12 + 2θ 2 ξ n i =1
课 后
⎧ ⎪θ1 = ξ − S ∴⎨ ⎪ ⎩ θ2 = S
答
案 网
̂ = (ξ − θ ) 2 + 2θ ξ ∴ A2 = S + ξ = θ 2 2
−
1 2θ
2
( xi −θ )2
n
(6) L(θ ) = ∏ cθ c xi − ( c +1)
i =1
i =1
∂ ln L(θ ) nc ̂,所以由 = − = 0不能解出θ ∂θ θ
i =1
课 后
̂ =ξ L(θ ) ≤ L(ξ (1) ) ⇒ θ (1)
答
案 网
c − ( c +1) ̂ ,θ ≤ ξ1 ,… , ξ n L(θ ) = ∏ cθ xi
∑ x ∑ (N − x )
i
−
答
案 网
清华大学杨虎应用数理统计课后习题参考答案
习题一1 设总体的样本容量,写出在下列4种情况下样本的联合概率分布. X 5=n 1); 2); ),1(~p B X )(~λP X 3); 4).],[~b a U X )1,(~μN X 解 设总体的样本为, 12345,,,,X X X X X 1)对总体,~(1,)X B p1122334455511155(1)(,,,,)()(1)(1)i inx x i i i i x x P X x X x X x X x X x P X x p p p p -==-========-=-∏∏其中:5115ii x x ==∑2)对总体~()X P λ11223344555115551(,,,,)()!!ixni i i i i xi i P X x X x X x X x X x P X x e x e x λλλλ-==-==========∏∏∏其中:5115ii x x ==∑3)对总体~(,)X U a b5511511,,1,...,5 (,,)()0i i i i a x b i f x x f x b a ==⎧≤≤=⎪==-⎨⎪⎩∏∏,其他4)对总体~(,1) X N μ()()()25555/222151111 (,,)()=2exp 2i x i i i i i f x x f x x μπμ---===⎛⎫==-- ⎪⎝⎭∑∏ 2 为了研究玻璃产品在集装箱托运过程中的损坏情况,现随机抽取20个集装箱检查其产品损坏的件数,记录结果为:1,1,1,1,2,0,0,1,3,1,0,0,2,4,0,3,1,4,0,2,写出样本频率分布、经验分布函数并画出图形.解 设代表各箱检查中抽到的产品损坏件数,由题意可统计出如下的样(=0,1,2,3,4)i i 本频率分布表1.1:表1.1 频率分布表i 0 1 2 3 4 个数6 7 3 2 2iX f 0.3 0.35 0.15 0.1 0.1经验分布函数的定义式为:,()()()(1)10,(),,=1,2,,1,1,n k k k x x kF x x x x k n n x x +<⎧⎪⎪≤<-⎨⎪≥⎪⎩据此得出样本分布函数:200,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩图1.1 经验分布函数3 某地区测量了95位男性成年人身高,得数据(单位:cm)如下:组下限165 167 169 171 173 175 177 组上限167 169 171 173 175 177 179x()n F x人 数3 10 21 23 22 11 5试画出身高直方图,它是否近似服从某个正态分布密度函数的图形.解图1.2 数据直方图它近似服从均值为172,方差为5.64的正态分布,即.(172,5.64)N 4 设总体X 的方差为4,均值为,现抽取容量为100的样本,试确定常数k ,使得μ满足.9.0)(=<-k X P μ解()- 5P X k k μ⎫⎪<=⎪⎭()()555 P k X k μ=-<-<因k 较大,由中心极限定理:(0,1)N()()()-55P X k k k μ<≈Φ-Φ-(5)(1(5))k k =Φ--Φ()2510.9k =Φ-=所以:()50.95k Φ=查表得:,.5 1.65k =0.33k ∴=5 从总体中抽取容量为36的样本,求样本均值落在50.8到53.8之间2~(52,6.3)X N 的概率.解()50.853.8 1.1429 1.7143P X P ⎛⎫<<=-<< ⎪⎝⎭(0,1)U N =()()50.853.8 1.1429 1.7143(1.7143)( 1.14290.9564(10.8729)0.8293P X P U ∴<<=-<<=Φ-Φ-=--=)6 从总体中分别抽取容量为10与15的两个独立的样本,求它们的均值之~(20,3)X N 差的绝对值大于0.3的概率.解 设两个独立的样本分别为:与,其对应的样本均值为:和. 110,,X X 115,,Y Y X Y 由题意知:和相互独立,且: X Y ,3~(20,10X N 3~(20,15Y N(0.3)1(0.3)P X Y P X Y ->=--≤(0.4243)0.6744Φ=7 设是总体的样本,试确定C ,使得.110,,X X ~(0,4)X N 1021()0.05i i P X C =>=∑ 解 因,则,且各样本相互独立,则有: ~(0,4)i X N ~(0,1)2iX N10122~(10)2i i X χ=⎛⎫⎪⎝⎭∑所以:10102211()()144iii i CP X C P X ==>=>∑∑1021110.0544i i c P X =⎛⎫=-≤= ⎪⎝⎭∑102110.9544i i c P X =⎛⎫≤= ⎪⎝⎭∑查卡方分位数表:c/4=18.31,则c=73.24.8 设总体X 具有连续的分布函数,是来自总体X 的样本,且()X F x 1,,n X X ,定义随机变量:i EX μ=1,,1,2,,0,i i i X Y i n X μμ>==≤⎧⎨⎩ 试确定统计量的分布.∑=ni i Y 1解 由已知条件得:,其中.~(1,)i Y B p 1()X p F μ=-因为互相独立,所以也互相独立,再根据二项分布的可加性,有i X i Y ,.1~(,)ni i Y B n p =∑1()Xp Fμ=-9 设是来自总体X 的样本,试求。
西安交通大学——应用数理统计课后答案_
习题11.1 解:由题意95.01=⎭⎬⎫⎩⎨⎧<--u x p 可得:95.0=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<-σσn n u x p而()1,0~N u x n σ⎪⎭⎫ ⎝⎛-- 这可通过查N(0,1)分布表,975.0)95.01(2195.0=-+=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--σn n u x p 那么96.1=σn∴2296.1σ=n1.2 解:(1)至800小时,没有一个元件失效,则说明所有元件的寿命>800小时。
{}2.10015.08000015.00800|e 0015.0800--∞+-=∞+-==>⎰e e dx x p x x那么有6个元件,则所求的概率()2.762.1--==e ep(2)至300小时,所有元件失效,则说明所有元件的寿命<3000小时{}5.4300000015.030000015.001|e 0015.03000----=-==<⎰e e dx x p x 那么有6个元件,则所求的概率()65.41--=ep1.3解: (1) 123{(,,)|0,1,2,,1,2,3}k x x x x k χ===因为~()i X P λ,所以 112233{,,}P X x X x X x ≤≤≤112233{}{}{}P X x P X x P X x =≤≤≤1233123!!!x x x e x x x ++-λλ=其中,0,1,2,,1,2,3k x k == (2) 123{(,,)|0;1,2,3}k x x x x k χ=≥=因为~()i X Exp λ,其概率密度为,0()0,0x e x f x x -λ⎧λ≥=⎨ <⎩所以, 123(,,)3123(,,)x x x f x x x e-λ=λ,其中0;1,2,3k x k ≥=(3) 123{(,,)|;1,2,3}k x x x a x b k χ=≤≤=因为~(,)i X U a b ,其概率密度为1,()0,|a x b f x b a x a x b⎧≤≤⎪=-⎨⎪ <>⎩所以,12331(,,)()f x x x b a =-,其中;1,2,3k a x b k ≤≤= (4) 123{(,,)|;1,2,3}k x x x x k χ=-∞<<+∞= 因为~(,1)i X N μ,其概率密度为(2(),()x f x x 2-μ)-=-∞<<+∞所以,311(2123321(,,)(2)k k x f x x x e π2=--μ)∑=,其中;1,2,3k x k -∞<<+∞=1.4解:由题意可得:()⎪⎩⎪⎨⎧∞<<=--,其它00,21)(i 2ln i i 2i x e x x f u x σσπ则∏==ni x f x x f 1i n i )(),...(=⎪⎪⎩⎪⎪⎨⎧=∞<<∏=∑--=,其它0,...1,0,1n )2()(ln 212n 12i 2i x x e i n i i u x ni σπσ1.5证: 令21()()nii F a Xa ==-∑则'1()2()nii F a Xa ==--∑,''()20F a n => 令'1()2()0ni i F a X a ==--=∑,则可解得11ni i a X X n ===∑由于这是唯一解,又因为''()20F a n =>,因此,当11ni i a X X n ===∑时,()F a 取得最小值1.6证: (1)等式左边11((nnii i i XX X X 22==-μ)=-+-μ)∑∑111(2()()(n n n i i i i i X X X X X X 22====-)+-μ-+-μ)∑∑∑21(()ni i X X n X 2==-)+-μ∑左边=右边,所以得证. (2) 等式左边22111(2nn ni iii i i XX X X X nX 2===-)=-+∑∑∑ 22212nii Xn X n X ==-+∑221ni i X nX ==-∑左边=右边,所以得证.1.7证:(1)∑=-=ni i n x n x 11∑+=-++=11111n i i n x n x 那么)(11_1_n n n x x n x -+++=∑∑=+=∙+-++ni i n n i i x n n x n x n 111111111 =111111+=+++∑n n i i x n x n =∑=+ni i x n 111=_1+n x ∴原命题得证(2)21221-=-=∑n n i i nx x n s211122111-++=+-+=∑n n i i n x x n s那么⎥⎦⎤⎢⎣⎡-+++-+212)(111n n n x x n s n n =∑=+n i i x n 1211--+21n x n n +212)1(++n x n n --++nn x x n n 12)1(2+22)1(-+n x n n=∑=+n i i x n 1211--+222)1(n x n n +2111++n x n -212)1(1++n x n --++n n x x n n 12)1(2=∑+=+11211n i i x n -(111++n x n +-+n x n n 1)2由(1)可得:111++n x n +-+n x n n 1=-+1n x则上式=∑=+n i i x n 1211-21-+n x =21+n s∴原命题得证1.10解: 因为2222111111,()n n n i i i i i i X X S X X X X n n n =====-=-∑∑∑所以 (1) 二项分布(,)B m p11()()()ni i i E X E X E X mp n ====∑21111(1)()()()n ni i i i mp p D X D X D X n n n ==-===∑∑222211111()(())()()(1)n n i i i i n E S E X X E X E X mp p n n n==-=-=-=-∑∑(2) 泊松分布()P λ()E X =λ, ()D X n λ=, 21()n E S n-=λ(3) 均匀分布(,)U a b()2b a E X +=, 2)()12b a D X n (-=, 221()()12n E S b a n-=-(4) 指数分布()Exp λ 1()E X =λ, 1()D X n 2=λ, 21()n E S n 2-=λ (5) 正态分布2(,)N σμ ()E X =μ, 21()D X n σ=, 221()n E S nσ-=1.11解:(1)是统计量(2)不是统计量,因为u未知 (3)统计量 (4)统计量(5)统计量,顺序统计量 (6)统计量 (7)统计量(8)不是统计量,因为u未知 1.14.解: 因为i X 独立同分布,并且~(,i X a Γλ),11ni i X X n ==∑所以1~(,nii Xna =Γλ)∑;令1nii Y X ==∑,则1X Y n =,由求解随机变量函数的概率密度公式可得 1()(),0)nana nx X f x nx e n x na --λλ=>Γ(1.15 解:(1))(m x 的概率密度为: [][])()(1)()!()!1(!)(1)(x f x F x F m n m n x f m n m m ------=又F(x)=2x 且f(x)=2x ,0<x<1则有x x x m n m n x f m n m m 2)1()!()!1(!)(2)1(2)(------=,0<x<1(2) )(1x 与)(n x 的联合概率密度为: [][])()()(1)()()11(!),(011))(1(y f x f y F x F y F n n y x f n n ----=--=y x x y n n n 22))(1(222⋅⋅---=222)()1(4---n x y xy n n 0<x<y<1对于其他x,y ,有0),())(1(=y x f n1.19证:现在要求Y=)X 1/(X m nm n +的概率密度。
(完整版)清华大学_杨虎_应用数理统计课后习题参考答案
习题一1 设总体X 的样本容量5=n ,写出在下列4种情况下样本的联合概率分布. 1)),1(~p B X ; 2))(~λP X ; 3)],[~b a U X ; 4))1,(~μN X .解 设总体的样本为12345,,,,X X X X X , 1)对总体~(1,)X B p ,1122334455511155(1)(,,,,)()(1)(1)i inx x i i i i x x P X x X x X x X x X x P X x p p p p -==-========-=-∏∏其中:5115ii x x ==∑2)对总体~()X P λ11223344555115551(,,,,)()!!ixni i i i i xi i P X x X x X x X x X x P X x e x e x λλλλ-==-==========∏∏∏其中:5115ii x x ==∑3)对总体~(,)X U a b5511511,,1,...,5 (,,)()0i i i i a x b i f x x f x b a==⎧≤≤=⎪==-⎨⎪⎩∏∏,其他4)对总体~(,1) X N μ()()()25555/222151111 (,,)()=2exp 2i x i i i i i f x x f x x μπμ---===⎛⎫==-- ⎪⎝⎭∑∏2 为了研究玻璃产品在集装箱托运过程中的损坏情况,现随机抽取20个集装箱检查其产品损坏的件数,记录结果为:1,1,1,1,2,0,0,1,3,1,0,0,2,4,0,3,1,4,0,2,写出样本频率分布、经验分布函数并画出图形.解 设(=0,1,2,3,4)i i 代表各箱检查中抽到的产品损坏件数,由题意可统计出如下的样本频率分布表1.1:表 1.1 频率分布表i 0 1 2 3 4 个数6 7 3 2 2 iX f0.3 0.35 0.15 0.1 0.1经验分布函数的定义式为:()()()(1)10,(),,=1,2,,1,1,n k k k x x kF x x x x k n n x x +<⎧⎪⎪≤<-⎨⎪≥⎪⎩,据此得出样本分布函数:200,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩图1.1 经验分布函数3 某地区测量了95位男性成年人身高,得数据(单位:cm)如下:组下限165 167 169 171 173 175 177 组上限167 169 171 173 175 177 179x()n F x人 数3 10 21 23 22 11 5试画出身高直方图,它是否近似服从某个正态分布密度函数的图形.解图1.2 数据直方图它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N .4 设总体X 的方差为4,均值为μ,现抽取容量为100的样本,试确定常数k ,使得满足9.0)(=<-k X P μ.解 ()- 54100X P X k P k μμ⎫-⎪<=<⎪⎭()()555 P k X k μ=-<-<因k 较大,由中心极限定理(0,1)4100X N : ()()()-55P X k k k μ<≈Φ-Φ-(5)(1(5))k k =Φ--Φ()2510.9k =Φ-=所以:()50.95k Φ=查表得:5 1.65k =,0.33k ∴=.5 从总体2~(52,6.3)X N 中抽取容量为36的样本,求样本均值落在50.8到53.8之间的概率.解 ()50.853.8 1.1429 1.7143X P X P ⎛⎫<<=-<< ⎪⎝⎭(0,1) 6.3X U N =()()50.853.8 1.1429 1.7143(1.7143)( 1.14290.9564(10.8729)0.8293P X P U ∴<<=-<<=Φ-Φ-=--=)6 从总体~(20,3)X N 中分别抽取容量为10与15的两个独立的样本,求它们的均值之差的绝对值大于0.3的概率.解 设两个独立的样本分别为:110,,X X 与115,,Y Y ,其对应的样本均值为:X 和Y .由题意知:X 和Y 相互独立,且: 3~(20,)10X N ,3~(20,)15Y N(0.3)1(0.3)P X Y P X Y ->=--≤1P =-~(0,0.5)~(0,1)(0.3)22(0.4243)0.6744X Y N X YN P X Y -->=-Φ=7 设110,,X X 是总体~(0,4)X N 的样本,试确定C ,使得1021()0.05ii P XC =>=∑.解 因~(0,4)i X N ,则~(0,1)2iX N ,且各样本相互独立,则有:10122~(10)2i i X χ=⎛⎫⎪⎝⎭∑所以:10102211()()144iii i CP X C P X ==>=>∑∑1021110.0544i i c P X =⎛⎫=-≤= ⎪⎝⎭∑102110.9544i i c P X =⎛⎫≤= ⎪⎝⎭∑查卡方分位数表:c/4=18.31,则c=73.24.8 设总体X 具有连续的分布函数()X F x ,1,,n X X 是来自总体X 的样本,且i EX μ=,定义随机变量:1,,1,2,,0,i i i X Y i n X μμ>==≤⎧⎨⎩试确定统计量∑=ni i Y 1的分布.解 由已知条件得:~(1,)i Y B p ,其中1()X p F μ=-.因为i X 互相独立,所以i Y 也互相独立,再根据二项分布的可加性,有1~(,)nii YB n p =∑,1()X p F μ=-.9 设1,,n X X 是来自总体X 的样本,试求2,,EX DX ES 。
应用数理统计课后习题参考答案
习题五1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g)日期重旦量1 5500 5800 5740 57102 5440 5680 5240 56004 5400 5410 5430 54009 5640 5700 5660 570010 5610 5700 5610 5400试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05)解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5.2假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5检验的问题:H。
:i 2 L 5, H i : i不全相等.计算结果:注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所以拒绝H。
,认为不同日期生产的钢锭的平均重量有显著差异2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验解根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 .2假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .日产量操作工查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。
,认为在四种不同催化剂下平均得率无显著差异3试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另一个是温度试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 )解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12.2假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j ,),i 1,2,3,j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应;检验的问题:(1) H i 。
应用数理统计课后答案
1 n ˆ xi x n i 1 1 n 2 ˆ 2 ( xi x) 2 sn n i 1
则 , 2 的极大似然估计量:
1 n ˆ n X i X i 1 1 n 2 ˆ 2 ( X i X )2 Sn n i 1
1 e x, F (x) 0,
x 0, x 0.
(1) FY ( y) P{Y y} P{aX b y} P{ X
y b yb }(a 0) F ( ) a a
y b y b 当 0,即y b时,FY ( y ) 1 e a . a 当 y b 0,即y b时,F ( y ) 0. Y a
Xi
i 1
2
(t ) e i1
i ( eit 1)
2
根据特征函数的性质(5)得: X 1 X 2 ~ P(1 2 )
第二章 数理统计的基本概念
8.解:设 X 为样本,x 为样本的观测值。由于数据已经按照从小到大的顺序排列,
于是经验分布函数为:
0, 1 , 8 1 , 4 3 , 8 1 Fn ( x ) , 2 5 8 , 3, 4 7 , 8 1,
y
1 e y, FY ( y ) 0,
y 0, y 0.
14.证明:
Cov( , ) Cov(aX b, cY d ) acCov ( X , Y ) D( ) D(aX b) a 2 D( X )同理:D( ) c 2 D(Y )
由极大似然估计的不变性可知
ˆ Sn
清华大学 杨虎 应用数理统计课后习题参考答案3
习题五1试检验不同日期生产的钢锭的平均重量有无显著差异?(α=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5.假设样本观测值(1,2,3,4)ij y j =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .检验的问题:01251:,:i H H μμμμ===不全相等 .计算结果:表5.1 单因素方差分析表注释: 当=0.001表示非常显著,标记为 ‘***’,类似地,= 0.01,0.05,分别标记为 ‘**’ ,‘*’ .查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异.2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(α=0.05)解根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 .假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2~(,),1,2,...,5i i Y N i μσ= .其中样本容量不等,i n 分别取值为6,5,3,4 .检验的问题:012341:,:i H H μμμμμ===不全相等 .计算结果:表5.2 单因素方差分析表查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05,所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 .3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A ,另试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(α=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用.设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12.假设样本观测值(1,2,3,1,2,3,4)ij y ij ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ=1,2,3,4j = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零;(2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; 计算结果:表5.3 双因素无重复试验的方差分析表查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值,或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用.设每个工人在每台机器上的日产量都服从正态分布且方差相同 .试检验:(α=0.05)1)操作工之间的差异是否显著? 2)机器之间的差异是否显著?3)它们的交互作用是否显著?解 根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素,A B 分别表示为机器和操作,试验指标为日产量,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ijk y i j ==来源于正态总体2~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j =,1,2,3k = .记i α⋅为对应于i A 的主效应;记j β⋅为对应于j B 的主效应;记ij γ为对应于交互作用A B ⨯的主效应; 检验的问题:(1)10:i H α⋅全部等于零,11:i H α⋅不全等于零; (2)20:j H β⋅全部等于零,21:j H β⋅不全等于零; (3)30:ij H γ全部等于零,31:ij H γ不全等于零;计算结果:表5.4 双因素无重复试验的方差分析表查表0.95(3,24) 3.01F =,0.95(2,24) 3.4F =,0.95(6,24) 2.51F =,计算值 3.01,A F <3.4, 2.51B A B F F ⨯>>,或0.05A p >>,而,B A B p p ⨯均显著小于0.05,所以拒绝2030,H H ,接受10H ,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著 . 5 某轴承厂为了提高轴承圈退火的质量,制定因素水平分级如下表所示因素 上升温度℃ 保温时间(h)出炉温度℃水平1 800 6 400 水平28208500试填好正交试验结果分析表并对试验结果进行直观分析和方差分析 .解 根据题意,这是一个3因素2水平的试验问题 .试验指标为硬度的合格率 .应选择正交表44(2)L 来安排试验,随机生成正交试验表如下:方差来源 自由度 平方和 均方 F 值 P 值 因素A 因素B 相互效应A ×B误差 总和3 2 6 24 352.750 27.167 73.5 41.333 144.750.917 13.583 12.250 1.7220.5323 7.8871 7.11290.6645 0.00233** 0.00192**由此可见第三号试验条件为:上升温度800℃、保温时间6h 、出炉温度500℃ . 直观分析需要计算K 值,计算结果如下:表5.6 计算表直观分析 由计算的K 值知,因素A 、B 、C 的极差分别为70,40,40,因此主次关系为A B C >=,B ,C 相当 .由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是121,,A B C ,即最佳的水平组合是121A B C ,即最佳搭配为:上升温度800℃、保温时间8h 、出炉温度400℃.采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和 自由度均方差 F 值 A 1225 1 1225 1 B 400 1 400 0.33 C 400 1 400 0.33 误差 1225 1 1225 总和32504如果显著性检验水平取0.1α=,则查表得0.9(1,1)39.9F =,显然计算的F 值1,0.33A B C F F F ===均小于查表值,所以认为三个因素对结果影响都显著 .6问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m 2):62.925,57.075,51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解 该问题属于3因素3水平的试验问题,试验指标为水稻产量 .根据题意应选择正交表49(3)L 来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A 3)珍珠矮11号,插值密度(B 2)3.75棵/100m 2 ,施肥量(C 1)0.75kg/100m 2纯氨; 直观分析需要计算K 值,计算结果如下:表5.9 计算表同上题进行直观分析,得出K 值的大小关系为:111312212223333132,,K K K K K K K K K >>>>>>由直观分析看出:本例较好的水平搭配是:113A B C 采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度 均方差F 值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845 误差78.776 239.388 39.3880.9(2,2)9F =,所以认为三个因素对结果影响都不显著.7 在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A ,吡啶量B 和反应时间C 三个因素,它们各取了7个水平如下:原料配比A :1.0,1.4,1.8,2.2,2.6,3.0,3.4 吡啶量B :10,13,16,19,22,25,28 反应时间C :0.5,1.0,1.5,2.0,2.5,3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294,0.476,0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件.解 根据题意选择均匀设计表47(7)U 来安排试验,有3个因素,根据使用表,实验安排如:表5.11 试验安排表6 6 5 4 0.4517 7 7 7 0.482 所以第7号实验的条件为:原配料比3.4,吡啶量28ml,反应时间3.5h.通过直观分析,最好的实验条件是:原配料比3.4,吡啶量28ml,反应时间3.5h. 通过回归分析,最合适的实验条件是:原配料比2.6,吡啶量16ml,反应时间0.5h.习题六1 从某中学高二女生中随机选取8名,测得其升高、体重如下:1 2 3 4 5 6 78身高(cm)160 159 160 157 169 162 165 154体重(kg)49 46 53 41 49 50 48 43在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析.解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图6.1,表6.1和表6.2:最短距离法离差平方和法图6.1 聚类树形图表6.1 聚类附表(最短距离法)步骤聚类合并系数首次出现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7表6.2 聚类附表(离差平方和法)2 已知五个变量的距离矩阵为03674012340444401592343331).;2);3)036034022020401000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树.解 针对距离矩阵1),采用两种方法计算如下. ①最短距离法的聚类步骤如下:12345036740159036020w w w w w ⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭a )将()236,1w w f h =合并为一类,,{}11456,,,,H w w w h =距离矩阵如下0743023060⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}()457457),,,2b w w h w w f h ==合并为一类,{}2167,,,H w h h =距离矩阵如下:034030⎛⎫ ⎪⎪ ⎪⎝⎭{}()()1681689),,3,3c w h h w h f h f h ===合并为一类,最后,,聚类图和树状图如图6.2:图6.2 聚类图(左)与树状图(右)②最长距离法与最短距离法类似,步骤如下: a )()236,1w w f h =合并为一类,{}11456,,,,H w w w h =距离矩阵如下0746025090⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ {}(){}4574572167),,,2,,,b w w h w w f h H w h h ===合并为一类,距离矩阵如下:067090⎛⎫⎪⎪ ⎪⎝⎭{}()()1681689),,69c w h h w h f h f h ===合并为一类,最后,,,聚类图和树状图如图6.3:图6.3 聚类图(左)与树状图(右)(2)针对距离矩阵2)012340234034040⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭①最短距离法的聚类步骤如下 a )()216,1w w f h =合并为一类,{}13456,,,,0342043040H w w w h =⎛⎫⎪⎪ ⎪ ⎪⎝⎭距离矩阵如下{}()367367),,,2b w h h w h f h ==合并为一类,{}24567,,,,H w w h h =聚类矩阵如下:043040⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,聚类图和树状图如图6.4:图6.4 聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略). (3)044440333022010⎛⎫ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭最短距离法的聚类步骤如下a ) ()456,1w w f h =合并为一类,{}11236,,,,H w w w h =距离矩阵如下0444033020⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭{}(){}36736724567),,,2,,,,b w h h w h f h H w w h h ===合并为一类,距离矩阵如下:044030⎛⎫⎪⎪ ⎪⎝⎭{}(){}()4784789879),,3,,4c w h h w h f h h w h f h ====合并为一类,最后,,,聚类图和树状图如图6.5:图6.5 聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3 在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.47 0.66在绝对距离下,试用重心法对其进行聚类分析.解由R软件得到重心法聚类分析的结果如图6.6与表6.3:图6.6 聚类树形图表6.3 聚类过程记录表步骤聚类合并系数首次出现的阶段类别下一步组 1 组 2 组 1 组 21 1 8 .001 0 0 22 1 10 .002 1 0 43 6 9 .005 0 0 64 15 .010 2 0 75 2 4 .010 0 0 86 67 .027 3 0 77 1 6 .048 4 6 88 1 2 .459 7 5 99 1 3 2.572 8 0 0 4 1975年Dagnelie收集了11年的气象数据资料如下表变量年序x1x2x3x4其中:x 1—前一年11月12日的降水量;x 2—7月均温;x 3—7月降雨量;x 4—月日辐射,试对这四个气象因子进行主成分分析. 解 由R 软件分析得到如下表6.4,6.5:表6.4 各主成分的重要性:主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199 方差贡献率 0.6482947 0.2445722 0.07130967 0.03582351 累积贡献率0.64829470.89286680.964176491.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214 X2 -0.506 0.425 -0.742 -0.111 X3 0.577 0.136 -0.418 0.688 X4-0.5710.2050.4040.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为2.5 对某初中12岁的女生进行体检,测量其身高x 1、体重x 2、胸围x 3和坐高x 4,共测得58个样本,并算得1234(,,,)x x x x x ='的样本协方差为19.9410.5023.566.5919.7120.958.637.97 3.937.55S ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ 试进行样本主成分分析.解 首先计算样本的相关系数矩阵:10.484410.32240.887210.70330.59760.31251⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭设相关系数矩阵的特征值和特征向量分别为d 和v 阵,计算得到0.0546000 0 0.312600= 000.96470 000 2.6681d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭即四个特征值依次为:2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2.四个特征根相应的特征向量为0.06000.70600.5333 0.4620 0.7317 0.17430.34040.5642=0.60570.19320.60400.48060.30690.65870.48460.4870v -⎛⎫ ⎪-⎪ ⎪--- ⎪-⎝⎭ 因此,两个主成分的表达式为:112340.060.73170.60570.3069z x x x x =+-- 212340.7060.17430.19320.6587z x x x x =-+-+6 比较因子分析和主成分分析模型的异同,阐明两者的关系. 解(1)提取公因子的方法主要有主成分法和公因子法.若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n 个原始变量提取m 个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关.(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性.(5)两者分析的实质及重点不同.主成分的数学模型为Y AX =,因子分析的数学模型为X AF ε=+.因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系.(6)SPSS 数据的实现:两者都通过“analyze data reduction Factor···”过程实现,但主成分分析主要使用“descriptires ”,“extraction ”,“stores ”对话框,而因子分析处使用这些外,还可使用“rotaction ”对话框进行因子旋转.7 试对第4题的变量作因子分析,并将结果和上面的结果进行比较. 解 用SPSS 分析,计算结果如下表6.6-6.8:表6.6 反应压缩比情况表 提取方法: 主成分法计算的相关系数矩阵的特征值和方差贡献率:表6.7 方差解释度提取方法: 主成分法表6.8 主成分矩阵8 为研究某一树种的叶片形态,选取50片叶测量其长度x 1(mm )和宽度x 2(mm ),按样本数据求得其平均值和协方差矩阵为:129048134,92,4845x x S ⎛⎫=== ⎪⎝⎭求出相关系数阵R ,并由R 出发作因子分析;解1)求相关系数矩阵:904810.7303,48900.73031S R ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 2)用R 软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values[1] 2.99393809 0.07273809 $vectors[,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068122.9939,0.0727,λλ∴==12(),()0.7071,0.7071-0.7071,0.7071T Tηη==3) 求载荷矩阵A :1.22350.19071.22350.1907A -⎛⎫= ⎪⎝⎭4)22121.5333, 1.5333,h h == 0.98810.154*0.98810.154A -⎛⎫= ⎪⎝⎭12121,1,0.3043,0.3043u u v v ===-=,222222000011112,0,()0.9074,20i i iii i i i i i A u B v C u v D u v =========-===∑∑∑∑9 1981年,生物学家Grogan 和Wirth 对两种蠓虫Af 和Apf 根据其触角长度x 1和翼长x 2进行了分类,分类的数据资料如下:Af 1 2 3 4 5 6 7 8 x 1 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 x 2 1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 Apf 1 2 3 4 5 6 x 1 1.14 1.18 1.20 1.26 1.28 1.30 x 2 1.78 1.96 1.86 2.00 2.00 1.96 (1)试建立Af 和Apf 的Fisher 判别模型;(2)对样本(1.24,1.80),(1.28,1.84),(1.40,2.04)进行判别分类. 解 (1)建立Fisher 判别模型991122121111(,)(1.42,1.75),(,)(1.23,1.93)99T TT T i i i i i i x x y y μμ======∑∑120.08480.1490.01980.0218,0.1490.39120.02180.039A A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭12120.0080.0130.0130.0332A A n n ⎛⎫+== ⎪+-⎝⎭∑()120.19,0.18Tμμ-=-,()()121 1.325,1.842T μμ+= 1345.05135.42135.4283.33--⎛⎫= ⎪-⎝⎭∑, 带入Fisher 判别函数 ()12345.05135.42[(,)(1.325,1.84)]0.19,0.18135.4283.33Tx x -⎛⎫-- ⎪-⎝⎭1291.301741.336944.534x x =--(2)把三个样本(1.24,1.80),(1.28,1.84),(1.4,2.04)带入模型,得到结果:三个样本均属于Apf 类.10 在两个玉米品种之间进行判别:137玉米G 1和甜玉米G 2,选取的两个变量是:x 1—玉米果穗长;x 2—玉米果穗直径,两个类的样本容量为n 1=n 2=40,实际算得两个类的样本均值和样本协方差为:121218.5625.348.120 4.4589.661 3.720,,,5.98 4.12 4.458 4.350 3.720 3.410x x S S ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭试建立G 1,G 2的Bayes 类线性判别函数.解 因为已知两类的样本均值和样本协方差为:12(18.56,5.98),(25.34,4.12)T T x x ==,128.120 4.4589.661 3.720,4.458 4.350 3.720 3.410S S ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可计算得到修正的公共协方差矩阵和逆矩阵12120.2280.1450.1450.0992A A n n ⎛⎫+== ⎪+-⎝⎭∑,15.6393.738.25147.38--⎛⎫= ⎪-⎝⎭∑()()()121216.78,1.86,21.95,5.052TTμμμμ-=-+= 带入Fisher 判别函数()112121(())()2T W x x μμμμ-=-+-∑ ()()12 5.6393.73[(,)21.95,5.05] 6.78,1.868.25147.38Tx x -⎛⎫=-- ⎪-⎝⎭1274.396.951141.29x x =-+-。
《应用数理统计基础》课后答案无第一章
2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2χ分布。
2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η所以 )1,0(~31N η , )1,0(~32N η)2(~)(3133222212221χηηηη+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 由于 2221ηηη+=因此 当 31=c 时,)2(~2χηc 。
2-8. 设 ),,,(1021ξξξ 为)3.0,0(2N 的一个样本,求 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ 。
(参考数据:) 2-8解:因为 )3.0,0(~),,,(21021N ξξξξ =, 所以 )1,0(~3.0N ξ, 即有)10(~3.021012χξ∑=⎪⎭⎫ ⎝⎛i i所以 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ⎭⎬⎫⎩⎨⎧>=∑=1012223.044.13.0i i P ξ⎭⎬⎫⎩⎨⎧>=∑=10122163.0i i P ξ ⎭⎬⎫⎩⎨⎧≤-=∑=10122163.01i i P ξ1.09.01=-= 2-17. 在总体)20,80(2N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的绝对值大于3的概率是多少?(参考数据:)2-17解:因为 )20,80(~2N ξ, 所以 )1,0(~2801002080N -=-ξξ所以 {}380>-ξP {}3801≤--=ξP ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--=232801ξP ⎭⎬⎫⎩⎨⎧≤-≤--=23280231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-=3-3. 1已知总体ξ的分布密度为: )0(000);(>⎩⎨⎧≤>=-λλλλx x e x p x设),,,(21n ξξξ 是容量为n 的样本,试分别求总体未知参数的矩估计量与MIE .3-31解:矩法 由于 x x de x dx e x dx x xp E λλλλξ-+∞+∞-+∞∞-⎰⎰⎰-===00);([]λλλλλ11000=⎥⎦⎤⎢⎣⎡-=+-=+∞-∞+-∞+-⎰x x x e dx e xe 令 ξξ=E 所以 ξλ1ˆ= MIE 当0>x 时,构造似然函数∑===-=-∏n i i i x n ni x e e L 11)(λλλλλ所以 ∑=-=n i i x n L 1ln )(ln λλλ 令0)(ln 1=-=∑=ni i xn d L d λλλ得 ∑∑====n i i n i i x n xn1111ˆλ 即 λ的极大似然估计量为ξλ1ˆ=3-10没有3-26. 随机地取某种炮弹9发做试验,得炮口速度的样本标准差s m S 11*=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题五1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g)日期重旦量1 5500 5800 5740 57102 5440 5680 5240 56004 5400 5410 5430 54009 5640 5700 5660 570010 5610 5700 5610 5400试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05)解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5.2假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5检验的问题:H。
:i 2 L 5, H i : i不全相等.计算结果:注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所以拒绝H。
,认为不同日期生产的钢锭的平均重量有显著差异2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验解根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 .2假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .日产量操作工查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。
,认为在四种不同催化剂下平均得率无显著差异3试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另一个是温度试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 )解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12.2假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j ,),i 1,2,3,j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应;检验的问题:(1) H i 。
: i 全部等于零,H i — i 不全等于零;(2) H 20 : j 全部等于零,H 21: j 不全等于零;计算结果:查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用.4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量:检验的问题:H 0: 1计算结果:H i : i 不全相等设每个工人在每台机器上的日产量都服从正态分布且方差相同•试检验:(=0.05 )1) 操作工之间的差异是否显著?2) 机器之间的差异是否显著?3) 它们的交互作用是否显著?解根据问题,这是一个双因素等重复(3次)试验的问题,要考虑交互作用.设因素A,B分别表示为机器和操作,试验指标为日产量,水平为12.假设样本观测值y jk (i 1,2,3, j 1,2,3, 4)来源于正态总体2Y j ~N( ij, ),i 1,2,3, j 1,2,3,4,k 1,2,3 .记i 为对应于A 的主效应;记j为对应于B j的主效应;记j为对应于交互作用A B的主效应;检验的冋题:(1) H10 :i全部等于零,H11 : i 不全等于零;(2) H 20 :j全部等于零,H21: j不全等于零;(3) H 30 :j全部等于零,H 31 : ij j不全等于零;计算结果:表5.4双因素无重复试验的方差分析表方差来源自由度平方和均方F值P值因素A 3 2.750 0.917 0.5323 0.6645 因素B 2 27.167 13.583 7.8871 0.00233** 相互效应AXB 6 73.5 12.250 7.1129 0.00192** 误差24 41.333 1.722总和35 144.75查表F O.95(3,24) 3.01,F O.95(2,24) 3.4,F0.95(6,24) 2.51,计算值F A 3.01,F B 3.4, F A B 2.51,或p A 0.05,而p B, p A B均显著小于0.05,所以拒绝H20,H30,接受He,认为操作工之间的差异显著,机器之间的差异不显著,它们之间的交互作用显著.5试填好正交试验结果分析表并对试验结果进行直观分析和方差分析解根据题意,这是一个3因素2水平的试验问题.试验指标为硬度的合格率•应选择正交表L4(24 )来安排试验,随机生成正交试验表如下:由此可见第三号试验条件为:上升温度800 C、保温时间6h、出炉温度500 C .直观分析需要计算K值,计算结果如下:直观分析由计算的K值知,因素A、B、C的极差分别为70,40,40,因此主次关系为A B C,B,C相当.由于试验指标为硬度的合格率,应该是越大越好,所以各确定因素的水平分别是A,B2,C I,即最佳的水平组合是AB2C1,即最佳搭配为:上升温度800 C、保温时间8h、出炉温度400 C .采用方差分析法,计算得下表:表5.7 方差分析表方差来源平方和自由度均方差F值A 1225 1 1225 1B400 1 400 0.33C 400 1 400 0.33误差1225 1 1225总和3250 4如果显著性检验水平取0.1 ,则查表得F°.9(1,1) 39.9 ,显然计算的F值F A 1,F B F C0.33均小于查表值,所以认为三个因素对结果影响都显著问应选用哪张正交表安排试验,并写出第8号试验的条件;如果9组试验结果为(单位:kg/100m ): 62.925,57.075, 51.6,55.05,58.05,56.55,63.225,50.7,54.45,试对该正交试验结果进行直观分析和方差分析.解该问题属于3因素3水平的试验问题,试验指标为水稻产量.根据题意应选择正交表L g(34)来安排试验,随机生成正交表如下:由表可知,第8号试验的条件:品种(A3)珍珠矮11号,插值密度(B2)3.75棵/100m2施肥量(C1)0.75kg/100m 纯氨;直观分析需要计算K值,计算结果如下:同上题进行直观分析,得出K值的大小关系为:Ku K13 K 12,K21 K22 K23,K33 K31 K32由直观分析看出:本例较好的水平搭配是:AB1C3采用方差分析法,计算得下表:表5.10 方差分析表方差来源平方和自由度均方差F值A 1.759 2 0.879 0.0223B 65.861 2 32.931 0.8361C 6.660 2 3.330 0.0845误差78.776 2 39.388 39.388 F O.9(2, 2)9,所以认为三个因素对结果影响都不显著7在阿魏酸的合成工艺考察中,为了提高产量,选取了原料配比A,吡啶量B和反应时间C三个因素,它们各取了7个水平如下:原料配比A:1.0,,1.8, 2.2, 2.6, 3.0,3.4吡啶量B::10,13,16,19,22,25,28反应时间C:0.5,,1.5, 2.0, 2.5, 3.0,3.5试选用合适的均匀设计表安排试验,并写出第7号试验的条件;如果7组试验的结果(收率)为:0.33,0.336,0.294, 0.476, 0.209,0.451,0.482,试对该均匀试验结果进行直观分析并通过回归分析发现可能更好的工艺条件解根据题意选择均匀设计表U7(74)来安排试验,有3个因素,根据使用表,实验安排如:66 5 4 0.4517 7 7 7 0.482通过直观分析,最好的实验条件是:原配料比 3.4,吡啶量28ml,反应时间3.5h.通过回归分析,最合适的实验条件是:原配料比 2.6,吡啶量16ml,反应时间0.5h.习题六1从某中学高二女生中随机选取8名,测得其升高、体重如下:1 8 23 4 567身高160 159 160 157 169 162 165(cm)154体重(kg)49 46 53 41 49 50 4843在绝对距离下,试用最短距离法和离差平方和法对其进行聚类分析解由R软件,用最短距离(左)和差离平方和法(右)对题目进行聚类分析如下图 6.1, 表6.1和表6.2 :图6.1聚类树形图表聚类附表最短距离法步骤聚类合并系数首次岀现的阶段类别下一步组1 组2 组1 组21 1 6 5.000 0 0 22 1 2 10.000 1 0 43 4 8 13.000 0 0 74 1 7 13.000 2 0 55 1 3 13.000 4 0 66 1 5 17.000 5 0 7最短距离法离差平方和法2已知五个变量的距离矩阵为0 3 6 7 4 0 1 2 3 4 0 4 4 4 40 1 5 90 23 43 3 31). 0 36;2) 0 3 4 ;3) 0 2 20 2 0 4 0 10 0 0试用最短距离法和最长距离法对这些变量进行聚类,并画出聚类图和二分树解针对距离矩阵1),采用两种方法计算如下①最短距离法的聚类步骤如下:W i w W3 W4 W50 3 6 7 40 15 90 3 60 2a )将W2, W3合并为一类,f h6 1,H1W-!,W4, W5, h s ,距离矩阵如下0 7 4 30 2 30 6b) W4,W5 合并为一类,h7 W4,W5 ,f h7 2H2W-I, h s ,h7,距离矩阵如下:c) w i,hs合并为一类,h s w,h s ,f h s 3,最后f h9 3,聚类图和树状图如图 6.2:h8 h9h71 2 3 4 5X2 [ 31h64图6.2聚类图(左)与树状图1②最长距离法与最短距离法类似,步骤如下:a) W2, W3合并为一类,f h6 1H i W i,W4,W5,h6 ,距离矩阵如下b) H2 W4,W5合并为一类,h7W4, W5 , f h7 W i,h3,h y , 距离矩阵如下:c) W i,h6合并为一类, h8 最后f h g 9,聚类图和树状图如图6.3:9 —6_ 2 —1h9h8h64 5 11232图6.3聚类图(左)与树状图(右)h7/\50 1 23 40 23 40 3 40 4①最短距离法的聚类步骤如下a ) W 2,w 合并为一类,f h 6 1(2)针对距离矩阵2),距离矩阵如下H iW 3,W 4,W 5,% 0 3 40 40 2 3 4 0b) w 3, h 6合并为一类,g W 3,h 6 ,f h 7H 2w t ,W 5,h 6,h 7 ,聚类矩阵如下:c) w 4, hz合并为一类, h 8 W 4,hz , f h g3,最后h g W 3,hz , f hg 4聚类图和树状图如图6.4: h9Z\43 — 2 — 11 1111 2 1 ____ 1 __345图6.4聚类图(左)与树状图(右)②由于本题数据的特殊性,最长距离法与最短距离法结果相同(略)120 4 4 4 40 3 3 30 2 20 1最短距离法的聚类步骤如下a) ww合并为一类,f h6 1H i W|,w2 , w3, h e ,距离矩阵如下0 4 4 40 3 30 2b) W3,h6合并为一类,h? W3, h6 , f h? 2H2 w4,w5,h6,h7 ,距离矩阵如下:0 4 40 3c) w t,h7合并为一类,h8 w4,h7, f h s 3,最后h9 w8, h? , f h9 4,聚类图和树状图如图6.5:4n I3卜---------------- -----2- , |--------- L-1」 1 ___ [ r1 2 3 4图6.5聚类图(左)与树状图(右)由于本题数据的特殊性,最长距离法与最短距离法结果相同(略).3在一项关于作物对土壤营养的反应的研究中,要测定土壤的总磷量和总氮量(占干物质重的百分比),今对10份土样测得数据如下:总氮量(%)0.120.63 1.19 2.30 1.29 0.73 0.52 0.33 0.61 0.470.66在绝对距离下,试用重心法对其进行聚类分析解由R软件得到重心法聚类分析的结果如图 6.6与表6.3:图6.6聚类树形图4 1975年Dagnelie收集了11年的气象数据资料如下表1 87.9 19.6 1.0 16612 89.9 15.2 90.1 9683 153.0 19.7 56.6 13534 132.1 17.0 91.0 12935 88.8 18.3 93.7 11536 220.9 17.8 106.9 12867 117.7 17.8 65.5 11048 109.0 18.3 41.8 15749 156.1 17.8 57.4 122210 181.5 16.8 140.6 902181.4 17.0 74.3 115011其中:X1 —前一年11月12日的降水量;X2—7月均温;X3—7月降雨量;X4—月日辐射,试对这四个气象因子进行主成分分析•解由R软件分析得到如下表6.4,6.5:表6.4各主成分的重要性主成分1 主成分2 主成分3 主成分4 标准差 1.6103349 0.9890848 0.53407741 0.37854199方差贡献率0.6482947 0.2445722 0.07130967 0.03582351累积贡献率0.6482947 0.8928668 0.96417649 1.00000000表6.5 因子荷载:主成分1 主成分2 主成分3 主成分4 X1 0.291 0.871 0.332 -0.214X2 -0.506 0.425 -0.742 -0.111X3 0.577 0.136 -0.418 0.688X4 -0.571 0.205 0.404 0.685由于前两个主成分对应的累积贡献率已经达到89.287,因此选取主成分的数目为 2.5对某初中12岁的女生进行体检,测量其身高x i、体重X2、胸围X3和坐高X4,共测得58个样本,并算得x (x-i,x2, X3,x4)的样本协方差为19.9410.50 23.56S6.59 19.71 20.958.63 7.97 3.93 7.55试进行样本主成分分析解首先计算样本的相关系数矩阵:10.4844 10.3224 0.8872 10.7033 0.5976 0.3125 1设相关系数矩阵的特征值和特征向量分别为d和v阵,计算得到0.0546 0 0 00 0.3126 0 0d =0 0 0.9647 00 0 0 2.6681即四个特征值依次为: 2.6681,0.9647,0.3126,0.0546,前两个主成分的累计贡献率为:90.8471%,因此提取主成分为2•四个特征根相应的特征向量为0.0600 0.7060 0.5333 0.46200.7317 0.1743 0.3404 0.5642v 一0.6057 0.1932 0.6040 0.48060.3069 0.6587 0.4846 0.4870因此,两个主成分的表达式为:z-i 0.06x10.7317X2 0.6057 x3 0.3069 x4Z2 0.706x1 0.1743x2 0.1932x3 0.6587x46比较因子分析和主成分分析模型的异同,阐明两者的关系解(1)提取公因子的方法主要有主成分法和公因子法•若采取主成分法,则主成分分析和因子分析基本等价,该法从解释变量的变异的角度出发,尽量使变量的方差能被主成分解释;而公因子法主要从解释变量的相关性角度,尽量使变量的相关程度能被公因子解释,当因子分析目的重在确定结构时则用到该法.(2)主成分分析和因子分析都是在多个原始变量中通过他们之间的内部相关性来获得新的变量,达到既减少分析指标个数,又能概括原始指标主要信息的目的.但他们各有其特点:主成分分析是将n个原始变量提取m个支配原始变量的公因子,和1个特殊因子,各因子之间可以相关或不相关•(3)统用降维的方法,但差异也很明显:主成分分析把方差划分为不同的正交成分,而因子分析则把方差化分为不同的起因因子;因子分析中的特征值的计算只能从相关系数矩阵出发,且必须把主成分划分为因子.(4)因子分析提取的公因子比主成分分析提取的主成分更具有可解释性(5)两者分析的实质及重点不同•主成分的数学模型为Y AX,因子分析的数学模型为X AF •因而可知主成分分析是实际上是线性变换,无假设检验,而因子分析是统计模型,某些因子模型是可以得到假设检验的;主成分分析主要综合原始数据的信息,而因子分析重在解释原始变量之间的关系•(6) SPSS 数据的实现:两者都通过 analyze ― ata reduction ―► Factor ••过程实现, 但主成分分析主要使用"descriptires ” extraction ” stores "对话框,而因子分析处使用这些外, 还可使用"rotaction "对话框进行因子旋转.7试对第4题的变量作因子分析,并将结果和上面的结果进行比较 解 用SPSS 分析,计算结果如下表 6.6-6.8 :提取方法:主成分法计算的相关系数矩阵的特征值和方差贡献率:提取方法主成分法表8为研究某一树种的叶片形态, 选取50片叶测量其长度X 1 (mm )和宽度X 2 (mm ),按样本数据求得其平均值和协方差矩阵为:90 48 X 134, X ?92, S48 45求出相关系数阵 R ,并由R 出发作因子分析;190 48 1 0.7303 S,R48 900.730312)用只软件求R 的特征根及其相应的特征向量,软件输出结果如下:$values [1] 2.99393809 0.07273809$vectors[,1] [,2][1,] 0.7071068 -0.7071068 [2,] 0.70710680.707106812.9939, 2 0.0727,3)求载荷矩阵A :1.2235 0.1907 A1.2235 0.19079 1981年,生物学家 Grogan 和Wirth 对两种蠓虫 Af 和Apf 根据其触角长度 X 1和翼长X 2解(1)建立Fisher 判别模型 1)求相关系数矩阵:(0.7071,0.7071 ),(-0.7071,0.7071 )hj 1.5333,h 21 2 1.53 33, A*0.9881 0.98810.154 0.154Ui 1,U 21,V 10.3043M 0.30432AU i 2, B 0i 12V i i 120,C 。