时间序列图
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
課本41頁之公式為兩平均數差之假設檢定所需之樣本 數公式。
&Two
DOE Class 90a
27
&Two
DOE Class 90a
28
Construction of the C.I.
2
Xi X
S 2 i1
n 1
&Two
DOE Class 90a
8
Central Limit Theorem
&Two
DOE Class 90a
9
假設檢定(Hypothesis Testing)
“A person is innocent until proven guilty beyond a reasonable doubt.” 在沒有充分證據證明其犯罪之前, 任何人皆是清白的.
檢定結果可能為
Type I Error(a): Reject H0 while H0 is true. Type II Error(b): Fail to reject H0 while H0 is false.
&Two
DOE Class 90a
12
HH01
: :
無辜(Innocent) 有罪(Guilty)
Z0
x
s
/
0
n
6. Reject H0 if Z0 > 1.96 or Z0 < -1.96 (because Za/2 = Z0.025 = 1.96) 7. Computations:
Z0
51.3 50 2 / 25
3.25
8. Conclusions: Since Z0 = 3.25 > 1.96, we reject H0: = 50 at the 0.05 level of significance. We conclude that the mean burning rate differs from 50 cm/s, based on a sample of 25 measurements. In fact, there is string evidence that the mean burning rate exceeds 50 cm/s.
We therefore do not know the probability of committing a type II error (b).
Two ways of making conclusion: 1. Reject H0 2. Fail to reject H0, (Do not say accept H0) or there is not enough evidence to reject H0.
Use to performing sample size or type II error calculations.
The parameter d is defined as:
d | 0 | |d |
s
s
so that it can be used for all problems regardless of the values of 0 and s.
假設檢定 H0: = 50 cm/s H1: 50 cm/s
Null Hypothesis (H0) Vs. Alternative Hypothesis (H1) One-sided and two-sided Hypotheses A statistical hypothesis is a statement about the
25
The Sample Size (I)
Given values of a and d, find the required sample size n to achieve a particular level of b..
Since
b
Za / 2
s
d
/
பைடு நூலகம்
n
5
期望值與變異數之公式
E(ax1 bx2 ) aE(x1) bE(x2 ) V (ax1) a2V (x1) V (x1 x2 ) V (x1) V (x2 ) 2Cov(x1, x2 ),
其中Cov(x1, x2 ) Ex1 1x2 2
若x1, x2獨立, 則Cov(x1, x2 ) 0, 且V (x1 x2 ) V (x1) V (x2 ) E(x1 x2 ) E(x1) E(x2 ) E(x1 x2 ) E(x1) E(x2 )
&Two
DOE Class 90a
6
Sample and Sampling
&Two
DOE Class 90a
24
P-Values in Hypothesis Tests
Where Z0 is the test statistic, and (z) is the standard normal cumulative function.
&Two
DOE Class 90a
The Jury finds the person
Innocent Guilty
The Defendant is
Innocent
Guilty
Type II Error
Type I Error
&Two
DOE Class 90a
13
Making Conclusions
We always know the risk of rejecting H0, i.e., a, the significant level or the risk.
X
s
0
n
~
N 0,1
&Two
DOE Class 90a
22
Example 8-2
Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an important product characteristic. Specifications require that the mean burning rate must be 50 cm/s. We know that the standard deviation of burning rate is 2 cm/s. The experimenter decides to specify a type I error probability or significance level of α = 0.05. He selects a random sample of n = 25 and obtains a sample average of the burning rate of x = 51.3 cm/s. What conclusions should be drawn?
these into the equation for the test statistic, and compute that value.
8. Decide whether or not H0 should be rejected and report
that in the problem context.
&Two
DOE Class 90a
23
1. The parameter of interest is , the meaning burning rate.
2. H0: = 50 cm/s 3. H1: 50 cm/s 4. a = 0.05
5. The test statistics is:
&Two
DOE Class 90a
20
General Procedure for Hypothesis Testing
1. From the problem context, identify the parameter of interest.
2. State the null hypothesis, H0. 3. Specify an appropriate alternative hypothesis, H1. 4. Choose a significance level a. 5. State an appropriate test statistic. 6. State the rejection region for the statistic. 7. Compute any necessary sample quantities, substitute
parameters of one or more populations.
&Two
DOE Class 90a
10
About Testing
Critical Region Acceptance Region Critical Values
&Two
DOE Class 90a
11
Errors in Hypothesis Testing
母體平均數(m ) = 隨機變數之期望值 E(X) 母體變異數(s 2) = 隨機變數之變異數 V(X)
E
(
X
)
All x
xf (x)dx, xp(x),
continuous discrete
V (X ) E x 2
&Two
DOE Class 90a
&Two
DOE Class 90a
14
Significant Level (a)
a = P(type I error) = P(reject H0 while H0 is true)
n = 10, s = 2.5 s/n = 0.79
&Two
DOE Class 90a
15
&Two
DOE Class 90a
If X1, X 2,, X n are samples drawn from a distribution
with mean and variance s 2, then X ~ N ,s 2 n .
Therefore, if H0 is true ( 0 ), then
Z0
&Two
DOE Class 90a
7
點估計(Point Estimation)
以抽樣得來之樣本資料, 依循某一公式計算出單一數值, 來估計母體參數, 稱為點估計.
好的點估計公式之條件:
不偏性
最小變異
常用之點估計:
母體平均數(m)
X Xi
n
母體變異數(s 2)
n
~
點圖 (Dot Diagram)
&Two
DOE Class 90a
1
直方圖 (Histogram)
&Two
DOE Class 90a
2
盒形圖 (Box Plot)
&Two
DOE Class 90a
3
時間序列圖 (Time Series Plot)
&Two
DOE Class 90a
4
期望值與變異數之公式
&Two
DOE Class 90a
21
Inference on the Mean of a Population -Variance Known
H0: = 0 H1: 0 , where 0 is a specified constant.
Sample mean is the unbiased point estimator for population mean.
16
&Two
DOE Class 90a
17
&Two
DOE Class 90a
18
&Two
DOE Class 90a
19
The Power of a Statistical Test
Power = 1 - b Power = the sensitivity of a statistical test
Za / 2
s
d
/
n
Za / 2
s
d
/
n
w hend
0
Let b Zb
d
Then, Zb
Za / 2
s
/
n
n
Za /2 Zb
d2
2s 2
whered 0
&Two
DOE Class 90a
26
The Operating Characteristic Curves - Normal test (z-test)
&Two
DOE Class 90a
27
&Two
DOE Class 90a
28
Construction of the C.I.
2
Xi X
S 2 i1
n 1
&Two
DOE Class 90a
8
Central Limit Theorem
&Two
DOE Class 90a
9
假設檢定(Hypothesis Testing)
“A person is innocent until proven guilty beyond a reasonable doubt.” 在沒有充分證據證明其犯罪之前, 任何人皆是清白的.
檢定結果可能為
Type I Error(a): Reject H0 while H0 is true. Type II Error(b): Fail to reject H0 while H0 is false.
&Two
DOE Class 90a
12
HH01
: :
無辜(Innocent) 有罪(Guilty)
Z0
x
s
/
0
n
6. Reject H0 if Z0 > 1.96 or Z0 < -1.96 (because Za/2 = Z0.025 = 1.96) 7. Computations:
Z0
51.3 50 2 / 25
3.25
8. Conclusions: Since Z0 = 3.25 > 1.96, we reject H0: = 50 at the 0.05 level of significance. We conclude that the mean burning rate differs from 50 cm/s, based on a sample of 25 measurements. In fact, there is string evidence that the mean burning rate exceeds 50 cm/s.
We therefore do not know the probability of committing a type II error (b).
Two ways of making conclusion: 1. Reject H0 2. Fail to reject H0, (Do not say accept H0) or there is not enough evidence to reject H0.
Use to performing sample size or type II error calculations.
The parameter d is defined as:
d | 0 | |d |
s
s
so that it can be used for all problems regardless of the values of 0 and s.
假設檢定 H0: = 50 cm/s H1: 50 cm/s
Null Hypothesis (H0) Vs. Alternative Hypothesis (H1) One-sided and two-sided Hypotheses A statistical hypothesis is a statement about the
25
The Sample Size (I)
Given values of a and d, find the required sample size n to achieve a particular level of b..
Since
b
Za / 2
s
d
/
பைடு நூலகம்
n
5
期望值與變異數之公式
E(ax1 bx2 ) aE(x1) bE(x2 ) V (ax1) a2V (x1) V (x1 x2 ) V (x1) V (x2 ) 2Cov(x1, x2 ),
其中Cov(x1, x2 ) Ex1 1x2 2
若x1, x2獨立, 則Cov(x1, x2 ) 0, 且V (x1 x2 ) V (x1) V (x2 ) E(x1 x2 ) E(x1) E(x2 ) E(x1 x2 ) E(x1) E(x2 )
&Two
DOE Class 90a
6
Sample and Sampling
&Two
DOE Class 90a
24
P-Values in Hypothesis Tests
Where Z0 is the test statistic, and (z) is the standard normal cumulative function.
&Two
DOE Class 90a
The Jury finds the person
Innocent Guilty
The Defendant is
Innocent
Guilty
Type II Error
Type I Error
&Two
DOE Class 90a
13
Making Conclusions
We always know the risk of rejecting H0, i.e., a, the significant level or the risk.
X
s
0
n
~
N 0,1
&Two
DOE Class 90a
22
Example 8-2
Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an important product characteristic. Specifications require that the mean burning rate must be 50 cm/s. We know that the standard deviation of burning rate is 2 cm/s. The experimenter decides to specify a type I error probability or significance level of α = 0.05. He selects a random sample of n = 25 and obtains a sample average of the burning rate of x = 51.3 cm/s. What conclusions should be drawn?
these into the equation for the test statistic, and compute that value.
8. Decide whether or not H0 should be rejected and report
that in the problem context.
&Two
DOE Class 90a
23
1. The parameter of interest is , the meaning burning rate.
2. H0: = 50 cm/s 3. H1: 50 cm/s 4. a = 0.05
5. The test statistics is:
&Two
DOE Class 90a
20
General Procedure for Hypothesis Testing
1. From the problem context, identify the parameter of interest.
2. State the null hypothesis, H0. 3. Specify an appropriate alternative hypothesis, H1. 4. Choose a significance level a. 5. State an appropriate test statistic. 6. State the rejection region for the statistic. 7. Compute any necessary sample quantities, substitute
parameters of one or more populations.
&Two
DOE Class 90a
10
About Testing
Critical Region Acceptance Region Critical Values
&Two
DOE Class 90a
11
Errors in Hypothesis Testing
母體平均數(m ) = 隨機變數之期望值 E(X) 母體變異數(s 2) = 隨機變數之變異數 V(X)
E
(
X
)
All x
xf (x)dx, xp(x),
continuous discrete
V (X ) E x 2
&Two
DOE Class 90a
&Two
DOE Class 90a
14
Significant Level (a)
a = P(type I error) = P(reject H0 while H0 is true)
n = 10, s = 2.5 s/n = 0.79
&Two
DOE Class 90a
15
&Two
DOE Class 90a
If X1, X 2,, X n are samples drawn from a distribution
with mean and variance s 2, then X ~ N ,s 2 n .
Therefore, if H0 is true ( 0 ), then
Z0
&Two
DOE Class 90a
7
點估計(Point Estimation)
以抽樣得來之樣本資料, 依循某一公式計算出單一數值, 來估計母體參數, 稱為點估計.
好的點估計公式之條件:
不偏性
最小變異
常用之點估計:
母體平均數(m)
X Xi
n
母體變異數(s 2)
n
~
點圖 (Dot Diagram)
&Two
DOE Class 90a
1
直方圖 (Histogram)
&Two
DOE Class 90a
2
盒形圖 (Box Plot)
&Two
DOE Class 90a
3
時間序列圖 (Time Series Plot)
&Two
DOE Class 90a
4
期望值與變異數之公式
&Two
DOE Class 90a
21
Inference on the Mean of a Population -Variance Known
H0: = 0 H1: 0 , where 0 is a specified constant.
Sample mean is the unbiased point estimator for population mean.
16
&Two
DOE Class 90a
17
&Two
DOE Class 90a
18
&Two
DOE Class 90a
19
The Power of a Statistical Test
Power = 1 - b Power = the sensitivity of a statistical test
Za / 2
s
d
/
n
Za / 2
s
d
/
n
w hend
0
Let b Zb
d
Then, Zb
Za / 2
s
/
n
n
Za /2 Zb
d2
2s 2
whered 0
&Two
DOE Class 90a
26
The Operating Characteristic Curves - Normal test (z-test)