高考数学中利用空间向量解决立体几何向量方法(六)——在立体几何中应用
空间向量在立体几何中的应用和习题(含答案)[1]
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用
第三节空间向量在立体几何中的应用一、填空题1. 若等边的边长为,平面内一点知足,则_________2.在空间直角坐标系中,已知点 A( 1,0, 2), B(1 , -3 , 1) ,点 M在 y 轴上,且 M到 A 与到 B 的距离相等,则 M的坐标是 ________。
【分析】设由可得故【答案】 (0,-1 , 0)二、解答题3.(本小题满分 12 分)如图,在五面体ABCDEF中, FA 平面 ABCD, AD(II )证明:,(I II )又由题设,平面的一个法向量为4.(此题满分15 分)如图,平面平面,是认为斜边的等腰直角三角形,分别为,,的中点,,.(I )设是的中点,证明:平面;(II )证明:在内存在一点,使平面,并求点到,的距离.证明:( I )如图,连结 OP,以 O为坐标原点,分别以 OB、 OC、 OP所在直线为轴,轴,轴,成立空间直角坐标系 O,则,由题意得,因,所以平面BOE的法向量为,得,又直线不在平面内,所以有平面6.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF不在同一平面内,M, N 分别为 AB, DF的中点。
(I)若平面 ABCD ⊥平面 DCEF,求直线 MN与平面 DCEF所成角的正当弦;(I I )用反证法证明:直线 ME 与 BN 是两条异面直线。
设正方形ABCD,DCEF的边长为2,以 D 为坐标原点,分别以射线DC,DF,DA为 x,y,z轴正半轴成立空间直角坐标系如图.则 M( 1,0,2 ) ,N(0,1,0),可得=(-1,1,2).又 =( 0, 0, 2)为平面DCEF的法向量,可得cos(,)=·DCEF所成角的正弦值为所以MN与平面cos · 6 分( Ⅱ ) 假定直线ME与 BN共面,8 分则 AB平面 MBEN,且平面 MBEN与平面 DCEF交于 EN由已知,两正方形不共面,故AB平面 DCEF。
高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析
1.2.2 空间中的平面与空间向量导思1.什么是平面的法向量?它在解决线面位置关系中有何用途? 2.什么是三垂线定理及其逆定理?1.平面的法向量(1)定义:如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时也称n 与平面α垂直,记作n ⊥α. (2)性质:如果A ,B 是平面α上的任意不同两点,n 为平面α的一个法向量,则: 1 若直线l ⊥α,则l 的任意一个方向向量都是平面α的一个法向量 2 对任意实数λ≠0,λn 是平面α的一个法向量 3向量AB → 一定与n 垂直,即AB →·n =0平面α的法向量唯一吗?它们有什么共同特征? 提示:不唯一,都平行.2.空间线面的位置关系与空间向量若v 是直线l 的一个方向向量,n 1,n 2分别是平面α1,α2的一个法向量,则:1 n 1∥v ⇔l ⊥α12 n 1⊥v ⇔l ∥α1或l ⊂α13 n 1⊥n 2⇔α1⊥α24 n 1∥n 2⇔α1∥α2或α1,α2重合已知v 是直线l 的一个方向向量,n 是平面α的一个法向量,如果n ⊥v ,那么直线l 一定与平面α平行吗?提示:不一定,也可能l ⊂α. 3.三垂线定理及其逆定理 射影已知平面α和一点A ,过点A 作α的垂线l ,设l 与α相交于点A′,则A′就是点A在平面α内的射影,也称为投影.三垂线定理如果平面内的一条直线与平面的一条斜线在该平面内的射影垂直,则它也和这条斜线垂直.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在该平面内的射影垂直.1.辨析记忆(对的打“√”,错的打“×”).(1)已知直线l垂直于平面α,向量a平行直线l,则a是平面α的法向量.()(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.()(3)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.()提示:(1)×.向量a必须为非零向量.(2)√.(3)×.因为b不一定在平面α内,所以a与b不一定垂直.2.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是() A.(0,1,2) B.(3,6,9)C.(-1,-2,3) D.(3,6,8)【解析】选B.向量(1,2,3)与向量(3,6,9)共线.3.(教材例题改编)已知PO⊥平面ABC,且O为△ABC的垂心,则AB与PC的关系是________.【解析】因为O为△ABC的垂心,所以CO⊥AB.又因为OC为PC在平面ABC内的射影,所以由三垂线定理知AB⊥PC.答案:垂直关键能力·合作学习类型一 平面的法向量(数学运算)1.若两个向量AB → =(1,2,3),AC →=(3,2,1),则平面ABC 的一个法向量 为( )A .(-1,2,-1)B .(1,2,1)C .(1,2,-1)D .(-1,2,1)2.已知点A(2,-1,2)在平面α内,n =(3,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .P(1,-1,1)B .P ⎝⎛⎭⎫1,3,32C .P ⎝⎛⎭⎫1,-3,32D .P ⎝⎛⎭⎫-1,3,-343.正四棱锥如图所示,在向量PA → -PB → +PC → -PD → ,PA → +PC → ,PB → +PD → ,PA → +PB → +PC →+PD →中,不能作为底面ABCD 的法向量的是________.【解析】AB → =(1,2,3),AC →=(3,2,1), 设平面ABC 的一个法向量n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=x +2y +3z =0n ·AC →=3x +2y +z =0 ,取x =-1,得平面ABC 的一个法向量为(-1,2,-1).2.选B.设P(x ,y ,z),则AP →=(x -2,y +1,z -2); 由题意知,AP → ⊥n ,则n ·AP →=0;所以3(x -2)+(y +1)+2(z -2)=0,化简得3x +y +2z =9. 验证得在A 中,3×1-1+2×1=4,不满足条件; 在B 中,3×1+3+2×32 =9,满足条件; 同理验证C 、D 不满足条件.3.连接AC ,BD ,交于点O ,连接OP ,则OP → 是底面ABCD 的一个法向量,PA → -PB → +PC → -PD →=BA → +DC → =0,不能作为底面ABCD 的法向量;PA → +PC → =-2OP →,能作为底面ABCD 的法向量;PB → +PD → =-2OP → ,能作为底面ABCD 的法向量;PA → +PB → +PC → +PD → =-4OP →,能作为底面ABCD 的法向量.答案:PA → -PB → +PC → -PD →求平面ABC 的一个法向量的方法1.平面垂线的方向向量法:证明一条直线为一个平面的垂线,则这条直线的一个方向向量即为所求.2.待定系数法:步骤如下:类型二 三垂线定理及其逆定理的应用(直观想象、逻辑推理)【典例】如图所示,三棱锥P-ABC 中,PA ⊥平面ABC ,若O ,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.【思路导引】利用三垂线定理及其逆定理证明【证明】如图,连接AO 并延长交BC 于点E ,连接PE.因为PA ⊥平面ABC ,AE ⊥BC(由于O 是△ABC 的垂心), 所以PE ⊥BC ,所以点Q 在PE 上.因为⎩⎪⎨⎪⎧AE ⊥BC ,PE ⊥BC ,AE ∩PE =E ⇒BC ⊥平面PAE ⇒BC ⊥OQ.①连接BO 并延长交AC 于点F ,则BF ⊥AC. 连接BQ 并延长交PC 于点M ,则BM ⊥PC. 连接MF.因为PA ⊥平面ABC ,BF ⊥AC , 所以BF ⊥PC(三垂线定理).因为⎩⎪⎨⎪⎧BM ⊥PC ,BF ⊥PC ,BM ∩BF =B ⇒PC ⊥平面BMF ⇒PC ⊥OQ.②由①②,知OQ ⊥平面PBC.利用三垂线定理及其逆定理证明线线垂直的基本环节在正方体ABCD-A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.【证明】连接AC,CD1,在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.类型三利用空间向量证明线面、面面的位置关系(逻辑推理)证明平行问题角度1【典例】如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q 是CC1上的点.当点Q在什么位置时,BQ∥平面PAO?【思路导引】建立恰当的坐标系,设出点Q的坐标,由BQ∥平面PAO确定其位置即可.【解析】建立如图所示的空间直角坐标系Dxyz,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2). 再设Q(0,2,c),所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,c),BD 1=(-2,-2,2). 设平面PAO 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·OA →=0,n ·OP →=0, 所以⎩⎪⎨⎪⎧x -y =0,-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n =(1,1,2). 若BQ ∥平面PAO ,则n ⊥BQ ,所以n ·BQ → =0,即-2+2c =0,所以c =1, 故当Q 为CC 1的中点时,BQ ∥平面PAO.本例若把“Q 是CC 1上的点”改为“Q 是CC 1的中点”,其他条件不变,求证:平面D 1BQ ∥平面PAO.【证明】建立如图所示的空间直角坐标系,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2),Q(0,2,1), 所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,1),BD 1=(-2,-2,2). 设平面PAO 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧n 1·OA →=0n 1·OP →=0 ,所以⎩⎪⎨⎪⎧x -y =0-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n 1=(1,1,2).同理可求平面D 1BQ 的一个法向量为n 2=()1,1,2 , 因为n 1=n 2,所以n 1∥n 2, 所以平面D 1BQ ∥平面PAO.角度2证明垂直问题【典例】在如图所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,AB =2BC ,∠ABC =60°,AC ⊥FB. (1)求证:AC ⊥平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.【思路导引】(1)利用余弦定理和勾股定理的逆定理可得AC ⊥BC ,再利用已知AC ⊥FB 和线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,利用两个平面的法向量是否垂直即可. 【解析】(1)因为AB =2BC ,∠ABC =60°,在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2AB ·BCcos 60°=3BC 2, 所以AC 2+BC 2=4BC 2=AB 2, 所以∠ACB =90°,所以AC ⊥BC. 又因为AC ⊥FB ,FB ∩BC =B , 所以AC ⊥平面FBC.(2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC. 证明如下:因为AC ⊥平面FBC , 所以AC ⊥FC.因为CD ⊥FC ,所以FC ⊥平面ABCD.所以CA ,CF ,CB 两两互相垂直,如图建立空间直角坐标系.在等腰梯形ABCD 中,可得CB =CD.设BC =1,所以C(0,0,0),A(3 ,0,0),B(0,1,0),D(32 ,-12 ,0),E ⎝ ⎛⎭⎪⎪⎫32,-12,1 .所以CE → =⎝⎛⎭⎪⎪⎫32,-12,1 ,CA →=(3 ,0,0),CB →=(0,1,0).设平面EAC 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·CE →=0n ·CA →=0 ,所以⎩⎨⎧32x -12y +z =03x =0,取z =1,得n =(0,2,1).假设线段ED 上存在点Q , 设Q ⎝⎛⎭⎪⎫32,-12,t (0≤t≤1),所以CQ →=⎝ ⎛⎭⎪⎫32,-12,t . 设平面QBC 的法向量为m =(a ,b ,c),则⎩⎪⎨⎪⎧m ·CB →=0m ·CQ →=0 ,所以⎩⎨⎧b =032a -12b +tc =0,取c =1,得m =⎝ ⎛⎭⎪⎫-2t 3,0,1 .要使平面EAC ⊥平面QBC ,只需m·n =0, 即-23t×0+0×2+1×1=0,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC. 利用空间向量证明平行、垂直问题的常用思路线面平行(1)求出直线l的方向向量是a,平面α的法向量是u,只需证明a⊥u,即a·u=0.(2)在平面内找一个向量与已知直线的方向向量是共线向量即可.面面平行(1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u,v,证明u∥v即可说明α∥β.线面垂直求出平面内两条相交直线的方向向量,证明直线的方向向量和它们都垂直.面面垂直(1)转化为线面垂直.(2)求解两个平面的法向量,证明两个法向量垂直.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.【解析】如图所示建立空间直角坐标系,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA → =(2,0,0),AE → =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA → ,n 1⊥AE → ,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0n 1·AE →=2y 1+z 1=0 ⇒⎩⎪⎨⎪⎧x 1=0z 1=-2y 1 , 令z 1=2⇒y 1=-1,所以n 1=(0,-1,2),因为n 1·1FC =-2+2=0,所以n 1⊥1FC , 又因为FC 1⊄平面ADE ,即FC 1∥平面ADE.(2)因为11C B =(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥1FC ,n 2⊥11C B ,得21222112FC 2y z 0C B 2x 0⎧=+=⎪⎨==⎪⎩n n ⇒⎩⎪⎨⎪⎧x 2=0z 2=-2y 2. 令z 2=2⇒y 2=-1,所以n 2=(0,-1,2),所以n 1=n 2,所以平面ADE ∥平面B 1C 1 F.2.在正方体ABCD-A 1B 1C 1D 1中,E 是BC 的中点,在CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,且P(0,2,a),则D(0,0,0),E(1,2,0),C 1(0,2,2),A 1(2,0,2),B 1(2,2,2),则DE → =(1,2,0),1DC =(0,2,2),设n 1=(x 1,y 1,z 1)且n 1⊥平面DEC 1,则⎩⎪⎨⎪⎧x 1+2y 1=0y 1+z 1=0 ,取n 1=(2,-1,1). 又1A P =(-2,2,a -2),11A B =(0,2,0),设n 2=(x 2,y 2,z 2)且n 2⊥平面A 1B 1P ,则⎩⎪⎨⎪⎧-2x 2+2y 2+(a -2)z 2=0y 2=0 ,取n 2=(a -2,0,2). 由平面A 1B 1P ⊥平面C 1DE ,得n 1·n 2=0,1的中点.【补偿训练】在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F.求证:(1)PA ∥平面EDB.(2)PB ⊥平面EFD.K【证明】建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a.(1)连接AC 交BD 于G ,连接EG ,依题意得D(0,0,0),A(a ,0,0),P(0,0,a),E ⎝⎛⎭⎫0,a 2,a 2 . 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0 ,所以EG → =⎝⎛⎭⎫a 2,0,-a 2 .又PA → =(a ,0,-a),所以PA → =2EG → ,这表明PA ∥EG.而EG ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB.(2)依题意得B(a ,a ,0),PB → =(a ,a ,-a),DE → =⎝⎛⎭⎫0,a 2,a 2 ,所以PB → ·DE → =0+a 22 -a 22 =0,所以PB → ⊥DE → ,即PB ⊥DE.又已知EF ⊥PB ,且EF∩DE =E ,所以PB ⊥平面EFD.课堂检测·素养达标1.设直线l 的方向向量为a ,平面α的法向量为n ,l ⊄α,则使l ∥α成立的是( )A .a =(1,-1,2),n =(-1,1,-2)B .a =(2,-1,3),n =(-1,1,1)C .a =(1,1,0),n =(2,-1,0)D .a =(1,-2,1),n =(1,1,2)【解析】l 的方向向量为a ,平面α的法向量为n ,l ⊄α,使l ∥α成立,所以a·n =0, 在A 中,a·n =-1-1-4=-6,故A 错误;在B 中,a·n =-2-1+3=0,故B 成立;在C 中,a·n =2-1=1,故C 错误;在D 中,a·n =1-2+2=1,故D 错误.2.(教材练习改编)若平面α与β的法向量分别是a =(2,4,-3),b =(-1,2,2),则平面α与β的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 【解析】选B.a·b =(2,4,-3)·(-1,2,2)=-2+8-6=0,所以a ⊥b ,所以平面α与平面β垂直.3.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)【解析】选A.设平面α内一点P(x ,y ,z),则:MP → =(x -1,y +1,z -2),因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP → ,n ·MP → =6(x -1)-3(y +1)+6(z -2)=6x -3y +6z -21,所以由n ·MP → =0得6x -3y +6z -21=0,所以2x -y +2z =7,把各选项的坐标数据代入上式验证可知A 适合.4.正三棱锥P-ABC 中,BC 与PA 的位置关系是________.【解析】如图,在正三棱锥P-ABC 中,P 在底面ABC 内的射影O 为正三角形ABC 的中心,连接AO ,则AO 是PA 在底面ABC 内的射影,且BC ⊥AO ,所以BC ⊥PA.答案:BC ⊥PA。
用空间向量法求解立体几何问题典例及解析
用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
空间向量在立体几何中的应用
空间向量在立体几何中的应用教学目标1、知识与技能(1) 进一步理解向量垂直的充要条件;(2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法;2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感,从而激发学数学、用数学的热情。
教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。
教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。
教学方法启发式教学、讲练结合教学媒体ppt课件学法指导交流指导,渗透指导.课型新授课教学过程一、知识的复习与引人自主学习1.若=x i+y j+z k,那么(x,y,z)叫做向量的坐标,也叫点P的坐标.2. 如图,已知长方体的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点为坐标原点,射线分别为轴、轴、轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么±=(x 1±x 2,y 1±y 2, ), ⊥⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 为BC 的中点,N 为AB 的中点,P 为BB 1的中点.(Ⅰ)求证:BD 1⊥B 1C ;(Ⅱ)求证:BD 1⊥平面MNP .设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。
高考数学一轮复习专题八立体几何5空间向量及其在立体几何中的应用应用篇课件新人教A版
设直线MN与平面PAB所成角为θ, DN =λ DC(λ∈[0,1]),
则 MN
= MA
+ AD
+ DN
=(λ+1,2λ-1,-1),
又平面PAB的一个法向量为n=(1,0,0),
| λ 1|
则sin θ=|cos< MN ,n>|=
( λ 1)2 (2 λ 1) 2 1
( λ 1) 2
=
,
2
5λ 2 λ 3
1
( λ 1)2
t2
5
令λ+1=t(t∈[1,2]),则 2
= 2
=
≤ ,
2
7
5 λ 2 λ 3 5t 12t 10 10 1 12 1 5
5
∴sin θ≤ 35 ,当t= ,即λ= 2 时,等号成立,
7
3
系有关的存在性问题;(2)与空间角有关的存在性问题.解决方案有两种:①
根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后
加以证明,得出结论;②假设所求的点或线存在,并设定参数表达已知条
件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在
这样的点或线,否则不存在.向量法是解决此类问题的常用方法,它可以将
(2)因为DE⊥平面ABCD,
所以∠EBD就是BE与平面ABCD所成的角,
即∠EBD=60°,所以 ED = 3 .
BD
由AD=3,四边形ABCD是正方形,得BD=3 2 ,
则DE=3 6 ,所以AF= 6 .
如图,分别以DA,DC,DE所在直线为x轴,y轴,z轴建立空间直角坐标系,
空间向量在立体几何中的应用
空间向量在立体几何中的应用ʏ贵州省仁怀市周林高中 尹伟云空间向量是高中数学的一个重要组成部分,在高考中具有较高的地位,是立体几何中的一个主要命题方向,往往以 证算并重 的方式进行考查㊂常以多面体为载体,考查用向量法确定空间点㊁线㊁面的位置关系,求解空间角㊁空间距离㊁立体几何中的动点探究性问题等㊂需要同学们借助向量的工具性作用,将空间几何量之间的位置关系转化为数量关系来求解㊂下面分类分析空间向量在立体几何中的应用㊂1.证明共线与共面问题图1例1 如图1,在长方体A B C D -A 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且|E D 1|=2|D E |,|B F |=2|F B 1|,线段E F 的中点为M ㊂求证:(1)点M 在长方体的对角线A C 1上;(2)点C 1在平面A E F 内㊂解析:证法1(利用向量的坐标运算)图2(1)以点C 1为坐标原点,分别以向量C 1D 1ң,C 1B 1ң,C 1C ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系C 1-x yz ,如图2所示㊂设|C 1D 1|=a ,|C 1B 1|=b ,|C 1C |=c ,则C 1(0,0,0),A (a ,b ,c ),E a ,0,2c 3,F 0,b ,c 3,Ma 2,b 2,c 2㊂从而C 1M ң=a 2,b 2,c 2,C 1A ң=(a ,b ,c ),故C 1M ң=12C 1A ң㊂又C 1Mң与C 1A ң有公共点C 1,所以点M 在长方体对角线A C 1上㊂(2)由(1)知,E A ң=0,b ,c 3=C 1F ң,所以A E ʊC 1F ,从而A ,E ,F ,C 1四点共面,故点C 1在平面A E F 内㊂证法2(利用向量的几何运算)(1)由向量的平行四边形法则及三角形法则,得C 1M ң=12(C 1E ң+C 1F ң)=12(C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң)=12(C 1A 1ң+B 1F ң+F B ң)=12(C 1A 1ң+A 1A ң)=12C 1A ң,即C 1M ң=12C 1A ң㊂所以点M 在长方体对角线A C 1上㊂(2)依题意,得C 1E ң+C 1F ң=C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң=C 1D 1ң+F B ң+C 1F ң=C 1D 1ң+C 1B ң=C 1A ң,即C 1A ң=C 1E ң+C 1F ң㊂由向量共面的充要条件知,点C 1在平面A E F 内㊂评注:空间向量兼具代数与几何的双重特征,证明多点共线或多线共面问题也是从这两个方面入手,关键是掌握空间向量的线性运算法则和共线㊁共面的充要条件㊂具体方法是:要证明三点共线,可以证明任意两点构成的一组向量共线且共点;要证明四点共面,可以利用向量共面的充要条件,即以其中一点A 为起点,分别以另三点B ,C ,D 为终点得到向量A B ң,A C ң,A D ң,证明存在唯一的实数对(λ,μ),使A B ң=λA C ң+μA D ң成立即可;要证明两条直线共面,可以证明两条直线平行或相交,从而转化为两条直线的方向向量共不共线的问题,即若存在实数λ,使两条直线的方向向量a ,b 满足b =λa ,则两条直线平行,若不存在实数λ满足b =λa ,则两条直线相交㊂2.证明线㊁面的平行与垂直关系例2 如图3所示,在直二面角D -A B -E 中,四边形A B C D 是边长为2的正方形,|A E |=|E B |,F 为C E 上的点,且B F ʅ平面A C E ,G 为C E 的中点㊂解题篇 经典题突破方法 高二数学 2023年5月图3求证:(1)A E ʊ平面B D G ;(2)A E ʅ平面BC E ;(3)平面BD F ʅ平面A B C D ㊂解析:因为A B C D 为正方形,所以B C ʅA B ㊂因为二面角D -A B -E 为直二面角,平面D A B ɘ平面A B E =A B ,所以B C ʅ平面A E B ㊂设线段A B 的中点为O ,连接O E ㊂因为|A E |=|E B |,所以A B ʅO E ㊂图4故以O 为坐标原点,分别以向量O E ң,O B ң,A D ң的方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -x yz ,如图4所示㊂则A (0,-1,0),B (0,1,0),C (0,1,2),D (0,-1,2)㊂设E (x 0,0,0)(x 0>0),则E C ң=(-x 0,1,2)㊂因为F 为C E 上的点,所以设E F ң=λE C=(-λx 0,λ,2λ),0ɤλɤ1,得F ((1-λ)x 0,λ,2λ),则B F ң=((1-λ)x 0,λ-1,2λ)㊂又A C ң=(0,2,2),A E ң=(x 0,1,0),B F ʅ平面A C E ,所以B F ң㊃A C ң=2(λ-1)+4λ=0,且B F ң㊃A E ң=(1-λ)x 20+λ-1=0,解得x 0=1,λ=13㊂所以E (1,0,0),F23,13,23,G 12,12,1㊂(1)方法1:设A C 与B D 相交于H ,则H (0,0,1),所以H G ң=12,12,0㊂可得A E ң=(1,1,0)=2H G ң㊂又A E ⊄平面B D G ,H G ⊂平面B D G ,所以A E ʊ平面B D G ㊂方法2:易知B D ң=(0,-2,2),B G ң=12,-12,1㊂设平面B D G 的一个法向量为k =(a ,b ,c ),则k ㊃B D ң=0,k ㊃B G ң=0,所以-2b +2c =0,12a -12b +c =0㊂取c =1,得k =(-1,1,1)㊂因此,k ㊃A E ң=(-1,1,1)㊃(1,1,0)=0㊂又A E ⊄平面B D G ,故A E ʊ平面B D G ㊂(2)方法1:因为A E ң=(1,1,0),B E ң=(1,-1,0),B C ң=(0,0,2),所以A E ң㊃B E ң=0,A E ң㊃B C ң=0,则A E ʅB E ,A E ʅB C ㊂又B E ɘB C =B ,所以A E ʅ平面B C E ㊂方法2:易知B E ң=(1,-1,0),B C ң=(0,0,2)㊂设平面B C E 的一个法向量为n =(x 1,y 1,z 1),由n ㊃B E ң=0,n ㊃B C ң=0,得x 1-y 1=0,2z 1=0㊂取y 1=1,得n =(1,1,0)㊂又A E ң=(1,1,0)=n ,故A E ңʊn ,A E ʅ平面B C E ㊂(3)由题意知,O E ң=(1,0,0)为平面A B -C D 的一个法向量,设平面B D F 的一个法向量为m =(x 2,y 2,z 2)㊂由(1)知,B F ң=23,-23,23,B D ң=(0,-2,2),所以m ㊃B F ң=23x 2-23y 2+23z 2=0,且m ㊃B D ң=-2y 2+2z 2=0㊂取z 2=1,则y 2=1,x 2=0,所以m =(0,1,1)㊂因m ㊃O E ң=0,故m ʅO E ң㊂因此,平面B D F ʅ平面A B C D ㊂评注:利用向量法证线面平行,一般有三个思路:一是用向量共面的充要条件,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量概念和直线在平面外,得线面平行;二是先求出平面的法向量,再证明法向量与直线的方向向量垂直;三是证明已知直线与平面内的一条直线平行,也就是将其转化为证明线线平行的问题,再根据线面平行的判断定理得证㊂证面面平行,一般有两个思路:一是利用向量证明一个平面内两条相交直线平行于另一个平面,根据面面平行的判定定理得证;二是求出两个平面的法向量,证明这两个法向量平行,则这两个平面平行㊂证线线垂直,可转化为两条直线的方向向量垂直,即证明两条直线方向向量的数量积为0㊂证线面垂直有两个思路:一是证平面的法向量与直线的方向向量平行;二是证直线与平面内两条相交直线垂直,再用线面垂直判定定理证明㊂证面面垂直,先求出两个平面的法向量,通过证明这两个平面的法向量垂直即可㊂解题篇 经典题突破方法高二数学 2023年5月以上思路大多要用到平面的法向量,当题中出现线面垂直时,则该直线的方向向量就是该平面的一个法向量,为减少计算量,无需另求法向量㊂3.解决平行或垂直的探索性问题图5例3 如图5所示,在四棱柱A B C D -A 1B 1C 1D 1中,A 1D ʅ平面A B C D ,底面A B C D 是边长为1的正方形,侧棱|A 1A |=2㊂(1)在棱A 1B 上是否存在一点M ,使得A 1D ʊ平面A C M(2)在棱A 1A 上是否存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1图6解析:如图6,分别以D A ,D C ,D A 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系㊂则由题中数据,得D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),B 1(0,1,3),C 1(-1,1,3)㊂从而D A 1ң=(0,0,3),B A 1ң=(-1,-1,3),A C 1ң=(-2,1,3),C 1B 1ң=(1,0,0),A A 1ң=(-1,0,3)㊂(1)假设线段A 1B 上存在一点M (a 1,b 1,c 1),使得A 1D ʊ平面A C M ㊂设B M ң=λB A 1ң(0<λ<1),即(a 1-1,b 1-1,c 1)=λ(-1,-1,3)㊂则a 1-1=-λ,b 1-1=-λ,c 1=3λ㊂解得M (1-λ,1-λ,3λ)㊂从而A M ң=(-λ,1-λ,3λ),C M ң=(1-λ,-λ,3λ)㊂设平面A C M 的一个法向量为m =(a 2,b 2,c 2),则m ㊃A M ң=0,m ㊃C M ң=0,即-λa 2+(1-λ)b 2+3λc 2=0,(1-λ)a 2-λb 2+3λc 2=0㊂两式相减,得a 2-b 2=0㊂令a 2=1,得m =1,1,2λ-13λ㊂由D A 1ң㊃m =0,得3㊃(2λ-1)3λ=0,解得λ=12,此时M 12,12,32,M 为线段A 1B 的中点㊂所以线段A 1B 上存在一点M ,使得A 1D ʊ平面A C M ㊂(2)假设棱A 1A 上存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1㊂设A P ң=μA A 1ң,0<μɤ1,则P (1-μ,0,3μ),从而B 1P ң=(1-μ,-1,3(μ-1))㊂设平面A B 1C 1的一个法向量为n 1=(x 1,y 1,z 1),由n 1㊃C 1B 1ң=0,n 1㊃A C 1ң=0, 得x 1=0,-2x 1+y 1+3z 1=0㊂ 令z 1=3,则n 1=(0,-3,3)㊂设平面P B 1C 1的一个法向量为n 2=(x 2,y 2,z 2),由n 2㊃C 1B 1ң=0,n 2㊃B 1P ң=0,得x 2=0,(1-μ)x 2-y 2+3(μ-1)z 2=0㊂令z 2=3,得n 2=(0,3(μ-1),3)㊂由n 1㊃n 2=0,得-3ˑ3(μ-1)+3ˑ3=0,解得μ=43>1,不合题意,所以这样的点P 不存在㊂评注:涉及线段上的动点问题,先设出动点分线段的某个比值λ,根据两个向量共线的充要条件得数乘关系,从而用λ表示动点的坐标,再进行相关计算,这样可以减少未知量,简化过程㊂值得注意的是,应给出λ的取值范围㊂另外,建系时最好用右手直角坐标系且使几何元素尽量分布在坐标轴的正方向上㊂4.求解点面距离或几何体的体积例4 如图7,在三棱柱A B C -A 1B 1C 1中,棱A A 1ʅ侧面A B C ,A B ʅB C ,D 为A C 的中点,|A A 1|=|A B |=2,|B C |=3,求三 解题篇 经典题突破方法 高二数学 2023年5月图7棱锥A 1-B C 1D 的体积㊂解析:由题意知,B 1C 1,B 1B ,B 1A 1三条直线两两垂直,故以B 1为坐标原点,建立空间直角坐标系B 1-x yz ,如图8所示㊂图8则由题中数据,得B 1(0,0,0),B (0,2,0),C (3,2,0),C 1(3,0,0),A (0,2,2),A 1(0,0,2),D32,2,1,则C 1A 1ң=(-3,0,2),C 1B ң=(-3,2,0),B D ң=32,0,1㊂所以|C 1A 1ң|=(-3)2+02+22=13,|C 1B ң|=(-3)2+22+02=13,c o s øA 1C 1B =C 1A 1ң㊃C 1B ң|C 1A 1ң||C 1B ң|=-3ˑ(-3)13ˑ13=913㊂从而s i nøA 1C 1B =1-c o s 2øA 1C 1B=22213,所以S әA 1C 1B =12|C 1A 1ң|㊃|C 1B ң|s i n øA 1C 1B =12ˑ13ˑ13ˑ22213=22㊂设平面A 1C 1B 的一个法向量为n =(x ,y ,z ),则n ㊃C 1A 1ң=0,n ㊃C 1B ң=0,即-3x +2z =0,-3x +2y =0㊂令z =3,得x =2,y =3,即n =(2,3,3)㊂所以D 到平面A 1C 1B 的距离d =|n ㊃B D ң||n |=622,故V A 1-B C 1D =13S әA 1C 1B ㊃d =13ˑ22ˑ622=2㊂评注:求锥体或柱体的体积,关键是求底面积和高,对于底面积,如әA B C 的面积可由S =12|A B ң||A C ң|s i n A =12|A B ң||A C ң㊃1-c o s 2A =12(|A B ң||A C ң|)2-(A B ң㊃A C ң)2求解㊂高可以转化为空间两点间距离,又可看作是向量长度,即已知空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则d =|P 1P 2ң|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2,有时要用到|a |=a 2求解㊂高也可以看作是点到平面的距离,其数值等于斜线段对应的向量在平面法向量方向上的投影向量的模㊂如求点A 到平面α的距离,可在α内任取一点B ,则A 到平面α的距离d =||A B ң|c o s α|=|A B ң㊃n ||n |㊂另外,点面距离还可以转化为线面距离㊁两平行平面间的距离等㊂5.求空间角图9例5 如图9,在四棱锥P -A B C D 中,底面A B C D为矩形,P D ʅ底面A BC D ,|A B ||A D |=2,直线P A 与底面A B C D 成60ʎ角,点N 是P B的中点㊂(1)求异面直线D N 与B C 所成角的余弦值;(2)求直线P A 与平面P B C 所成角的正弦值;(3)求二面角P -N C -D 的余弦值㊂图10解析:依题意,以D 为原点,分别以向量D A ң,D C ң,D P ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系,如图10所示㊂设|A D |=1,则|A B |=2㊂因为P D ʅ底面A B -C D ,所以øP A D 是直线P A 与平面A B C D所成的角,得øP A D =60ʎ,则|P D |=3㊂易得D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),P (0,0,3),N 12,1,32㊂(1)易知D N ң=12,1,32,B C ң=(-1,0,0),所以异面直线D N 与B C 所成角θ1的余弦值为c o s θ1=|c o s <D N ң,B C ң>|=|D N ң㊃B C ң||D N ң||B C ң|=24㊂(2)易知P A ң=(1,0,-3),P B ң=(1,2,-3)㊂设平面P B C 的法向量为m =(x 1,y 1,z 1),直线P A 与平面P B C 所成的角为解题篇 经典题突破方法 高二数学 2023年5月θ2,则m ㊃P B ң=x 1+2y 1-3z 1=0,且m ㊃B C ң=-x 1=0㊂令z 1=2,则x 1=0,y 1=3㊂所以m =(0,3,2),则s i n θ2=|c o s <m ,P A ң>|=|m ㊃P A ң||m ||P A ң|=217㊂(3)由(2)知,m =(0,3,2)是平面P B C的一个法向量㊂设平面C D N 的法向量为n=(x 2,y 2,z 2),因为D N ң=12,1,32,D C ң=(0,2,0),所以n ㊃D N ң=12x 2+y 2+32z 2=0,且n ㊃D C ң=2y 2=0㊂令z 2=1,则x 2=-3,y 2=0,n =(-3,0,1)㊂所以c o s <m ,n >=m ㊃n |m ||n |=77㊂在二面角P -N C -D 内部取一点H (0,0,1),则C H ң=(0,-2,1)㊂因为m ㊃C H ң=-23+2<0,n ㊃C H ң=1>0,所以二面角P -N C -D 的大小等于<m ,n >,其余弦值为77㊂评注:解异面直线夹角问题,先求出两条异面直线的方向向量m ,n ,再求出m ,n 的夹角,设两异面直线的夹角θ,利用c o s θ=|c o s <m ,n >|=|m ㊃n ||m ||n |求出异面直线的夹角㊂注意异面直线夹角与向量夹角不完全相同,当两个方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角,两条异面直线夹角θ的取值范围是0,π2㊂解线面角问题,设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为φ,则直线的方向向量a 在平面法向量n 方向上的投影向量的长度|a ㊃n ||n |与直线方向向量a 的模|a |之比|a ㊃n ||a ||n |就是线面角的正弦值,即有s i n θ=|c o s φ|=|a ㊃n ||a ||n |㊂当φ为锐角时,s i n θ=s i n (90ʎ-φ)=c o s φ=a ㊃n|a ||n |;当φ为钝角时,s i n θ=s i n (φ-90ʎ)=-c o s φ=-a ㊃n|a ||n |㊂解二面角问题,是依据二面角两个半平面的法向量夹角与二面角相等或互补来处理㊂大多数情况下是根据图形判断该角是锐角还是钝角,有时也可以根据两个半平面的法向量的指向来判断㊂6.结构不良型问题图11例6 (2022年北京高考卷)如图11,在三棱柱A B C -A 1B 1C 1中,侧面B C C 1B 1为正方形,平面B C C 1B 1ʅ平面A B B 1A 1,|A B |=|B C |=2,M ,N 分别为A 1B 1,A C 的中点㊂(1)求证:MN ʊ平面B C C 1B 1㊂(2)再从条件①㊁条件②中选择一个作为已知条件,求直线A B 与平面B MN 所成角的正弦值㊂条件①:A B ʅMN ;条件②:|B M |=|MN |㊂注:如果选择条件①和条件②分别解答,那么按第一个解答计分㊂解析:(1)因为侧面C B B 1C 1为正方形,所以C B ʅB B 1㊂又平面C B B 1C 1ʅ平面A B B 1A 1,平面C B B 1C 1ɘ平面A B B 1A 1=B B 1,C B ⊂平面C B B 1C 1,所以C B ʅ平面A B B 1A 1㊂因为A B ⊂平面A B B 1A 1,所以B C ʅA B ㊂因为M ,N 分别为A 1B 1,A C 的中点,所以MNң=B N ң-B M ң=12B A ң+12B C ң-B B 1ң-12B 1A 1ң=12B C ң-B B 1ң,故MN ң,B C ң,B B 1ң三向量共面㊂又MN ⊄平面B C C 1B 1,B C ⊂平面B C C 1B 1,B B 1⊂平面B C C 1B 1,所以MN ʊ平面B C C 1B 1㊂(2)若选①,A B ʅMN ,则A B ң㊃MN ң=0㊂由(1)知,MN ң=12B C ң-B B 1ң,所以A B ң㊃MN ң=A B ң㊃12B C ң-B B 1ң=0㊂解题篇 经典题突破方法 高二数学 2023年5月由B C ңʅA B ң,得B C ң㊃A B ң=0,所以A B ң㊃B B 1ң=0,即B A ʅB B 1㊂图12故B C ,B A ,B B 1三条直线两两垂直,以B 为坐标原点,分别以B C ң,B A ң,B B 1ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系B -x yz ,如图12所示㊂则由题中数据,得B (0,0,0),A (0,2,0),M (0,1,2),N (1,1,0),故B A ң=(0,2,0),B M ң=(0,1,2),B N ң=(1,1,0)㊂设平面B MN 的一个法向量为n =(x ,y ,z ),则n ʅB N ң,n ʅB M ң, 所以n ㊃B N ң=0,n ㊃B M ң=0,即x +y =0,y +2z =0㊂令z =1,得n =(2,-2,1)㊂因此,直线A B 与平面B MN 所成角θ的正弦值为s i n θ=|c o s <n ,B A ң>|=|n ㊃B A ң||n ||B A ң|=|-2ˑ2|22+(-2)2+12ˑ2=23㊂若选②:|M B |=|MN |,则|B M ң|2=|MN ң|2㊂由(1)知,MN ң=12B C ң-B B 1ң,所以B B 1ң+12BA ң2=12B C ң-B B 1ң2,化为|B B 1ң|2+14|B A ң|2+B B 1ң㊃B A ң=14|B C ң|2+|B B 1ң|2-B C ң㊃B B 1ң,即B B 1ң㊃B A ң+B C ң㊃B B 1ң=0㊂因为B C ʅB B 1,所以B C ң㊃B B 1ң=0,B B 1ң㊃B A ң=0,即B B 1ʅB A ,故BC ,B A ,B B 1三条直线两两垂直㊂以下步骤与选①相同,过程略㊂评注:本题运用空间向量的三角形法则㊁平行四边形法则㊁数量积及模的运算,得到共面和垂直关系,避开了复杂的推理过程,无需添加辅助线,降低了思维难度,让人感到耳目一新㊂对于选择性条件的结构不良试题,应该选择一个易于入手的条件进行求解㊂7.最值问题例7 (2022年全国乙卷理数)如图图1313,在四面体A -B C D 中,A D ʅC D ,|A D |=|C D |,øA D B =øB D C ,E 为A C 的中点㊂(1)证明:平面B E D ʅ平面A C D ;(2)设|A B |=|B D |=2,øA C B =60ʎ,点F 在棱B D 上,当әA F C 的面积最小时,求C F 与平面A B D所成角的正弦值㊂解析:(1)因为|A D |=|C D |,E 为A C 的中点,所以A C ʅD E ㊂又øA D B =øC D B ,|D B |=|D B |,所以әA B D ɸәC B D ,|A B |=|C B |㊂连接B E ,又因为E 为A C 的中点,所以A C ʅB E ㊂因为D E ɘB E =E ,所以A C ʅ平面B E D ㊂因为A C ⊂平面A C D ,所以平面B E D ʅ平面A C D ㊂(2)因为әA B D ɸәC B D ,所以|C B |=|A B |=|B D |=2㊂又因为øA C B =60ʎ,所以әA B C 是等边三角形,|A E |=|E C |=1,|B E |=3㊂因为A D ʅC D ,所以|D E |=12|A C |=1㊂图14在әD E B 中,|D E |2+|B E |2=|B D |2,所以B E ʅD E ㊂以E 为坐标原点建立如图14所示的空间直角坐标系E -x yz ㊂则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1),所以A D ң=(-1,0,1),A B ң=(-1,3,0),D B ң=(0,3,-1)㊂连接E F ,由(1)知,A C ʅ平面B E D ㊂因为E F ⊂平面B E D ,所以AC ʅE F ,S әA F C =12|A C |㊃|E F |㊂因为|A C |=2,所以当|E F |取最小值时,әA F C 的面积最小㊂设此时F (a ,b ,c ),D F ң=λD B ң(0ɤλɤ1),即(a ,b ,c -1)=λ(0,3,-1),得F (0,3λ,1-λ)㊂解题篇 经典题突破方法高二数学 2023年5月则|EF ң|=02+(3λ)2+(1-λ)2=4λ-142+34㊂当λ=14时,|E F |取最小值,此时F 0,34,34,从而C F ң=1,34,34㊂设平面A B D 的一个法向量为n =(x ,y ,z ),则n ㊃A D ң=-x +z =0,n ㊃A B ң=-x +3y =0㊂取y =3,则n =(3,3,3)㊂所以C F 与平面A B D 所成角θ的正弦值为s i n θ=|c o s <n ,C F ң>|=|n ㊃C F ң||n ||C F ң|=621ˑ74=437㊂评注:对于面积㊁点面距离或体积的最值,一般有两个思考方向:一是从图中直接观察,先分清哪些量是定值,哪些量是变量,通过点或线的变化情况寻找最值,如本题中,E 为定点,F 为动点,可以看出当E F ʅB D 时,|E F |取最小值,易得|D F |=12,故D F ң=14D B ң,即可得点F 的坐标,或者由EF ң=(0,3λ,1-λ)与D B ң=(0,3,-1)垂直,得E F ң㊃D B ң=0,进而得λ;二是直接根据目标函数的关系,转化为函数的最值或值域问题来处理,如果是求空间角的三角函数的最值,可直接利用数量积及模的计算公式写出三角函数的表达式,再转化为二次函数来处理㊂8.逆向探索性问题图15例8 已知四边形A B C D 是梯形,S 为A D 的中点,B C ʊA D ,øBCD =90ʎ,|A D |=2|B C |=4㊂现将әA B S 沿B S 向上翻折,使A 到A ',且二面角A '-B S -C 为直二面角,E ,F 分别是A 'S ,A 'B 的中点,如图15所示㊂在线段B C 上是否存在一点M ,使得点D 到平面E F M 的距离为25若存在,求出|B M ||M C |的值;若不存在,请说明理由㊂图16解析:由题意知,四边形B C D S 是边长为2的正方形,B S ʅS D ,B S ʅS A ',S A 'ʅS D ,以S 为坐标原点,分别以向量S D ң,S B ң,S A 'ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系S -x yz ,如图16所示㊂则点S (0,0,0),A '(0,0,2),C (2,2,0),D (2,0,0),E (0,0,1),F (0,1,1),则E F ң=(0,1,0),D E ң=(-2,0,1)㊂假设在线段B C 上存在一点M (x 0,2,0)满足题意,则E M ң=(x 0,2,-1)㊂设平面E F M 的法向量为n =(x ,y ,z ),则有n ㊃E F ң=0,n ㊃E M ң=0㊂故(x ,y ,z )㊃(0,1,0)=0,(x ,y ,z )㊃(x 0,2,-1)=0,所以y =0,z =x 0x ㊂令x =1,得n =(1,0,x 0)㊂则D E ң在平面E F M 的法向量方向上的投影向量的长为|D E ң㊃n ||n |=25,得|-2+x 0|1+x 20=25,两边同时平方,得21x 20-100x 0+96=0,即(3x 0-4)㊃(7x 0-24)=0㊂因0<x 0<2,解得x 0=43,所以M43,2,0㊂从而M C ң=23,0,0,|M C |=23,|B M |=2-23=43,即在线段B C 上存在一点M 满足题意,且|B M ||M C |=2㊂评注:对于距离㊁体积或空间角的逆向存在性问题,其求解思路是先假设条件存在,把假设当作新的已知条件进行推理,通过构造方程求解㊂若得到合理的数据,则假设成立;若出现矛盾,则假设不成立㊂对于翻折问题,关键是抓住翻折前后几何量的变与不变进行相关计算㊂(责任编辑 徐利杰)解题篇 经典题突破方法 高二数学 2023年5月。
向量在立体几何中的应用
向量在立体几何中的应用向量是中学数学的重要概念之一,它兼有数和形的特征,因而它是数形结合的桥梁之一,是实现数形转换的一个重要工具。
许多数学问题用向量知识来解决显得格外简练。
一、证明两直线平行或垂直根据∥?圳=λ(λ≠0)将证两线平行转化为证两向量共线(平行)。
根据⊥?圳·=0,将垂直问题转化为证两向量的数量积等于0.例1.已知正四棱柱abcd-a1b1c1d1,ab1=1,aa1=2点e为cc1的中点,点f为bd1的中点.求证:ef是bd1与cc1的公垂线。
证明:建立空间直角坐标系,则b(1,1,0),c(0,1,0),c1=(0,1,1),d1(0,0,1),e=(0,1,),f=(,,),=(,,0),=(0,0,1),=(-1,-1,1),所以·=0,·=0,即⊥,⊥.故ef是cc1与bd1的公垂线。
若用立体几何中的理论来证明这道题目则可以通过证明三角形ed1b和三角形fc1c为等腰三角形来达到目的。
证明过程中需利用已知边长,垂直等条件求出其他边长。
而用向量的性质来解则只需将各点坐标表示出来,再利用两向量的数量积是否等于0便可以得出结论。
相较而言,利用向量更为简便,计算量也相对较少。
二、证明线面平行或垂直证明线面平行,可转化为证明直线的方向向量与平面的法向量垂直;证明线面垂直,可转化为证明直线的方向向量与平面的法向量平行,从而得出结论,达到解决问题的目的。
例2.已知正方体abcd-a1b1c1d1的棱长为2,e,f,g分别是bc,cd,cc1的中心,求证:(1)ad1∥平面efg.(2)a1c⊥平面efg.证明:以d为坐标原点建立空间直角坐标系d-xyz,则d(0,0,0),a(2,0,0),a1(1,1,0),d1(0,0,2),c(0,2,0),c1(0,2,2),e(1,2,0),g(0,2,1)所以=(-2,0,2),=(2,-2,2),=(-1,-1,0),=(-1,0,1)。
空间向量在立体几何中的应用
空间向量在立体几何中的应用
发表时间:2013-11-27T10:30:41.590Z 来源:《中学课程辅导·教学研究》2013年第23期供稿作者:张建武[导读] 空间向量在解决立体几何中有关平行、垂直、求角、求距离等问题时具有独到之处,可以减少一些复杂的思维和推理过程,提高解题效率。
张建武
摘要:立体几何是高中数学的重要内容,它在培养学生空间想象能力、逻辑推理能力等方面有着独特的作用,因而立体几何在每年高考中都占有重要的位置。
在过去的几何教学中,主要使用“形到形”的综合推理方法学习立体几何,由于空间图形的复杂性、多变性,对于多数学生都是比较难学的。
空间向量的引入,给立体几何注入了新的“血液”,降低问题难度,提高解题速度,为解决立体几何问题提供了新的有效的解题途径和方法。
空间向量在解决立体几何中有关平行、垂直、求角、求距离等问题时具有独到之处,可以减少一些复杂的思维和推理过程,提高解题效率。
本文就空间向量在立体几何中运用的重要考点和解题方法作解析。
关键词:空间向量;立体几何;应用
考点一、利用空间向量证明空间平行、垂直问题
作者单位:河南省渑池县第二高级中学邮政编码:472400。
空间向量在立体几何中应用.
空间向量在立体几何中应用(一)魏言辉一、教学目标:知识技能:1. 进一步理解空间向量数量积及夹角公式;2.利用向量解决立体几何问题培养学生数形结合的思想方法;方法过程:通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
情感价值:通过空间向量在立体几何中的的应用,让学生感受数学、体会数学的美感,从而激发学数学、用数学的热情。
二、教学重点、难点、关键:重点:用空间向量数量积及夹角公式求异面直线所成角。
难点:建立恰当的空间直角坐标系;异面直线所成角与向量夹角的区别。
关键:几何问题转换为代数问题及正确写出空间向量的坐标。
三、教学过程:(一)知识的复习与引人:师生回忆空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。
(用媒体分步显示下列内容)1.向量的数量积公式(包括向量的夹角公式):若a与b的夹角为θ(0≤θ≤π),且a={x1,y1,z1},b={x2,y2,z2},则⑴a·b=|a||b|cosθ或a·b= x1x2+y1y2+z1z2⑵若与非零向量 cosθ=222222212121212121xzzyyxxzyxzy++⋅++++2.向量的数量积的几何性质:⑴两个非零向量a与b垂直的充要条件是a·b=0⑵两个非零向量与平行的充要条件是·=±||||(二)新授:空间向量在立体几何中的应用(一)通过下列例题使学生进一步熟悉空间向量在求立体几何异面直线所成角中的作用。
例1:在长方体ABCD-A1B1C1D1中,AB=BC=4AA1=6,求异面直线DA1与AC1的所成角;分析:在此题的解答中,设计如下问题贯穿整个过程以期共同解高。
问题1:此题在立体几何中我们应该如何解决?(异面直线平移相交,求相交直线的交角)问题2:利用空间向量求解,对几何体如何处理?(求向量DA1与AC1的数量积,当然应先建立空间直角坐标系)问题3:如何建立空间直角坐标系?并说明理由。
向量作为一种工具在解决立体几何探索性问题中有着无比
立体几何探索性问题是近年高考或各地模拟考试中的热点题型.向量作为一种工具,在解决立体几何探索性问题中有着无比的优越性.运用向量法解题,可使几何问题代数化,大大简化思维程序,使解题思路直观明了.下面举例说明向量法在求解两类立体几何探索性问题中的运用.一、条件探索型所谓“条件探索型”是指给出了问题的明确结论,但条件不足或未知,需要解题者探求、寻找使结论成立的条件的一类问题,这类问题的常用解法是逆推法,利用结论探求条件. 例1 如图1,棱长为1的正方体1111ABCD A B C D -,E 是BC 的中点,F 是棱CD 上的动点(非C 、D 两点),设二面角1C EF C --的大小为θ.试确定F 点的位置,使得1cos 3θ=.解析:以A 为坐标原点,建立如图1所示的直角坐标系, 则111(001)(111)102A C E ⎛⎫⎪⎝⎭,,,,,,,,.设(10)(01)F x x <<,,, 易知111011022C E EF x ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,,,,,.设()a b c =,,v 是平面1C EF 的一个法向量, 则11021(1)02C E b c EF x a b ⎧=--=⎪⎪⎨⎪=-+=⎪⎩,,v v令1c =,则1211x ⎛⎫=- ⎪-⎝⎭,,v .又1(001)AA =,,是平面AC 的一个法向量, ∴111cos AA AA AA ==⎛,v v v结合条件知可取1cos cos AA θ=,v , 13=,解得12x =或32x =(舍).故当F 是CD 的中点时,1cos 3θ=.二、存在型所谓“存在型”是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来;可能不存在,则需要说明理由.解答这一类问题时,先假设结论存在,若推证无矛盾,则结论存在;若推证出矛盾,则结论不存在.例2 已知正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M是BC 的中点.在直线1CC 上是否存在一点N,使得1MN AB ⊥?若存在,请你求出它的位置;若不存在,请说明理由.解:假设在直线1CC 上存在一点N,使得1MN AB ⊥.如图2,建立空间直角坐标系,有1131(000)00(01)2242A B M N z B ⎫⎫⎫⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,,,, ∴13131224AB MN z ⎛⎫⎛⎫==- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,,,. ∵1AB MN ⊥,∴13131312202488AB MN z z ⎛⎫⎛⎫=-=-++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,, 解得18z =,1018N ⎛⎫ ⎪⎝⎭,,,即18CN =时,1AB MN ⊥. 用法向量求距离一、求异面直线间的距离如图1,若CD 是异面直线a b ,的公垂线段,A B ,分别为a b ,上的任决两点.令向量a b ⊥⊥,n n ,则AB CD =n n . 分析:AB AC CD DB =++, AB AC CD DB ∴=++n n n n .AB CD ∴=n n ,AB CD ∴=n n .AB CD ∴=nn .∴两异面直线a b ,间的距离为AB d =n n (其中n 与a b ,垂直,A B ,分别为两异面直线上的任意两点). 例1 如图2,在正方体1111ABCD A B C D -中,E 为11A B 的中点且正方体棱长为2.求异面直线1D E 和1BC 间的距离.解析:以1D 为原点,建立如图2所示的空间直角坐标系, 则11(210)(202)D E C B =,,,,,.设1D E 和1BC 公垂线段上的向量为(1)λμ=,,n ,则1100D E C B ⎧=⎪⎨=⎪⎩,,n n 即20220λμ+=⎧⎨+=⎩,,21λμ=-⎧⎨=-⎩,.(121)∴=--,,n .又11(020)DC =,,,11D C ==nn所以异面直线1D E 和1BC .二、求点到平面的距离如图3,已知AB 为平面α的一条斜线段,n 为平面α的法向量. 求证:点A 到平面α的距离AB AC =n n . 分析:cos AB AB AB =,n n n , cos AB AB AC AB AB AB AB ∴===,nnn n n .例2 如图4,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.求点C 到平面1AB D 的距离.解析:11ABB A 为正方形,11A B AB ∴⊥.易得平面1AB D ⊥平面11ABB A ,1A B ∴⊥面1AB D ,1A B ∴是平面1AB D 的一个法向量.设点C 到平面1AB D 的距离为d , 则111()06024AC A BAC A A AB d a A B +====. 三、求直线到平面的距离例3 如图5,已知边长为ABC 中,E F ,分别为BC 和AC 的中点,PA ⊥面ABC ,且2PA =,设平面α过PF 且与AE 平行.求AE 与平面α间的距离.解析:设A P A E E C ,,的单位向量分别为123,,e e e ,选取{}123,,e e e 作为空间向量的一个基底. 易知1213230===e e ee e e ,12AP =e ,226AE =,322EC =,1231()22PF PA AE EC =++=-+e . 设123x y =++n e e e 是平面α的一个法向量,则AE ⊥n ,PF ⊥n.00AE PF ⎧=⎪∴⎨=⎪⎩,,n n即22222123020x ⎧=⎪⎨-=⎪⎩,,e e e 解得02y x =⎧⎪⎨=⎪⎩,13∴=+n e .∴直线AE 与平面α间的距离1121222322AP d ⎛+ ⎝===+e e e nn e e . 四、求两平行平面间的距离例4 如图6,在棱长为1的正方体1111ABCD A B C D -中. 求平面1AB C 与平面11AC D 间的距离.解析:建立如图所示的空间直角坐标系,易知平面1AB C 与平面11AC D 平行.设平面11AC D 的一个法向量(1)x y =,,n , 则1100DA DC ⎧=⎪⎨=⎪⎩,,n n 即(1)(101)01(1)(011)01x y x x y y ==-⎧⎧⇒⎨⎨==-⎩⎩,,,,,,,,,,. (111)∴=--,,n .∴平面1AB C 与平面11AC D 间的距离22(100)(111)(1)1AD d ---===+-+,,,,n n .。
空间向量在立体几何中的应用
空间向量在立体几何中的应用摘要:立体几何是数学中的一个重要分支,研究物体在三维空间中的形状、位置、方向和相互关系等问题。
空间向量是解决立体几何问题的重要工具之一,在立体几何中具有广泛的应用。
本文将介绍空间向量的基本概念和性质,并探讨它在立体几何中的应用。
一、介绍立体几何是研究三维空间中的图形和物体的数学分支。
空间向量是一个可以在三维空间中表示方向和长度的量,它具有大小和方向两个基本特性。
空间向量可以用来表示直线、平面、空间角等,在立体几何中有着广泛的应用。
二、空间向量的基本概念和性质1. 空间向量的表示空间向量可以用有序的三元组表示,如AB→表示从点A指向点B的向量。
向量的表示中可以使用坐标系和线段表示法等方法。
2. 向量的模和方向向量的模表示向量的长度或大小,用∥AB∥表示向量AB→的模。
向量的方向用有向线段或角度表示,可以通过单位向量来表示。
3. 向量的加法和减法空间中的两个向量可以进行加法和减法运算。
两个向量的加法运算的结果是一个新的向量,它的起点和第一个向量的起点相同,终点和第二个向量的终点相同。
减法运算可看作加法的逆运算。
4. 向量的数量积和向量积向量的数量积又称点积,表示两个向量之间的乘积。
向量的数量积满足交换律、分配律和结合律等性质,可以用来求解夹角、判定共线等问题。
向量的向量积又称叉积,表示两个向量的乘积,结果是一个新的向量,垂直于原来两个向量所在的平面。
三、空间向量在立体几何中的应用1. 直线与平面的关系空间向量可以用来判断直线与平面之间的位置关系,如直线与平面是否相交、直线是否在平面内等。
利用向量的数量积可以求直线与平面之间的夹角,从而判断它们的位置关系。
2. 点与直线的关系通过计算向量的数量积可以判断点与直线之间的位置关系,如点到直线的距离、点是否在线段上等。
利用向量的叉积可以求点到直线的垂直距离,从而判断它们的位置关系。
3. 直线与直线的关系空间向量可以用来判断直线与直线之间的位置关系,如直线是否平行、直线是否相交等。
高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理
(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成 的垂直关系时要通过其他已知条件得到垂直关系,在此基础上选 择一个合理的位置建立空间直角坐标系.
[易错防范] 1.利用向量求角,一定要注意将向量夹角转化为各空间 角.因为向量夹角与各空间角的定义、范围不同. 2.求二面角要根据图形确定所求角是锐角还是钝角.
答案:13
4.在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则平 面 A1ED 与平面 ABCD 所成的锐二面角的余弦值为________.
解析:以 A 为原点建立如图所示的空间直角坐标系,设棱长 为 1,
则 A1(0,0,1),E1,0,12,D(0,1,0),
以 B 为原点,分别以
的方向为 x 轴、y 轴、z 轴的
正方向建立空间直角坐标系,则 A(0,0,2),B(0,0,0),E(2,0,0),
F(2,2,1).
因为 AB⊥平面 BEC,所以 =(0,0,2)为平面 BEC 的法向量. 设 n=(x,y,z)为平面 AEF 的法向量.
所以平面 AEF 与平面 BEC 所成锐二面角的余弦值为23.
A(0,- 3,0),E(1,0, 2),F-1,0, 22,C(0, 3,0),
所以直线
AE
与直线
CF
所成角的余弦值为
3 3.
[解题模板] 利用向量法求异面直线所成角的步骤
直三棱柱 ABC-A1B1C1 中,∠BCA=90°,M,N 分别是 A1B1,
A1C1 的中点,BC=CA=CC1,则 BM 与 AN 所成角的余弦值为( )
接 EG,FG,EF.在菱形 ABCD 中,不妨设 GB=1.
由∠ABC=120°,可得 AG=GC= 3.
高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件
【例1】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD
的中点.AB=AP=1,AD= √3 ,试建立恰当的空间直角坐标系,求平面ACE的
一个法向量.
解因为PA⊥平面ABCD,底面ABCD为矩形,所以AB,AD,AP两两垂直.
如图,以 A 为坐标原点, , , 的方向为 x 轴,y 轴,z 轴的正方向,建立空间
· = 0,
则
即
- = 0,
· = 0,
= 3,
解得
令 z=1,则 x=y=3,
= .
故平面 ABC 的一个法向量为 n=(3,3,1).
探究点二 有关空间向量的证明问题
角度1利用空间向量证明平行问题
【例2】 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,
第一章
1.2.2 空间中的平面与空间向量
课标要求
1.理解平面的法向量的定义并能在空间直角坐标系中正确地求出某一平
面的法向量;
2.能用向量语言表达线面、面面的垂直、平行关系;
3.理解三垂线定理及其逆定理.
内
容
索
引
01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
共线向量表示且直线不在平面内;③证明直线的方向向量与平面的法向量
垂直且直线不在平面内,如例2(1)中,FC1⊄平面ADE一定不能漏掉.
(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.当然要
注意当法向量坐标中有0时,要使用n1=λn2这一形式.
变式训练2
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面
8.7空间向量在立体几何中的应用——证明平行与垂直
1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。
高考数学(理)之立体几何与空间向量 专题06 平面与平面的平行、垂直的判定与性质(解析版)
立体几何与空间向量06 平面与平面的平行、垂直的判定与性质【考点讲解】一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.面面平行的判定与性质a⊂β,b⊂β,a∩b=P,α∥β,α∩γ=a,(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.3.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.3.平面与平面垂直的判定与性质(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质:如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.4.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.5.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α1.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】本题考查了空间两个平面的判定与性质及充要条件.由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B . 【答案】B2.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 【真题分析】在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【变式1】【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D. 【答案】D【变式2】【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则( )A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B . 【答案】B3.【2018优选题】空间中,设,m n 表示不同的直线, ,,αβγ表示不同的平面,则下列命题正确的是( )A. 若,αγβγ⊥⊥,则//αβB. 若,m m αβ⊥⊥,则//αβC. 若,m βαβ⊥⊥,则//m αD. 若,n m n α⊥⊥,则//m α 【解析】本题考点是面面平行,线面平行的判定.A 项,若,αγβγ⊥⊥,过正方体同一顶点的三个平面分别为,,αβγ,则αβ⊥,故A 项不合题意;B 项,若,m m αβ⊥⊥,根据垂直于同一条直线的两个平面平行,则//αβ,故B 项符合题意;C 项,若,m βαβ⊥⊥,由同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故C 项不合题意;D 项,若,n m n α⊥⊥,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故D 项不合题意. 故选B. 【答案】B4.【2019优选题】在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则下面四个结论中不成立的是( ) A .BC ∥平面PDF B .DF ⊥平面P AE C .平面PDF ⊥平面ABCD .平面P AE ⊥平面ABC【解析】画出图形,如图所示,则BC ∥DF ,又DF ⊂平面PDF ,BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 成立;由题意可得AE ⊥BC ,PE ⊥BC ,BC ∥DF ,则DF ⊥AE ,DF ⊥PE ,∴DF ⊥平面P AE ,故B 成立; 又DF ⊂平面ABC ,∴平面ABC ⊥平面P AE ,故D 成立.本题的考点是平面与平面垂直的判定.【答案】C5.【2016全国新课标2】α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面α相交于直线c ,则//n c ,因为,,m m c m n α⊥⊥⊥所以所以,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.本题考点是空间中的线面关系. 【答案】②③④6.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(12)A M =--u u u u r ,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r .设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n.于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --的正弦值为5. 7.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EHH 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG uuu r =(1,0),AC uuu r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,.又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.8.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】本题主要考查线面垂直的判定定理,面面垂直的判定.(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.9.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】本题从多面体折叠开始,考查考生在折叠过程中掌握哪些量的大小与位置关系是不变与变化的,折叠后的多面体的性质解决题中的要求.(1)由已知得AD P BE,CG P BE,所以AD P CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.10.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0), P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u ru u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P .(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.11.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥. 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面P AC , 又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD . (3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC的中点,所以DN =又DN AN ⊥, 在Rt AND △中,3sinDN DAN AD ∠==.所以,直线AD 与平面P AC 所成角的正弦值为3.12.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u ru u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=- ⎪⎝⎭m.由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF的长为87.【模拟考场】1.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】本题考点是线面平行与面面平行与充要条件的综合应用.因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件,故选B. 【答案】B2.设,a b 是空间中不同的直线, ,αβ是不同的平面,则下列说法正确的是( )A. //,a b b α⊂,则//a αB. ,,//a b αβαβ⊂⊂,则//a bC. ,,//,//a b b αααββ⊂⊂,则//αβD. //,a αβα⊂,则//a β【解析】本题考点是线面平行,面面平行的判定。
浅谈空间向量在立体几何中的应用
浅谈空间向量在立体几何中的应用引言:在高中数学中,向量既有代数的抽象也有几何的直观,其中的“数”与“行”完美结合的特点使得我们可以运用向量解决立体几何中某些复杂的问题。
正因为有向量的知識,解决立体几何一类的问题的时候就可以弥补部分同学在空间想象能力不足的缺陷,这在一定程度上降低了立体几何的做题难度。
一、向量在立体几何中的作用空间向量是高中数学教材中后来添加的新内容,它的功效就在于能够取代之前在传统教材中的地位,从目前的效果可以看出,它的作用是多方面的,主要涉及到垂直问题,角度问题,以及法向量之间的计算应用问题等。
1.空间向量的作用(1)证明垂直,面对线面垂直以及面面垂直的问题的时候,在算出法向量的基础上,通过证明直线平行于法向量即可得出结论;还有想要证明面面垂直的结论,证明出两平面的法向量是垂直的,即可得出最终的结论。
(2)计算角度,求二面角的精髓就在于转换两个法向量之间的角度来计算;立体几何中的平行问题是通过向量的基本定理进行验证的。
2.平面法向量(1)法向量,指的是与已知平面垂直的向量值,这个是可以根据坐标位置的确定有多个的,就我们使用的经验来讲一般是选择最为方便的那个来操作的。
(2)法向量的计算,根据一般情况建立适当的平面直角坐标轴,假设所知平面的法向量为m(a,b,c),在所在平面内找到两个相交的直线S,T,同时运用法向量来定义他们。
因为法向量垂直于所在平面,所以必定也垂直S,T,利用垂直向量点乘为零列出方程组。
由于有三个未知数a,b,c,通常是假设其中一个是较特殊的值,再求出另外两个的值。
二、向量在立体几何中的实际运用空间向量作为新鲜血液,解决几何问题时更具优势,解题者思维能清晰明了。
这样的方法不仅节省时间还能够简单地解决问题。
1.立体几何的证明和计算问题主要分成二大板块:位置问题和度量问题。
位置问题就是线线,线面之间的关系等;度量关系就是线线之间,线面之间的角度问题。
(1)证明问题1)假设在一个空间里有任意的一点O点,以及和O点不共线的E,F,G三点,假如:(其中x+y+z=1),则四点M,E,F,G共面。
高考数学专题复习《空间向量在立体几何中的应用》PPT课件
则θ= <n1,n2>
或θ=
,sin θ= sin<n1,n2>
.
12.用空间向量求空间距离
(1)一般地,若A是平面α外一点,B是平面α内一点,n是平面α的一个法向量,则
|·|
点A到平面α的距离为d= ||
.
(2)当直线与平面平行时,直线上任意一点到平面的距离 称为这条直线与这个平
3
√3
,0, 2
2
.
,
- + 2 = 0,
· = 0,
(1)设 n=(x,y,z)为平面 PAD 的一个法向量,由
即
2√3 + 3 = 0.
· = 0,
令 y=2,得 n=(-√3,2,1).
∵n·=-√3 ×
PAD.
3
√3
+2×0+1× =0,∴n⊥
2
2
.又 CM⊄平线的方向向量不平行,则这两条直线不平行.( √ )
(4)设n是平面α的法向量,A是平面α内一点,AB是平面α的一条斜线,则点B到
α 的距离为
| ·|
d=
.(
||
√ )
(5)两条直线的方向向量的夹角就是这两条直线所成的角.( × )
2.(多选)在如图所示的坐标系中,ABCD-A1B1C1D1为正方体,给出下列结论,
(1)半平面:平面内的一条直线把平面分为两部分, 其中的每一部分
都
称为一个半平面.
(2)二面角:从一条直线出发的 两个半平面
所组成的图形称为二面角,
这条直线称为二面角的 棱 , 这两个半平面 称为二面角的面.棱为l,两
个面分别为α,β的二面角的面,记作 α-l-β ,若A∈α,B∈β,则二面角也可以记