利用空间向量解立体几何完整版

合集下载

(完整版)用空间向量解立体几何问题方法归纳

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法平行垂直问题基础知识(1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面ABCD , 的中点, PA =AB =1, BC =2.(1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC.[证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立空A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 ,uuur uuur uuur1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),uuur∥AB ,即 EF ∥AB.又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB.uuur uuur uuur uuur(2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC.又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC ,直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4)1 uuur 1uuur F 0 , 1,2 ,EF = -2, 0, 0 ,PB =(1,0, uuuruuurE ,F 分别是 PC ,PD间直角坐标系如图所示,则DC =(1,0,0), AB =(1,0,0).uuur 1uuur uuur(1)因为 EF =- 2AB ,所以 EF所以平面PAD⊥平面PDC.使用空间向量方法证明线面平行时, 既可以证明直线的方向向量和平面内一条直线的方向向 量平行,然后根据线面平行的判定定理得到线面平行, 也可以证明直线的方向向量与平面的法向 量垂直;证明面面垂直既可以证明线线垂直, 然后使用判定定理进行判定, 也可以证明两个平面 的法向量垂直 .例 2、在直三棱柱 ABC-A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点 E 在线段 BB 1上,且 EB 1=1,D ,F ,G 分别为 CC 1,C 1B 1,C 1A 1的中点. 求证: (1)B 1D ⊥平面 ABD ;(2)平面 EGF ∥平面 ABD.证明: (1)以B 为坐标原点, BA 、BC 、BB 1所在的直线分别为 x 轴、 y 轴、z 轴建立空间直角坐标系,如图所示,则 B(0,0,0), D(0,2,2),B 1(0,0,4),设 BA =a ,则 A(a,0,0),uuur uuur uuuur 所以BA =(a,0,0),BD =(0,2,2), B 1D =(0,2,-2),uuuur uuur uuuur uuurB 1D ·BA =0, B 1D ·BD =0+4-4=0,即 B 1D ⊥BA ,B 1D ⊥BD.又 BA ∩BD =B ,因此 B 1D ⊥平面 ABD.a uuur a(2)由(1)知, E(0,0,3),G 2,1,4 ,F(0,1,4),则 EG = 2,1,1 , uuuur uuur uuuur uuurB 1D ·EG =0+2-2=0, B 1D ·EF =0+2-2=0,即 B 1D ⊥EG ,B 1D ⊥EF.又 EG ∩EF =E ,因此 B 1D ⊥平面 EGF. 结合 (1)可知平面 EGF ∥平面 ABD. 利用空间向量求空间角基础知识(1) 向量法求异面直线所成的角:若异面直线 a ,b 的方向向量分别为 a ,b ,异面直线所成的角为uuurEF =(0,1,1),|a ·b|. |a||b|.θ,则cos θ=|cos〈a,b〉|=(2) 向量法求线面所成的角:求出平面的法向量 n ,直线的方向向量 a ,设线面所成的角为 θ,则|n ·a|sin θ=|cos 〈n ,a 〉|=|n||a|. (3) 向量法求二面角:求出二面角θ为锐角,则 cos θ=|cos 〈n 1,n 2〉|=||n n 11|·|n n 22||; θ为钝角,则 cos θ=-|cos 〈 n 1,n 2〉|=- ||n n 11|·|n n 22||. 例 1、如图,在直三棱柱 A 1B 1C 1-ABC 中, AB ⊥AC ,AB =AC =2,A 1A = 4, 点D 是BC 的中点.(1) 求异面直线 A 1B 与 C 1D 所成角的余弦值; (2) 求平面 ADC 1与平面 ABA 1 所成二面角的正弦值. uuur(2)设平面 ADC 1 的法向量为 n 1=(x ,y ,z),因为 AD =(1,1,0), uuuurn 1·AC 1 =0,即 x +y = 0 且 y +2z =0,取 z =1,得 x = 2,y =- 2,所以, n 1= (2,-2,1)是平面 ADC 1 的一个法向量.取平面 ABA 1 的一个法向量为 n 2=(0,1,0).设平面 ADC 1 与平面 ABA 1 所成面角的大小为 θ.n 1·n 22 2 5由|cos θ|=|n 1||n 2| =9×1=3,得 sin θ=3 .5因此,平面 ADC 1 与平面 ABA 1所成二面角的正弦值为 3 .α-l -β的两个半平面 α与 β的法向量 n 1, n 2,若二面角 α-l - β所成的角若二面角 α-l - β所成的角[解] (1)以 A 为坐标原点,建立如图所示的空间直角坐标系 uuuur C(0,2,0), D (1,1,0),A 1(0,0,4), A-xyz ,则 A(0,0,0),B(2,0,0), uuuurC1(0,2,4),所以 A 1B =(2,0,-4),C 1D (1,-1, -4).uuuur uuuur 因为 cos〈 A 1B , C 1D 〉uuuur uuuur A 1B ·C 1D uuuur uuuur = =| A 1B ||C 1D | 20× 18183 10 10 所以异面直线 A 1B 与 C 1D 所成角的余弦值为31010.uuuur ACuuur = (0,2,4),所以 n 1·AD =例2、如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1) 证明:AB⊥A1C;(2) 若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.[解] (1)证明:取 AB 的中点 O ,连接 OC ,OA 1,A 1B.因为 CA =CB ,所以 OC ⊥AB.由于 AB =AA 1,∠BAA 1=60°,故 △AA 1B 为等边三角形,所以 OA 1⊥AB. 因为 OC ∩OA 1=O ,所以 AB ⊥平面 OA 1C. 又 A 1C? 平面 OA 1C ,故 AB ⊥A 1C.(2)由(1)知 OC ⊥AB ,OA 1⊥AB.又平面 ABC ⊥平面 AA 1B 1B ,交线为 AB , 所以 OC ⊥平面 AA 1B 1B ,故 OA ,OA 1,OC 两两相互垂直.uuur uuur以 O 为坐标原点, OA 的方向为 x 轴的正方向, |OA |为单位长,建立如图所示的空间直角坐标系 O-xyz. 由题设知 A (1,0,0),A 1(0, 3, 0),C (0,0, 3),B (-1,0,0). uuur uuuur uuuur则BC =(1,0, 3), BB 1 = AA 1 =(-1, 3,0),设 n =(x ,y , z)是平面 BB 1C 1C 的法向量,uuurn ·BC =0,x + 3z = 0, 则 uuuur 即可取 n =( 3,1,- 1).n ·BB 1 =0.- x + 3y =0.uuuuruuuur A 1C =- 3 , 3) .uuuur故 cos n , A 1Cn ·A 1C uuuur =|n|| A 1C |10 5所以 A 1C 与平面 BB 1C 1C 所成角的正弦值为 105(1) 运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2) 求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求.例3、如图,在四棱锥S-ABCD 中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD 上一点,AE=ED=3,SE⊥AD. (1)证明:平面SBE⊥平面SEC;(2)若SE=1,求直线CE 与平面SBC所成角的正弦值.解:(1)证明:∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE? 平面SAD,SE⊥ AD,∴SE⊥平面ABCD. ∵BE? 平面ABCD,∴SE⊥BE. ∵AB⊥ AD,AB∥CD,CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°. ∴∠BEC=90°,即BE⊥ CE. 又SE∩ CE=E,∴BE⊥平面SEC. ∵BE? 平面SBE,∴平面SBE⊥平面SEC.(2)由(1)知,直线ES,EB,EC两两垂直.如图,以E为原点,EB为x轴,EC为y轴,ES uuur为z 轴,建立空间直角坐标系.则E(0,0,0),C(0,2 3,0),S(0,0,1),B(2,0,0),所以CE =(0,-uuur uur2 3,0),CB =(2,- 2 3,0),CS=(0,-2 3,1).设平面SBC 的法向量为n =(x,y,z),uuurn·CB =0,2x-2 3y=0,则uur 即令y=1,得x=3,z=2 3,n·CS =0. -2 3y+z=0.则平面SBC的一个法向量为n =( 3,1,2 3).uuur设直线CE与平面SBC所成角的大小为θ,则sin θ=| n··C uu E ur |=14,|n| |·CE |1故直线CE与平面SBC所成角的正弦值为4.例4、如图是多面体ABC-A1B1C1 和它的三视图.=0,(1)线段 CC 1 上是否存在一点 E ,使 BE ⊥平面 A 1CC 1?若不存在,请说明理由,若存在,请 找出并证明;(2)求平面 C 1A 1C 与平面 A 1CA 夹角的余弦值.解: (1)由题意知 AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则 A(0,0,0),uuuur A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则 CC 1 =(-1,1,2),uuuur uuurA 1C =(0,-2,-2).设 E(x ,y ,z),则CE =(x ,y +2,z),uuuur uuur uuuurEC 1 =(-1-x ,- 1-y,2-z ).设 CE =λEC 1 (λ>0),uuuurA 1C 1 =(-1,- 1,0), x =- λ- λ,x则 y + 2=- λ- λ,y - λ -2-λ 则E 1+λ, 12+λ,2λ,1+λ,z =2λ-λ,z uuur 2+λBE = 1+λ, -2-λ 1+λ, 2λ 1+λuuu rBE 由 uuur uuuur A 1C1uuuur ·A 1C=0, 2+λ 2+λ 1+λ+1+λ=0,- 2-λ 2λ1+λ+12+λλ=0, 解得 λ=2,uuur uuuur所以线段CC1 上存在一点E,CE =2EC1 ,使BE⊥平面A1CC1.=0,uuuur m ·A 1C 1 = 0, (2)设平面 C 1A 1C 的法向量为 m =(x ,y ,z),则由 uuuurm ·A 1C = 0, 取 x =1,则 y =- 1, z =1.故 m =(1,-1,1),而平面 A 1CA 的一个法向量为 n =(1,0,0),则 cos 〈m ,n 〉=|m m ||n n |= 13= 33,故平面 C 1A 1C 与平面 A 1CA 夹角的余弦值为 33. 利用空间向量解决探索性问题例 1、如图 1,正△ ABC 的边长为 4,CD 是 AB 边上的高, E ,F 分别是 AC 和 BC 边的中点, 现将△ ABC 沿 CD 翻折成直二面角 A-DC-B(如图 2).(1)试判断直线 AB 与平面 DEF 的位置关系,并说明理由; (2)求二面角 E-DF-C 的余弦值;(3) 在线段 BC 上是否存在一点 P ,使AP ⊥DE ?如果存在,求出 B B C P 的值;如果不存在,请说 明理由.[解] (1)在△ABC 中,由 E ,F 分别是 AC ,BC 中点,得 EF ∥AB.又 AB?平面 DEF ,EF?平 面 DEF ,∴AB ∥平面 DEF.(2)以点 D 为坐标原点,以直线 DB ,DC ,DA 分别为 x 轴、y 轴、 z 轴,建立空间直角坐标系,则 A(0,0,2), B(2,0,0),C(0,2 3,0),E(0, 3,1),F(1,uuur uuur uuur3,0), DF =(1, 3,0), DE =(0, 3,1), DA =(0,0,2).uuur平面 CDF 的法向量为 DA =(0,0,2).设平面 EDF 的法向量为 n =(x , y ,z),-x -y =0, 得- 2y - 2z =uuurDF ·n =0,则 uuurDE ·n =0, x + 3y = 0, 即 取 n =(3,- 3, 3), 3y +z =0,uuur cos 〈 DA , n 〉uuur·=| D u D u AA ur ·||n n|= 721,所以二面角 E-DF-C 的余弦值为721.uuur uuur uuur 2 3(3)存在.设 P(s ,t,0),有 AP =(s ,t ,- 2),则 AP ·DE = 3t -2=0,∴t = 3 , uuur uuur uuur uuur又 BP =(s - 2,t,0), PC =(-s,2 3-t,0),∵BP ∥PC ,∴(s -2)(2 3-t)=-st ,2 3 4 uuur 1uuur ∴ 3s +t =2 3. 把 t = 23 3代入上式得 s = 34,∴BP =13BC,∴在线段BC 上存在点 P ,使 AP ⊥DE. 此时, B B C P =31.1 空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推 理,只需通过坐标运算进行判断 .2 解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为 点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于 运用这一方法 . 例 2、.如图所示,在直三棱柱 ABC-A 1B1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若 D 为 AA 1 中点,求证:平面 B 1CD ⊥平面 B 1C 1D ; (2)在 AA 1 上是否存在一点 D ,使得二面角 B 1-CD-C 1 的大小为 60°? 解: (1)证明:如图所示,以点 C 为原点,CA ,CB ,CC 1所在直线分别为 x ,y ,z 轴建立空间直角坐标系.则 C(0,0,0),A(1,0,0), B 1(0,2,2),C 1(0,0,2),D(1,0,1),空间向量在处理空间问题时具有很大的优越性, 能把“非运算”问题“运算”化, 即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系, 因而建立空间直角坐标系问题成为近几年试题新的命题点.、经典例题领悟好例 1、如图,四棱锥 P-ABCD 中, PA ⊥底面 ABCD ,BC =CD =2,AC =4,π∠ACB =∠ACD =3,F 为 PC 的中点, AF ⊥PB.(1)求 PA 的长;(2)求二面角 B-AF-D 的正弦值. (1)学审题 ——审条件之审视图形由条件知 AC ⊥BD ―建―系→DB ,AC 分别为 x ,y 轴―→写出 A ,B ,C ,D 坐标―P ―A ―⊥―面―A ―B ―C ―D →uuur uuur 设P 坐标P―F―=→CF 可得 F 坐标A ―F―⊥→PBAF ·PB =uuuur 即C 1B 1 uuuur uuur =(0,2,0), DC 1 =(-1,0,1),CD =(1,0,1). uuuur 由 C 1B 1 uuur uuuur uuurCD =(0,2,0) (1,0·,1)=0+0+0=0,得C 1B 1 ⊥CD ,即C 1B 1⊥CD. uuuur 由 DC 1 uuur uuuur uuurCD =(-1,0,1)(1,0·,1)=-1+0+1=0,得 DC 1 ⊥CD ,即 DC 1⊥CD. 又 DC 1∩C 1B 1=C 1,∴CD ⊥平面 B 1C 1D.又 CD? 平面 B 1CD ,∴平面 B 1CD ⊥平面 B 1C 1D.(2)存在.当 AD = 时,二面角 B 1-CD-C 1 的大小为 60°.理由如下: uuur uuur 设 AD =a ,则 D 点坐标为 (1,0,a), CD =(1,0,a),CB 1 =(0,2,2), 设平面 B 1CD 的法向量为 m =(x ,y , z),uuur m ·CB 1 = 02y +2z =0,则 uuur ?令 z =-1,得 m =(a,1,- 1).m ·CD =0 x +az = 0, uuur uuur|m ·CB |又∵CB =(0,2,0)为平面 C 1CD 的一个法向量,则 cos 60 =° uuur |m| |·CB |=a 2+ 21=2,2解得 a = 2(负值舍去 ),故 AD = 2= 2 AA 1.∴在AA 1 上存在一点 D 满足题意.空间直角坐标系建立的创新问题 (2) 学审题uuur由 (1) ―→ ADuuur AFuuur AB 的0―→得 P 坐标并求 PA 长.向量n―1,――n2―分―别―为―平―面――F ―A ―D 、――平―面―F ―A ―B―的→法向量n 1·u A u D ur =0且n 1·u A u F ur=0―→求得n 1·n 2―→求得夹 角余弦.[解] (1)如图,连接 BD 交AC 于O ,因为 BC =CD ,即△BCD 为等腰三角形,又 AC 平分∠ uuur uuur uuurBCD ,故 AC ⊥BD.以O 为坐标原点, OB ,OC , AP 的方向分别为 x 轴,y 轴, z 轴的正方向,ππ建立空间直角坐标系 O-xyz ,则 OC =CDcos 3= 1.而 AC =4,得 AO =AC -OC =3.又 OD =CDsin 3= 3,故 A (0,- 3,0),B ( 3,0,0),C (0,1,0),D (- 3,0,0).z uuur z因PA ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F0,-1,2.又AF = 0,2,2,uuurz 2PB =0,即 6-2=0,z =2 3(舍去- 2 3), uuur所以 |PA |=2 3.uuur uuur (2)由(1)知AD =(- 3,3,0), ABuuur uuurPB =( 3,3,- z ),AF ⊥PB ,故 uuur=( 3, 3,0), AF =(0,2, 3).设平面 FAD 的法n 1=(x 1,y 1,z 1),平面 FAB 的法向量为 n 2=(x 2,y 2,z 2), uuur由 n 1·AD = 0, uuur - 3x 1+ 3y 1= 0, AF = 0,得2y 1+ 3z 1= 0,因此可取 n 1=(3, 3,- 2).uuur由 n 2·AB = 0, uuur 3x 2+3y 2= 0,AF =0,得故可取 n 2=(3,- 3,2).从而法向量 n 1,n 2 的夹角的余弦值为 cos 〈n 1, n 2〉= n 1·n 2 1|n 1||·n 2|=8.故二面角B-AF-D 的正弦值为387.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系 本题利用 AC ⊥BD ,若图中存 在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系 .在没有明显的垂直关系 时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系, 注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称 .例 2、如图,在空间几何体中,平面 ACD ⊥平面 ABC ,AB =BC = CA =DA = DC =BE =2.BE 与平面 ABC 所成的角为 60°,且点 E 在平面 ABC 内的射影落在∠ ABC 的平分线上.(1)求证: DE ∥平面 ABC ; (2)求二面角 E-BC-A 的余弦值.解:证明: (1)易知△ABC ,△ACD 都是边长为 2的等边三角形,取 AC 的中点 O ,连接 BO ,DO ,则 BO ⊥AC ,DO ⊥AC. ∵平面 ACD ⊥平面 ABC , ∴DO ⊥平面 ABC.作 EF ⊥平面 ABC ,则 EF ∥DO. 根据题意,点 F 落在 BO 上,∴∠EBF =60 °, 易求得 EF =DO = 3,∴四边形DEFO 是平行四边形, DE ∥OF. ∵DE?平面 ABC ,OF? 平面 ABC ,∴DE ∥平面 ABC.(2)建立如图所示的空间直角坐标系 O-xyz ,可求得平面 ABC 的一个法向量为 n 1=(0,0,1). uuur uuur可得C (-1,0,0),B (0, 3,0),E (0, 3-1, 3),则CB =(1, 3,0), BE =(0,-1, 3)y ,z ) ·(0,- 1, 3)=0,可取 n 2=(-3, 3,1).设平面 BCE 的法向量为 n 2=(x , uuur y ,z ),则可得 n 2·CB =0, uuurn 2·BE =0,故 cos 〈n 1,n 2 〉n 1·n 1 13|n 1||·n 2|= 13 .又由图知, 所求二面角的平面角是锐角,即(x ,y ,z ) ·(1, 3,0)=0,(x ,故二面角 E-BC-A 的余弦值为 1133.专题训练1.如图所示,在多面体 ABCD -A 1B 1C 1D 1中,上、下两个底面 A 1B 1C 1D 1和 ABCD 互相平行, 且都是正方形, DD 1⊥底面 ABCD ,AB ∥A 1B 1,AB = 2A 1B 1=2DD 1=2a. (1)求异面直线 AB 1 与 DD 1所成角的余弦值; (2)已知 F 是 AD 的中点,求证: FB 1⊥平面 BCC 1B 1. 解:以 D 为原点, DA , DC ,DD 1所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角 坐标系,则 A (2a,0,0),B (2a,2a,0), C (0,2a,0),D 1(0,0,a ),F (a,0,0), uuuur uuuur uuuur uuuur (1)∵AB 1=(-a ,a ,a ),DD 1=(0,0,a ),∴cos 〈 AB 1 , DD 1 〉 B 1(a ,a ,a ),C 1(0,a ,a ). uuuur uuuur AB 1 ·DD 1 3 = uuuur uuuur = ,|AB 1 | ·|DD 1 | 33 所以异面直线 AB 1 与 DD 1 所成角的余弦值为3 .uuuur uuur uuur(2)证明:∵BB 1=(-a ,-a ,a ),BC =(-2a,0,0),FB 1=(0, uuurFB 1 uuur FB 1 uuuur BB 1 =0, uuur ∴FB 1⊥BB 1, FB 1⊥BC. ·BC = 0.a ,a), ∵BB 1∩ BC = B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱 ABC-A 1B 1C 1中,AA 1C 1C 是边长为 4的正方形,平面ABC ⊥平面 AA 1C 1C ,AB = 3, BC =5.(1)求证: AA 1⊥平面 ABC ; (2)求二面角 A 1-BC 1-B 1 的余弦值;BD(3)证明:在线段 BC 1上存在点 D ,使得 AD ⊥A 1B ,并求 BC1的值.解: (1)证明:因为四边形 AA 1C 1C 为正方形,所以 AA 1⊥AC.因为平面 ABC ⊥平面 AA 1C 1C ,且 AA 1 垂直于这两个平面的交线 AC ,所以 AA 1⊥平面ABC.(2)由(1)知 AA 1⊥AC , AA 1⊥AB. 由题知 AB =3,BC =5,AC =4,所以 AB ⊥AC.如图,以 A 为原点建立空间直角坐标系 A-xyz ,则 B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),uuuur A 1B =uuuur- 4), A 1C 1 =(4,0,0).设平面 A 1BC 1 的法向量为 n =(x ,y ,z),uuuurn ·A 1B =0, 3y -4z = 0,则 uuuur 即 令 z =3,则 x = 0,y =4,所以 n =(0,4,3).n ·A 1C 1 =0.4x = 0.由题知二面角 A 1-BC 1-B 1 为锐角,所以二面角 A 1-BC 1-B 1 的余弦值为 25uuur uuuur(3) 证明:设 D(x ,y ,z)是直线 BC 1 上一点,且 BD =λBC 1 .所以 (x ,y -3,z)=λ(4,- 3,4).解得 x =4λ,y =3-3λ,z =4λ.uuur uuur uuuur所以 AD =(4λ,3-3λ,4λ).由 AD ·A 1B =0,即 9-25λ=0,解得9因为25∈[0,1],所以在线段 BC 1 上存在点 D ,使得 AD ⊥A 1B.BD 9 此时,BC1=λ=25.3.如图(1),四边形 ABCD 中,E 是BC 的中点, DB =2,DC =1,BC = 5,AB =AD = 2.将图(1)沿直线 BD 折起,使得二面角 A-BD-C 为 60°,如图(2).(1)求证: AE ⊥平面 BDC ;(2)求直线 AC 与平面 ABD 所成角的余弦值.1解: (1)证明:取 BD 的中点F ,连接 EF ,AF ,则AF =1,EF =2,∠AFE =60°. 3. 2.同理可得,平面 B 1BC 1 的一个法向量为 m =(3,4,0).所以 cos 〈 n , m 〉 =n ·m=16. =|n||m|=25.169 λ=25.由余弦定理知 AE =21 2-2×1×12cos 60∵AE2+EF2=AF2,∴AE⊥EF.∵AB=AD,F 为BD 中点.∴BD⊥AF. 又BD=2,DC=1,BC=5,∴BD2+DC2=BC2,即BD⊥CD.又E为BC中点,EF∥CD,∴BD⊥EF.又EF∩AF=F,∴BD⊥平面AEF.又BD⊥ AE,∵BD∩ EF=F,∴AE⊥平面BDC.(2)以E 为原点建立如图所示的空间直角坐标系,则 A 0,0,23,11C -1,2,0 ,B 1,-2,0 ,D -1,-21,0 ,uuurDB =(2,0,0),uuur uuurDA =1,AC =-1,12,设平面ABD 的法向量为n=(x,y,z),uuurn·DB =0 由uuurn·DA =02x=0,得13x+2y+2 z=0,取z= 3 ,则y=-3,又∵n=(0,-3,3).uuuruuur n·AC 6∴cos〈n ,AC 〉=uuur=-.|n||AC | 4故直线AC 与平面ABD 所成角的余弦值为410.4.如图所示,在矩形ABCD 中,AB=3 5,AD=6,B D 是对角线,过点A 作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ ADE向上折起,使点D到点P的位置,且PB=41.(1)求证:PO⊥平面ABCE;(2)求二面角 E-AP-B 的余弦值.解: (1)证明:由已知得 AB =3 5,AD =6,∴BD =9. 在矩形 ABCD 中,∵AE ⊥BD ,DO AD∴Rt △AOD ∽Rt △BAD ,∴AD = BD ,∴DO = 4,∴BO = 5. 在△POB 中,PB = 41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB.又 PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面 ABCE.(2)∵BO =5,∴AO = AB 2- OB 2=2 5.以 O 为原点,建立如图所示的空间直角坐标系,则 P(0,0,4),A(2 5,0,0), B(0,5,0), uuuruuurPA =(2 5, 0,- 4), PB =(0,5,- 4).取 x =2 5得 n 1=(2 5,4,5).又 n 2=(0,1,0)为平面 AEP 的一个法向量, n 〉= n 1·n 2 4 4 61n2〉=|n 1| |·n 2|= 61×1= 61 ,5.如图,在四棱锥 P-ABCD 中,侧面 PAD ⊥底面 ABCD ,侧棱 PA =PD = 2,PA ⊥ PD ,底面 ABCD 为直角梯形,其中 BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为 AD 中点.(1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离;(3) 线段 PD 上是否存在一点 Q ,使得二面角 Q-AC-D 的余弦值为 36?若存在,求出 Q PQ D 的值; 若不存在,请说明理由.解: (1)在△PAD 中,PA =PD ,O 为 AD 中点,所以 PO ⊥AD.又侧面 PAD ⊥底面 ABCD ,平面 PAD ∩平面 ABCD = AD ,PO? 平面 PAD ,所以 PO ⊥平面 ABCD.又在直角梯形 ABCD 中,连接 OC ,易得 OC ⊥AD ,所以以 O 为坐标原点, OC ,OD ,OP 所在直线分别为 x ,y ,z 轴建立空间直角坐标系, 则 P(0,0,1),A(0,-1,0),B(1,-1,0),C(1,0,0),设 n 1=(x ,y ,z)为平面 APB 的法向量.则 uuurn 1·PA =0,uuurn 1·PB = 0,2 5x - 4z =0, 即 5y -4z =0. ∴cos 〈n 1,故二面角 E-AP-B 的余弦值为 4 6161D(0,1,0),uuur∴PB =(1,-1, uuur- 1),易证 OA ⊥平面 POC ,∴OA =(0,- 1,0)是平面 POC 的法向量, uuur uuur cos〈 PB ,OA 〉 uuur uuur Puu B ur ·O uu A ur = 33. ∴直线PB 与平面 POC 所成角的余弦值为 36. | PB ||OA | 3 3uuuruuur (2) PD =(0,1,- 1), CP =(-1,0,1).设平面 PDC 的一个法向量为 u =(x ,y ,z ), uuur CP =- x + z=0,uuurPD =y -z =0,取 z =1,得 u = (1,1,1).∴B 点到平面 PCD 的距离为 d = (3)假设存在一点 Q ,则设 uuur PQ = uuur uuur λPD (0<λ<1).∵PD =(0,1,-1),uuur uuur ∴PQ =(0,λ,- λ)= OQ -OP ,∴OQ =(0,λ,1-λ),∴Q(0,λ,1-λ). uuu r uuu r uuur设平面 CAQ 的一个法向量为 m =(x ,y ,z ),又 AC =(1,1,0),AQ =(0,λ+1,1-λ) uuur m ·AC =x +y = 0,则 uuur 取 z = λ+ 1,得 m = (1- λ, λ-1, λ+ 1), m ·AQ = λ+1 y + 1- λz =0. 又平面 CAD 的一个法向量为 n =(0,0,1),二面角 Q-AC-D 的余弦值为 36, 所以 |cos 〈m , n 〉 |=||m m ||n n ||= 36,得 3λ2-10λ+3=0,解得 λ=13或λ=3(舍), PQ 1 所以存在点 Q ,且 QD =2. 6.如图,在四棱锥 S-ABCD 中,底面 ABCD 是直角梯形,侧棱 SA ⊥底面 ABCD , AB 垂直于 AD 和 BC ,SA =AB =BC =2,AD =1.M 是棱 SB 的中点. (1)求证: AM ∥平面 SCD ; (2)求平面 SCD 与平面 SAB 所成二面角的余弦值; (3)设点 N 是直线 CD 上的动点, MN 与平面 SAB 所成的角为 θ,求 sin θ的最大值.解:(1)以点 A 为原点建立如图所示的空间直角坐标系, 则A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),uuuur uuur S(0,0,2),M(0,1,1).所以 AM =(0,1,1), SD = (1,0,uuur -2), CD=(-1,-2,0).设平面 SCD 的法向量是 n =(x ,y ,z ),uuurSD ·n =0, 则 uuurCD ·n =0, x -2z = 0, 即 令 z = 1,则 x =2,y =- 1, -x -2y =0. uuuur uuuur于是 n =(2,-1,1).∵AM ·n =0,∴AM ⊥n.又AM?平面 SCD ,∴AM∥平面SCD.(2)易知平面SAB的一个法向量为n1=(1,0,0).设平面SCD 与平面SAB所成的n1·n 1,0,0 ·2,-1,1 2 6 6 则|cos φ|=|n1| ·|n| =1·6=1·6=3 ,即cos φ=3 .∴平面SCD 与平面SAB所成二面角的余弦值为36.uuuur(3) 设N(x,2x-2,0)(x∈[1,2]) ,则MN =(x,2x-3,-1).又平面SAB 的一个法向量为n1=(1,0,0),7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠ FAB=∠ DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;(2)求二面角F-CD-A 的余弦值.解:(1)证明:由已知得,BE∥AF,BC∥AD,BE∩BC=B,AD∩AF=A,∴平面BCE∥平面ADF. 设平面DFC∩平面BCE=l,则l过点 C.∵平面BCE∥平面ADF,平面DFC∩平面BCE=l,平面DFC ∩平面ADF =DF.∴DF∥l,即在平面BCE上一定存在过点C的直线l,使得DF∥l.(2)∵FA⊥AB,FA⊥CD,AB与CD 相交,∴FA⊥平面ABCD.故以A为原点,AD,AB,AF分别为x轴,y轴,z轴建立空间直角坐标系,如图.由已知uuur uuur 得,D(1,0,0),C(2,2,0),F(0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x,y,z),面角为φ,∴sin θ=x,2x-3,-1 ·1,0,x2+2x-3 2+- 1 2·1x-12x+101·x357)max=110 x1 2-12 x1+5则 n =(2,-1,1),不妨设平面 ABCD 的一个法向量为 m =(0,0,1).m ·n 1 6∴cos 〈m , n 〉=|m||n|= 6= 6,由于二面角 F-CD-A 为锐角,∴二面角 F-CD-A 的余弦值为 66.8、.如图,在四棱锥 P-ABCD 中,PD ⊥平面 ABCD ,四边形 ABCD 是菱形,AC =2,BD =2 3, E 是 PB 上任意一点. (1)求证: AC ⊥DE ;(2)已知二面角 A-PB-D 的余弦值为 515,若E 为PB 的中点,求EC 与平面 PAB 所成角的正弦值. 解: (1)证明:∵PD ⊥平面 ABCD ,AC? 平面 ABCD ,∴PD ⊥AC , ∵四边形 ABCD 是菱形,∴BD ⊥AC ,又 BD ∩PD =D ,∴AC ⊥平面 PBD ,平面 PBD ,∴AC ⊥DE.(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面 ABCD ,分别以 OA ,OB ,OE 所在直线为 x 轴,y 轴, z 轴建立空间直角坐标系,设 PD =t ,则 A (1,0,0),B (0, 3,0),C(-1,0,0),E 0,0,2t ,P (0, uuur uuur- 3,t ), AB = (-1, 3,0), AP =(-1,- 3,t ).由(1)知,平面 PBD 的一个法向量为 n 1=(1,0,0),设平面 PAB 的法向量为 n 2=(x ,y ,z ),则设 EC 与平面 PAB 所成的角为 θ,∵EC =(-1,0,- 3), n 2=( 3,1,1),15面角 A-PB-D 的余弦值为 5 ,则 |cos 〈n 1,n ·DF =0, 则 uuur n ·DC=0x =2z ,不妨设 z =1.x =-2y , 312= 515,解得 t =2 3或 t =- 2 3(舍去), 4+ 2m ·n uuur n 2·AB =令 y = 1,得 n 2= 3,1,2 3根据 uuurn 2·AP =则sin θ=|cos〈EC ,n2〉=,∴EC 与平面PAB 所成角的正弦值为2× 5 5 519、如图 1,A ,D 分别是矩形 A 1BCD 1上的点, AB =2AA 1=2AD =2,DC =2DD 1,把四边形 A 1ADD 1沿 AD 折叠,使其与平面 ABCD 垂直,如图 2所示,连接 A 1B ,D 1C 得几何体 ABA 1-DCD 1.(1)当点 E 在棱 AB 上移动时,证明: D 1E ⊥A 1D ;π(2)在棱 AB 上是否存在点 E ,使二面角 D 1-EC-D 的平面角为 6?若存在,求出 AE 的长;若不存在,请说明理由.解: (1)证明,如图,以点 D 为坐标原点, DA ,DC ,DD 1所在直线为x 轴,y 轴, z 轴建立空间直角坐标系 D-xyz ,则 D(0,0,0),A(1,0,0), C(0,2,0),A 1(1,0,1),D 1(0,0,1).设 E(1,t,0),uuuur uuuur uuuur A 1D =(- 1,0,- 1),∴D 1 E ·A 1D =1×(-1)+t ×0+(-1)×(-1)=0,∴D 1E ⊥A 1D. uuur(2)假设存在符合条件的点 E.设平面 D 1EC 的法向量为 n =(x ,y ,z),由(1)知EC =(-1,2-t,0),uuurn ·EC =0,- x + 2-t y = 0, 1 1则 uuuur 得令 y =21,则 x =1- 21t ,z =1,n ·D 1E = 0x +ty -z =0, 2 2uuuur 显然平面 ECD 的一个法向量为 DD 1 =(0,0,1), uuuur|n ·DD 1 | =uuuur =|n||DD 1 |uuuur则D 1E =(1, t ,- 11 n = 1-2t ,2,1是平面 D 1EC 的一个法向量,uuuur则 cos 〈n , π31 1=cos 6,解得 t = 2- 3 (0≤t ≤2). 1-21t2+41+1故存在点E,当AE=2-π面角D1-EC-D 的平面角为6.1。

利用空间向量解立体几何问题.doc

利用空间向量解立体几何问题.doc

利用空间向量解立体几何问题2、例2 已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积。

分析:可用公式1||||sin 2S AB AC A =⋅⋅u u ur u u u r 来求面积解:∵(1,2,2)AB =-u u u r ,(2,0,3)AC =--u u u r,∴||3AB ==u u u r,||AC u u u r(1,2,2)(2,0,3)264AB AC ⋅=-⋅--=-+=u u u r u u u r,∴cos cos ,||||AB AC A AB AC AB AC ⋅=<>===⋅u u u r u u u ru u u r u u u r u u u r u u u rsin sin ,A AB AC =<u u u r u u u r∴所以,1||||sin 2ABCS AB AC A ∆=⋅⋅=u u u r u u u r . 1、综述(1)由于任意两个空间向量都可以转化为平面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和符号、两个空间向量的数量积等等,都与平面向量相同。

(2) 利用空间向量解题的方法有2类:(i ) 利用空间向量基本定理,结合向量的数量积运算; (ii ) 建立空间坐标系,转化为坐标运算;(3)利用空间向量解题常用到下列2个概念 (i )直线的方向向量:把直线l 上的向量e 以及与e 平行的向量叫直线的方向向量,有2种方向,有无数个,(II )平面的法向量:垂直于平面的方向向量,按方向分有2类,有无数个;如何求平面的法向量?1、设法向量为(,,)n x y z =r,为方便计算,可令其中一个坐标为1; 2、在平面内找出两个不共线的向量,a b r r 及其坐标;3、根据法向量与平面内两个不共线的向量数量积为零,列出方程组;4、解方程组得出法向量的坐标2、分类线面关系 线面角 二面角异面直线成角线面关系 目录设空间两条直线21,l l 的方向向量分别为21,e e ,两个平面21,αα的法向量分别为21,n n ,则由如下平 行垂 直AB CD EFxyzMNA 1 D 1B 1DC C 1yz EFA BC DE F x yzP1l 与2l 21//e e 21e e ⊥ 1l 与1α11n e ⊥ 11//n e 1α与2α21//n n21n n ⊥例4 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE 证明:建立如图所示空间坐标系,设AB,AD,AF 长分别为3a ,3b ,3c),0,2(c a BM -=++=又平面CDE 的一个法向量)0,3,0(b AD = 由0=⋅AD NM 得到AD NM ⊥ 因为MN 不在平面CDE 内 所以NM//平面CDE例1:如图,四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,AD=PD ,E ,F 分别CD 、PB 的中点. (1) 求证:EF ⊥平面PAB ;(Ⅱ)设2BC ,求AC 与平面AEF 所成角的大小.(1)证明:建立空间直角坐标系(如图),设AD=PD=1,AB=2a (0a >),则E(a,0,0), C(2a,0,0), A(0,1,0), B(2a,1,0), P(0,0,1), 11(,,)22F a .得11(0,,)22EF =u u u v ,(2,1,1)PB a =-u u u v ,(2,0,0)AB a =u u u v . 由11(0,,)(2,0,0)022EF AB a ⋅=⋅=u u u v u u u v ,得EF AB ⊥u u u v u u u v ,即EF AB ⊥, 同理EF PB ⊥,又AB PB B =I , 所以,EF ⊥平面PAB.2、例5在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点, 求证:D 1F ⊥平面ADE证明:设正方体棱长为1,建立如图所示坐标系D -xyz)0,0,1(=DA ,)21,,1,1(=DEABCDEPxyz F 因为)1,21,0(1-=D所以0,011=⋅=⋅D DD D ⊥⊥11,D DA DE =I所以⊥F D 1平面ADE 3、(2004年湖南高考理科试题)如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.(Ⅲ)在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.解:根据题设条件,结合图形容易得到:)3,32,0(,),,0(,)0,2,23(a a E a a D a a B - ),0,0(,)0,2,23(a P a a C),2,23(a aa --=假设存在点FCP CF λ=),2,23(a aa λλλ--=。

高考数学中利用空间向量解决立体几何的向量方法三ppt课件

高考数学中利用空间向量解决立体几何的向量方法三ppt课件

GEF的距离。
z
G
d|nBE| 2 11.
n
11
xD
C
F
A
E
B
y
练习3:
正方体AC1棱长为1,求BD与平面GB1D1的
距离
Z D1
DD 1 n C1 d
A1
B1
n
G D
A X
C Y
B
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C
与平面A1BC1的距离
Z D1
A1
B1
AD n C1 d n
ABC 是D正 方 SB 形 面 A ,BC ,DS 且A 与 面 ABC 所D成 的 45, 角S 点 为 到A 面BC 的D 距 离 1, 为A 求C 与 SD 的 距 离 。
z S
B
Ay
xC
D
结论1
点 P 到平面的距离可以通过,
在平面内任取一点 A,求向量PA在
平面的法向量n上的投影来解决.
P
n
则 d=| PO |= | PA | cos APO.
∵ PO ⊥ , n , ∴ PO ∥ n .
A O
∴cos∠APO=|cos PA, n |.
∴d=| PA||cos PA, n |= | PA | | n | | cos PA, n | = | PA n | .
|n|
|n|
n
N
A
方法指导:若点P为平面α外一点,点A为平面α内任 一点,平面的法向量为n,则点P到平面α的距离公式 为
如何用向量法求点到平面的距离:
如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?

空间向量求解立体几何

空间向量求解立体几何

向量法解立体几何1. 基本概念:1.1. 向量的数量积和坐标运算b a,是两个非零向量,它们的夹角为θ,则数θcos |||⋅⋅b 叫做与的数量积(或内积),记作⋅,即.cos ||||θ⋅⋅=⋅ 其几何意义是的长度与在的方向上的投影的乘积. 其坐标运算是:若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅;②222222212121||,||z y x z y x ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<1.2. 异面直线n m ,所成的角分别在直线n m ,上取定向量,,b a则异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角(如图1所示),则.||||||cos b a b a ⋅⋅=θ1.3. 异面直线n m 、的距离分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量n ,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在上的射影长,即d =.设直线n m ,所成的角为θ,显然.||||||cos b a b a ⋅⋅=θ图2图11.4. 直线L 与平面α所成的角在L 上取定,求平面α的法向量(如图2所示),再求||||cos n AB ⋅=θ,则θπβ-=2为所求的角,即所求的角为sin 值!!! 1.5. 二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如图3所示),则① 若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n ⋅=θ② 若二面角βα--l 是“锐角型”的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即||||cos 2121n n ⋅=θ.方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、(如图4所示),则二面角βα--l 的大小等于向量21n n 、的夹角,即 cos 2121=θ1.6. 平面外一点p 到平面α的距离先求出平面α的法向量,在平面内任取一定点A ,则点p 到平面α的距离d 等于在上的射影长,即||n d =.图3甲图4图5立体几何证明类题型归纳总结专用笔记空间向量解立体几何笔记法向量:法向量的求法:一、证明类1.线线平行:2.线面平行:3.面面平行:4.线线垂直:5.线面垂直:6.面面垂直:二、求值类1.点面距:2.线线距:3.线线角:4.线面角:5.面面角:三、体表类1.体表公式:1. 已知在正方体ABCD —A 1B 1C 1D 1中,M 、E 、F 、N 分别是A 1B 1、B 1C 1、C 1D 1、D 1A 1的中点. (1)求证:平面AMN ∥平面EFDB. (2)求直线AM 与DB 的夹角的余弦值(3)求平面AMN 与平面ABCD 的二面角的余弦值2、如图,在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1;(II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小.3、如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ;(2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离.B4、如图,已知四棱锥P —ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD =2,侧面PBC ⊥底面ABCD ,O 是BC 中点,AO 交BD 于E . (1)求证:PA ⊥BD ;(2)求二面角P -DC -B 的大小; (3)求证:平面PAD ⊥平面PAB .5. 已知长方体ABCD —A 1B 1C 1D 1中, A 1A=AB , E 、F 分别是BD 1和AD 中点.(1)求异面直线CD 1、EF 所成的角;(2)证明EF 是异面直线AD 和BD 1的公垂线.6.正方体ABCD-A ’B’C’D’中, M 、N 分别为棱AA 1和BB 1的中点,求(1)异面直线CD ’和BC ’所成的角的度数是,(2)求异面直线CM 与D 1N 所成角的正弦值.7、ABCD-A 1B 1C 1D 1是正方体,E 、F 分别是AD 、DD 1的中点,则面11正切值等于CA BOPD E B D8、设P 、Q 是单位正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心。

高中数学用空间向量解立体几何问题方法归纳

高中数学用空间向量解立体几何问题方法归纳

高中数学用空间向量解立体几何问题方法归纳IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4)(1)线面平行:l ∥αa ⊥ua ·u =0a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥αa ∥ua =k u a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥βu ∥vu =k v a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥βu ⊥vu ·v =0a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB .又AB 平面PAB ,EF 平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0,所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP 平面PAD ,AD 平面PAD ,所以DC ⊥平面PAD .因为DC 平面PDC ,所以平面PAD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n ·a ||n ||a |. (3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D | 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.[解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C 平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求.例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD .(1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE 平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE 平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB∥CD ,CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°,即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE 平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23,则平面SBC 的一个法向量为n =(3,1,23).设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14.例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0),则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝ ⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ. 由⎩⎪⎨⎪⎧BE ·11A C =0,BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0),则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BP BC的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB 平面DEF ,EF 平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA ,n 〉=DA ·n| DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233,又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st ,∴3s +t =23. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.1空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1),即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD . 又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD 平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12,解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意.空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB .(1)求PA 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→PA ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求PA长.(2)学审题 由(1)―→AD ,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面FAD 、平面FAB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC=4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因PA ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=23.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n1,n2的夹角的余弦值为cos〈n1,n2〉=n1·n2|n1|·|n2|=18.故二面角B-AF-D的正弦值为37 8.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系本题利用AC⊥BD,若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=与平面ABC所成的角为60°,且点E在平面ABC内的射影落在∠ABC的平分线上.(1)求证:DE∥平面ABC;(2)求二面角E-BC-A的余弦值.解:证明:(1)易知△ABC,△ACD都是边长为2的等边三角形,取AC的中点O,连接BO,DO,则BO⊥AC,DO⊥AC. ∵平面ACD⊥平面ABC,∴DO⊥平面ABC. 作EF⊥平面ABC,则EF∥DO. 根据题意,点F落在BO上,∴∠EBF=60°,易求得EF=DO=3,∴四边形DEFO是平行四边形,DE∥OF.∵DE平面ABC,OF平面ABC,∴DE∥平面ABC.(2)建立如图所示的空间直角坐标系O-xyz,可求得平面ABC的一个法向量为n1=(0,0,1).可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE=(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1).故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ), ∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BD BC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m|n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ. 所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BDBC 1=λ=925. 3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°.由余弦定理知AE =12+⎝ ⎛⎭⎪⎪⎫122-2×1×12cos 60°=32. ∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2,即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎪⎫0,0,32, C ⎝ ⎛⎭⎪⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎪⎫1,-12,0,D ⎝ ⎛⎭⎪⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎪⎨⎪⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3). ∴cos 〈n ,AC 〉=n ·AC|n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值. 解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE⊥BD ,∴Rt △AOD ∽Rt △BAD ,∴DO AD =AD BD,∴DO =4,∴BO =5.在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2,∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x=25得n1=(25,4,5).又n2=(0,1,0)为平面AEP的一个法向量,∴cos〈n1,n2〉=n1·n2|n1|·|n2|=461×1=46161,故二面角E-AP-B的余弦值为461 61.5.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为63若存在,求出PQQD的值;若不存在,请说明理由.解:(1)在△PAD中,PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.又在直角梯形ABCD中,连接OC,易得OC⊥AD,所以以O为坐标原点,OC,OD,OP所在直线分别为x,y,z轴建立空间直角坐标系,则P(0,0,1),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),∴PB=(1,-1,-1),易证OA⊥平面POC,∴OA=(0,-1,0)是平面POC的法向量,cos 〈PB ,OA 〉=PB ·OA| PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ),则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =λ+1y +1-λz =0.取z =λ+1,得m =(1-λ,λ-1,λ+1),又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍),所以存在点Q ,且PQQD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0).设平面SCD 的法向量是n =(x ,y ,z ), 则⎩⎪⎨⎪⎧SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1,于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM 平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ,则|cos φ|=⎪⎪⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪⎪⎪1,0,0·2,-1,11·6=⎪⎪⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63. ∴平面SCD 与平面SAB 所成二面角的余弦值为63.(3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1).又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪x ,2x -3,-1·1,0,0x 2+2x -32+-12·1=⎪⎪⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎪⎫1x 2-12⎝ ⎛⎭⎪⎪⎫1x +5=110⎝ ⎛⎭⎪⎪⎫1x -352+75.当1x =35,即x =53时,(sin θ)max =357. 7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠FAB =∠DAB =90°,AF =AB =BC =2,AD =1,FA ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵FA ⊥AB ,FA ⊥CD ,AB 与CD 相交,∴FA ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DF =0,n ·DC =0⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1.则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点.(1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面PAB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC 平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE 平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ).由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面PAB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝⎛⎭⎪⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23).设EC 与平面PAB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面PAB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0), 则⎩⎪⎨⎪⎧n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +2-ty =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。

空间向量法解决立体几何问题PPT优秀课件

空间向量法解决立体几何问题PPT优秀课件

a
P
B
A
l
P
a

b
Oa

A
因为方向向量与法向量可以确 定直线和平面向量,所以我们可以 利用直线的方向向量和平面的法向 量表示空间直线、平面间的平行、 垂直、夹角等位置关系。
知识点
设直线 l , m 的方向向量为分别为 a , b ,平面 , 的法向量分别为 u , v
1 . l // m a // b a b l // a u a u 0 // u // v u v
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
习题讲解
2、设 u , v 分别是平面 , 的法向量,根据下列条件 判断平面 , 的位置关系。
( 1 ) u ( 2 ,2 ,5 ) ,v ( 6 , 4 ,4 ) ( 2 ) u ( 1 ,2 , 2 ) ,v ( 2 , 4 ,4 )
( 3 ) u ( 2 , 3 ,5 ) ,v ( 3 , 1 , 4 )
n
a α
b
习题讲解
1、已知A(1,0,1),B(0,1,1),C (1,1,0),求平面ABC的一个法向量。
解:设平面ABC的一个法向量 n(x,y,z), 依题意得:A B ( 1 ,2 ,0 ) ,B C ( 1 ,0 , 1 )

(完整版)用空间向量解立体几何问题方法归纳,推荐文档

(完整版)用空间向量解立体几何问题方法归纳,推荐文档
例 3、如图,在四棱锥 S­ABCD 中,AB⊥AD,AB∥CD,CD=3AB=3,
平面 SAD⊥平面 ABCD,E 是线段 AD 上一点,AE=ED= 3,SE⊥AD.
(1)证明:平面 SBE⊥平面 SEC;
(2)若 SE=1,求直线 CE 与平面 SBC 所成角的正弦值. 解:(1)证明:∵平面 SAD⊥平面 ABCD,平面 SAD∩平面 ABCD=AD,SE⊂平面 SAD,
(2)因为 AP · DC =(0,0,1)·(1,0,0)=0, AD · DC =(0,2,0)·(1,0,0)=0,
所以 AP ⊥ DC , AD ⊥ DC ,即 AP⊥DC,AD⊥DC.
又 AP∩AD=A,AP⊂平面 PAD,AD⊂平面 PAD,所以 DC⊥平面 PAD.因为 DC⊂平面
设 n=(x,y,z)是平面 BB1C1C 的法向量, 则Error!即Error! 可取 n=( 3,1,-1).

10
故 cosn, A1C =|n|||=- 5 .
10 所以 A1C 与平面 BB1C1C 所成角的正弦值为 5 .
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
(1)运用空间向量坐标运算求空间角的一般步骤:
例我2、去在直人三棱也柱就ABC有­A1人B1C!1 中,为∠UARBC扼=9腕0°,入BC站=2内,C信C1=不4,存点 E在在向线段你BB偶1 上,同意调剖沙
且 EB1=1,D,F,G 分别为 CC1,C1B1,C1A1 的中点.
求证:(1)B1D⊥平面 ABD; (2)平面 EGF∥平面 ABD.
B1D · BA =0, B1D · BD =0+4-4=0,即 B1D⊥BA,B1D⊥BD.
又 BA∩BD=B,因此 B1D⊥平面 ABD.

(完整版)用空间向量解立体几何问题方法归纳

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面P AB ,EF ⊄平面P AB ,所以EF ∥平面P AB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0,所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD ,所以DC ⊥平面P AD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1), 1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |. (2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B=(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1?若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下: 设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2),设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系 DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PB AF ·PB =0―→得P 坐标并求P A 长. (2)学审题 由(1)―→AD ,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =2.BE 与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC , ∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0,即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ), ∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C , AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.。

空间向量法解决立体几何问题全面总结

空间向量法解决立体几何问题全面总结

由OA1 =(-1,-1,2),OD1 =(-1,1,2)
得:
x x

y y

2z 2z

0 0
解得:xy20z
取z =1
得平面OA1D1的法向量的坐标n=(2,0,1).
(2)求平面的法向量的坐标的特殊方法:
• 第一步:写出平面内两个不平行的向量 • a = (x1,y1,z1), b = (x2,y2,z2), • 第二步:那么平面法向量为
z
C1
A1
A x
B1
C O
B y
• 解:建立如图示的直角坐标系,则

A(
a 2
,0,0),B(0,
3 2
a
,0)
A1(
a 2
,0,).
C(-
a 2
,0,
2a)
• 设面ABB1A1的法向量为n=(x,y,z)
•得 a 3
AB ( , 2
2
a,0), AA1 (0,0,
2a)
• •

a
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向
量都称为直线的方向向量.如图,在空间直角
坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是
z
AB (x2 x1, y2 y1, z2 z1)
B
A
y
x
2.平面的法向量 • 如果表示向量n的有向线段所在的直线垂直
n
a
b
α
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z).

(完整版)高中数学用空间向量解立体几何问题方法归纳(2),推荐文档

(完整版)高中数学用空间向量解立体几何问题方法归纳(2),推荐文档

( ) ( ) ( ) E
12,1,12
,F
0,1,12

EF

-12,0,0

PB
=(1,0,-1),
PD
=(0,2,-1),
AP =(0,0,1), AD =(0,2,0), DC =(1,0,0), AB =(1,0,0).
1
(1)因为
EF
=-2
AB
,所以
EF

AB
,即
EF∥AB.
我去上人, 也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
..........
.
.
.
且 EB1=1,D,F,G 分别为 CC1,C1B1,C1A1 的中点. 求证:(1)B1D⊥平面 ABD; (2)平面 EGF∥平面 ABD.
建议收藏下载本文,以便随时学习! 证明:(1)以 B 为坐标原点,BA、BC、BB1 所在的直线分别为 x 轴、y 轴、z 轴建立空 间直角坐标系,如图所示,则 B(0,0,0),D(0,2,2),B1(0,0,4),设 BA=a,则 A(a,0,0),
n1=(2,-2,1)是平面 ADC1 的一个法向量.取平面 ABA1 的一个法向量为
n2=(0,1,0).设平面 ADC1 与平面 ABA1 所成二面角的大小为 θ.
| | n1·n2
2
2
5
由|cos θ|= |n1||n2| = 9 × 1=3,得 sin θ= 3 .
5 因此,平面 ADC1 与平面 ABA1 所成二面角的正弦值为 3 . 例 2、如图,三棱柱 ABC­A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°. (1)证明:AB⊥A1C; (2)若平面 ABC⊥平面 AA1B1B,AB=CB,求直线 A1C 与平面 BB1C1C 所成角的正

空间向量解立体几何.ppt

空间向量解立体几何.ppt

1
2
3
正方体ABCD-A1B1C1D1中,M是AB中点,求对角线 DB1与CM所成角的余弦值
1
2
3
与平面垂直的向量 称为平面的法向量
线面成角|面面成角|点面距离|线线距离
法向量
1
2
3
1
2
3
在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的 中心,求面OA1D1的法向量
1
2
3
1
2
3
1Hale Waihona Puke 2312
3
在四棱锥S-ABCD中,∠DAB=∠ABC=90°,侧棱SA⊥ 底面AC,SA=AB=BC=1,AD=2,求二面角A-SD-C的大小
1
2
3
1
向量的坐标 向量的数量积 向量的夹角的余弦 向量的模
2
3
向量的垂直 中点坐标公式
向量的平行
平行与垂直的证明 夹角与距离的计算
18级美术专业 2020/2/23
1
向量的坐标 向量的数量积 向量的夹角的余弦 向量的模
2
3
向量的垂直 中点坐标公式
向量的平行
平行与垂直的证明 夹角与距离的计算
1
2
3
向量的坐标 向量的数量积 向量的夹角的余弦 向量的模
1
2
3
1
2
3
向量的垂直 中点坐标公式
向量的平行
1
2
3
1
2
3
平行与垂直的证明 夹角与距离的计算

利用空间向量解立体几何(完整版)培训资料

利用空间向量解立体几何(完整版)培训资料

利用空间向量解立体几何(完整版)向量法解立体几何引言立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。

教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。

一、基本工具1. 数量积:a b a b cos2. 射影公式:向量a在b上的射影为a bl b3. 直线Ax By C 0的法向量为A,B,方向向量为B, A4. 平面的法向量(略)二、用向量法解空间位置关系1. 平行关系线线平行两线的方向向量平行线面平行线的方向向量与面的法向量垂直面面平行两面的法向量平行2. 垂直关系线线垂直(共面与异面) 两线的方向向量垂直 线面垂直 线与面的法向量平行面面垂直 两面的法向量垂直三、用向量法解空间距离 1•点点距离点P 为占仆乙与Q Xzyz 的 距离为 PQ 7(X 2 X\) (y Y i ) (Z 2 Z i ) 2•点线距离求点P X o ,y 。

到直线l : Ax By C 0的距离: 方法:在直线上取一点Q x, y ,即为点P 到l 的距离.3. 点面距离求点P X o ,y o 到平面的距离:方法:在平面 上去一点Q X,y ,得向量PQ计算平面的法向量n ,计算PQ 在 上的射影,即为点P 到面 的距离.四、用向量法解空间角 1. 线线夹角(共面与异面)线线夹角 两线的方向向量的夹角或夹角的补角 2. 线面夹角求线面夹角的步骤:则向量PQ 在法向量nA,B 上的射影① 先求线的方向向量与面的法向量的夹角,若为锐角角即可, 若为钝角,则取其补角;② 再求其余角,即是线面的夹角. 3. 面面夹角(二面角)若两面的法向量一进一出,则二面角等于两法向量的夹角; 法向量同进同出,则二面角等于法向量的夹角的补角 .实例分析一、运用法向量求空间角向量法求空间两条异面直线a, b 所成角B,只要在两条异面直uuur uuurUJLT LULT线a, b 上各任取一个向量AA 和BB',则角V AA',BB'>=B 或n - B,因为B 是锐角,所以uuur AA' uuurBB'LuurBB'1、运用法向量求直线和平面所成角设平面a 的法向量为n = (X, y, 1),则 直线AB 和平面a 所成的角0的正弦值为uuu rsin 0 = cos( -- 0 ) = |cos< AB , n >| 二tutuT AB ? n2、运用法向量求二面角 COS 0 = 不需要用法向量uuu rABuu uuu 一 r ,,亠、eAE, BF ),及n 的定乂得解方程组可得n2、求点到面的距离设二面角的两个面的法向量为n ,n 2,则<□,n 2 >或兀-< 0|,门2 >是所 求角。

高中数学用空间向量解立体几何问题方法归纳

高中数学用空间向量解立体几何问题方法归纳

...用空间向量解立体几何题型与方法平行垂直问题基础知识直线 l 的方向向量为 a =(a 1, b 1, c 1).平面α,β的法向量u =(a 3, b 3, c 3), v =(a4,b4,c4 )(1)线面平行: l∥α? a ⊥ u ? a · u =0? a 1 a 3+ b 1b 3+ c 1 c 3=0(2) 线面垂直:l ⊥ ?∥u?a=ku?a1 =ka3,b1 =kb3 ,c1 =kc3α a(3) 面面平行:∥ ?∥v ?u=kv?a3 =ka4,b3 =kb4 ,c3 =kc4α β u(4)面面垂直:α⊥β?u⊥v?u·v=0?a3a4+b3b4+c3c4=0例 1 、以下图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD , E , F 分别是PC , PD 的中点, PA= AB =1, BC=2.(1)求证: EF ∥平面 PAB ;(2) 求证:平面PAD ⊥平面PDC .[ 证明 ]以A为原点,AB,AD,AP所在直线分别为x 轴, y 轴, z 轴,成立空间直角坐标11系以下图,则 A (0,0,0), B (1,0,0), C (1,2,0), D(0,2,0), P (0,0,1),所以 E 2,1,2,11F0,1,2,EF=-2,0,0 ,PB=(1,0 ,- 1) ,PD=(0,2 ,- 1) ,AP=(0,0,1) ,AD= (0,2,0) ,DC= (1,0,0) ,AB= (1,0,0) .1(1)因为 EF =-2 AB ,所以 EF ∥ AB ,即EF∥AB.又 AB ?平面 PAB , EF ?平面 PAB ,所以 EF ∥平面 PAB .(2)因为 AP · DC =(0,0,1)·(1,0,0)=0, AD · DC =(0,2,0)·(1,0,0)=0,所以AP ⊥ DC , AD ⊥ DC ,即AP⊥DC,AD⊥DC.又 AP∩ AD= A, AP?平面 PAD , AD ?平面 PAD ,所以 DC ⊥平面 PAD .因为 DC ?平面 PDC ,所以平面PAD ⊥平面PDC .使用空间向量方法证明线面平行时,既能够证明直线的方向向量和平面内一条直线的方向向量平行,而后依据线面平行的判断定理获得线面平行,也能够证明直线的方向向量与平面的法向量垂直;证明面面垂直既能够证明线线垂直,而后使用判断定理进行判断,也能够证明两个平面的法向量垂直 .例 2、在直三棱柱ABC -A 1B1C 1中,∠ ABC =90°, BC =2, CC 1=4,点 E 在线段BB1 .............上,且 EB 1=1, D,F, G 分别为 CC 1,C 1 B1, C 1A 1的中点.求证: (1) B1D⊥平面ABD;(2) 平面EGF∥平面ABD .证明: (1) 以B为坐标原点,BA 、 BC 、 BB 1所在的直线分别为x 轴、 y 轴、 z 轴成立空间直角坐标系,以下图,则B(0,0,0), D (0,2,2), B1(0,0,4),设 BA = a ,则 A (a, 0,0),所以 BA =(a,0,0), BD =(0,2,2),B1D=(0,2,-2),B1D BA0B1D BD0 4 4 0 D BABD BD.·=,·=+-=,即B1⊥,1⊥又 BA ∩BD= B,所以 B1 D⊥平面 ABD .a a(2) 由 (1) 知,E (0,0,3) ,G2,1, 4, F(0,1,4),则EG=2,1,1, EF=(0,1,1) ,B1D EG0220B1D EF0220 D EG BD EF.·=+-=,·=+-=,即B1⊥,1⊥又 EG∩ EF= E,所以 B1 D⊥平面 EGF .联合 (1) 可知平面EGF∥平面ABD .利用空间向量求空间角基础知识(1) 向量法求异面直线所成的角:若异面直线 a , b 的方向向量分别为 a , b ,异面直线所成| a·b |的角为θ,则cosθ=|cos〈a , b 〉|=| a|| b |.(2) 向量法求线面所成的角:求出平面的法向量n ,直线的方向向量 a ,设线面所成的角为| n·a |,则=〈 n , a 〉|=| n ||a| .θsin θ |cos(3) 向量法求二面角:求出二面角--的两个半平面与的法向量n,n,α α β12| n1·n2 |若二面角α-l-β所成的角θ为锐角,则cosθ=|cos〈n,n 〉|=|n1||n2 |;12| n1·n2 |若二面角α-l-β所成的角θ为钝角,则cosθ=-|cos〈 n, n 〉|=- | n1 ||n2| .12例 1、如图,在直三棱柱A1 B1C 1- ABC 中, AB⊥ AC , AB = AC =2,A 1A =4,点 D是BC 的中点.(1)求异面直线 A 1B 与 C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.[ 解 ](1) 以A为坐标原点,成立以下图的空间直角坐标系 A - xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以A1B =............. (2,0 ,- 4),C1D=(1 ,- 1,- 4) .因为 cos 〈A1A1B · C1D18 3 10 B,C1D〉===,| A1B|| C1D |20× 1810310.所以异面直线A1B 与 C 1 D 所成角的余弦值为10(2) 设平面ADC 1的法向量为n1=( x, y , z),因为AD =(1,1,0),AC1=(0,2,4),所以n1·AD=0,n 1·AC1=0,即 x+y =0且 y+2z=0,取 z =1,得 x=2, y=-2,所以, n1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面 ADC1与平面 ABA1所成二面角的大小为θ.由θ=n 1· n2225|cos |n ||n2||1=9 × 1=3,得=sin θ3.5.所以,平面 ADC 1与平面 ABA 1所成二面角的正弦值为3例 2、如图,三棱柱ABC -A 1B1C 1中, CA =CB, AB=AA 1,∠ BAA 1=60°.(1) 证明:AB⊥A1C;(2) 若平面ABC ⊥平面AA 1B1 B, AB = CB ,求直线A 1 C 与平面BB 1C 1 C 所成角的正弦值.[解](1) 证明:取AB 的中点O ,连结OC , OA 1, A1B.因为 CA =CB ,所以 OC ⊥AB .因为 AB = AA 1,∠ BAA 1=60°,故△ AA 1B 为等边三角形,所以OA 1⊥ AB .因为 OC ∩OA 1= O ,所以 AB ⊥平面OA 1C .又 A 1C ?平面 OA 1C,故 AB ⊥A 1C.(2)由 (1) 知OC⊥AB,OA1⊥AB .又平面ABC⊥平面AA1B1B,交线为AB,所以 OC ⊥平面 AA 1 B1B,故 OA , OA 1, OC 两两互相垂直.以 O 为坐标原点,OA 的方向为x 轴的正方向,| OA | 为单位长,成立以下图的空间直角坐标系 O -xyz .由题设知 A (1,0,0),A1(0,3,0),C (0,0 ,3) ,B( - 1,0,0) .则 BC =(1,0,3),BB1= AA1=(- 1, 3,0),A1C=(0,-3, 3).设 n=(x,y , z )是平面 BB 1 C 1C 的法向量,n·BC=0,x+3 z =0,即则-+ 3= 0.可取 n =(3, 1,- 1) .n·BB1=0.x y.............n ·A1C10故 cos n,A1C=-.| n || A1C |510.所以 A 1 C 与平面 BB 1C 1C 所成角的正弦值为5(1)运用空间向量坐标运算求空间角的一般步骤:①成立适合的空间直角坐标系;②求出有关点的坐标;③写出向量坐标;④联合公式进行论证、计算;⑤转变为几何结论.(2) 求空间角应注意:①两条异面直线所成的角α不必定是直线的方向向量的夹角β,即cosα=|cosβ|.②两平面的法向量的夹角不必定是所求的二面角,有可能两法向量夹角的补角为所求.例 3、如图,在四棱锥S-ABCD 中, AB ⊥ AD , AB∥平面 SAD ⊥平面 ABCD , E 是线段 AD 上一点,CD , CD =3AB=3,AE= ED=3,SE⊥AD .(1)证明:平面 SBE ⊥平面 SEC ;(2)若 SE =1,求直线 CE 与平面 SBC 所成角的正弦值.解: (1) 证明:∵平面⊥平面,平面∩平面=,? 平面SAD ,SAD ABCD SAD ABCD AD SESE ⊥ AD ,∴ SE ⊥平面 ABCD .∵ BE ?平面 ABCD,∴ SE⊥ BE.∵ AB⊥ AD,AB ∥CD ,CD =3AB=3, AE= ED=3,∴∠AEB= 30 °,∠CED= 60 ° .∴∠ BEC =90 °,即 BE ⊥CE.又 SE∩CE = E,∴ BE ⊥平面 SEC .∵ BE?平面 SBE ,∴平面SBE ⊥平面SEC .E 为原点, EB 为 x 轴, EC 为 y(2) 由 (1) 知,直线ES,EB,EC两两垂直.如图,以轴,ES 为 z 轴,成立空间直角坐标系.则E(0,0,0), C (0,23, 0) ,S(0,0,1) ,B(2,0,0) ,所以CE =(0,-23,0),CB=(2,- 2 3 ,0),CS=(0,- 2 3 ,1) .设平面 SBC 的法向量为n =(x, y,z),n ·CB=0, 2 x- 2 3 y= 0,则即令y=1,得x=3,z= 2 3,n CS 0.·=- 2 3y+z=0..............则平面 SBC 的一个法向量为n =( 3,1,23) .设直线 CE 与平面 SBC 所成角的大小为θ,则 sinn·CE| =1θ= |,| n | ·| CE |41故直线 CE 与平面SBC 所成角的正弦值为 4 .例 4、如图是多面体ABC -A 1 B1C 1和它的三视图.(1)线段 CC 1上能否存在一点 E ,使 BE ⊥平面 A 1 CC 1?若不存在,请说明原因,若存在,请找出并证明;(2)求平面 C 1A 1C 与平面 A 1 CA 夹角的余弦值.解: (1) 由题意知AA 1,AB , AC两两垂直,成立以下图的空间直角坐标系,则A(0,0,0), A 1(0,0,2), B(-2,0,0), C (0,-2,0), C 1(-1,-1,2),则CC1=(-1,1,2),A1C1=(-1,-1,0), A1C =(0,-2,- 2) .设E( x,y,z),则CE= (x,y+2,z),EC1CE EC1= ( - 1 -x,- 1-y,2-z).设=λ(λ>0) ,x =--,λ λx-λ -2-λ 2λ则 y+2=-λ-λy,则E,,,z=2λ-λz,1+λ1+λ1+λ2+λ- 2 -λ 2 λ,,BE =.1+ λ 1 + λ1+ λ2 + λ 2 + λBE · A 1C 1 = 0,-+ = 0,1 + λ1 + λ由得λ 2 λ 解得 λ= 2,BE · A 1C =0,- 2 -= 0,+1+ λ 1 + λ所以线段 CC1上存在一点E , CE = 2 EC 1 ,使 BE ⊥平面 A 1 CC 1 .(2) 设平面 C 1A 1C的 法 向 量 为 m = (x , y , z ) , 则 由m · A 1C 1 = 0 ,得m · A 1C = 0,.............-x- y=0,-2 y- 2 z= 0,取 x=1,则y =-1, z =1.故 m =(1,-1,1),而平面A1 CA的一个法向量为n =(1,0,0) ,m · n13则 cos 〈m,n〉=|m || n |=3,故平面 C 1A1C 与平面 A 1 CA 夹角的余弦值3 =3为.3利用空间向量解决探究性问题例 1、如图 1,正△ABC的边长为 4 ,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ ABC 沿 CD 翻折成直二面角 A-DC -B(如图2).(1)试判断直线 AB 与平面 DEF 的地点关系,并说明原因;(2)求二面角 E -DF - C 的余弦值;BP(3) 在线段BC 上能否存在一点P ,使 AP ⊥ DE ?假如存在,求出BC 的值;假如不存在,请说明原因.[ 解] (1) 在△ABC中,由E,F分别是AC,BC中点,得EF∥AB .又 AB ?平面 DEF ,EF ?平面 DEF ,∴ AB ∥平面DEF .(2) 以点D为坐标原点,以直线DB , DC , DA 分别为x 轴、 y 轴、 z 轴,成立空间直角坐标系,则 A (0,0,2),B(2,0,0),C(0,2 3,0),E(0,3, 1),F(1,3, 0),DF =(1,3, 0),DE= (0,3, 1) ,DA= (0,0,2) .平面 CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =( x, y, z),DF ·n=0,x+3y= 0,则即取n=(3,- 3 , 3) ,DE ·n=0, 3 y+z= 0 ,DA ·n2121.cos 〈DA,n〉=|DA ||n|=7,所以二面角E-DF-C的余弦值为7(3) 存在.设P( s, t,0),有AP =(s,t,-2),则 AP · DE = 3 t- 2 = 0 ,∴t=.............23,3又 BP =(s-2,t,0), PC =(-s,23-t, 0) ,∵BP∥PC ,∴(s-2)(23-t)=-st,2 341∴3s+t= 2 3. 把t=3代入上式得s=3,∴BP=3BC,BP1∴在线段BC 上存在点P,使 AP ⊥DE .此时,BC =3.1论证、推理,只要经过坐标运算进行判断.2题转变为“点的坐标能否有解,能否有规定范围内的解”等,所认为使问题的解决更简单、有效,应擅长运用这一方法.例 2、 .以下图,在直三棱柱ABC -A1B1C 1中,∠ ACB =90°, AA 1=BC=2AC =2.(1)若 D为 AA 1中点,求证:平面 B 1 CD ⊥平面B1C1D ;(2)在AA 1 上能否存在一点D,使得二面角B1 --C1的大小为 60°?CD解: (1)证明:以下图,以点 C 为原点, CA , CB, CC 1 所在直线分别为x, y ,z 轴成立空间直角坐标系.则 C (0,0,0), A (1,0,0), B 1(0,2,2),C 1(0,0,2), D (1,0,1),即 C1B1=(0,2,0), DC 1=(-1,0,1),CD=(1,0,1).由 C1B1·CD=(0,2,0)·(1,0,1)=0+0+0=0,得 C1 B 1⊥CD,即C1B1⊥CD.由DC1·CD=(-1,0,1)·(1,0,1)=-1+0+1=0,得 DC1⊥CD,即DC1⊥CD.又 DC 1∩ C 1B1=C 1,∴ CD ⊥平面 B1 C 1D.又 CD ?平面 B1CD ,∴平面B1CD ⊥平面 B1C 1 D.2(2)存在.当 AD =2 AA 1时,二面角 B 1-CD -C 1的大小为60°.原因以下:设 AD = a,则 D 点坐标为(1,0, a ),CD=(1,0, a ),CB1=(0,2,2),设平面 B 1CD 的法向量为m =( x, y, z),m ·CB1=02y+ 2 z= 0,则?令 z=-1,得 m =(a, 1,-1).m ·CD=0x+ az=0,又∵ CB =(0,2,0)为平面 C 1CD| m·CB |的一个法向量,则 cos 60 °==| m | · | CB|........... ..1 1= , a 2+ 222解得 a =2( 负值舍去 ),故 AD =2= 2AA1.∴在 AA1上存在一点 D 知足题意.空间直角坐标系成立的创新问题空间向量在办理空间问题时拥有很大的优胜性,能把“非运算”问题“运算”化,即经过直线的方向向量和平面的法向量解决立体几何问题.解决的重点环节之一就是成立空间直角坐标系,因此成立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题意会好例 1、如图,四棱锥P -ABCD 中, PA ⊥底面 ABCD , BC = CD = 2 , AC = 4 ,π∠ ACB =∠ ACD = , F 为 PC 的中点, AF ⊥ PB .3(1) 求 PA 的长;(2) 求二面角 B -AF -D 的正弦值.(1) 学审题——审条件之审察图形建系由条件知AC ⊥ BD ――→ DB , AC分别为 x , y 轴― →写出 A ,B , C , D 坐标PA ⊥面 ABCD PF = CF AF ⊥ PB――――――――→ 设 P 坐标 ――→ 可得 F 坐标 ――→ AF · PB = 0―→得 P 坐标并求 PA长.(2) 学审题由(1)― →AD,AF,AB的 坐 标向量 n 1 , n 2 分别为平面 FAD 、平面 FAB 的法向量―――――――――――――――――――→n 1 · AD = 0且 n 1 · AF = 0 ―→ 求 得n 1 · n 2 ―→求得夹角余弦.[ 解 ] (1) 如图,连结BD 交 AC 于 O ,因为 BC = CD ,即△ BCD 为等腰三角形,又AC 平分∠ BCD ,故 AC ⊥ BD .以 O 为坐标原点,OB , OC , AP 的方向分别为x 轴, y 轴,πz 轴的正方向,成立空间直角坐标系O -xyz ,则 OC = CD cos 3=1.而 AC =4,得 AO =π3,故A (0 ,- 3,0) ,B( 3 , 0,0),C (0,1,0), D(-3,AC - OC =3.又 OD = CD sin=30,0) .z 因 PA ⊥底面 ABCD ,可设 P(0,-3, z).由 F 为 PC 边中点,知F0,-1,2.又AF .............z z2= 0 ,2,2,PB=(3, 3 ,-z),AF⊥PB,故AF·PB= 0,即 6 -2= 0 ,z= 2 3 (舍去- 2 3),所以| PA | =2 3.(2) 由 (1) 知AD=(-3,3,0) ,AB= ( 3 , 3,0), AF =(0,2,3) .设平面FAD的法向量为n 1= x1, y1,z1),平面 FAB 的法向量为2222),(n=(x, y, z-3x1+ 3y1= 0 ,由 n 1·AD=0, n 1·AF=0,得所以可取n 1=(3,3,-2y1+3z1= 0 ,2).由 n 2·AB=0,n 2·AF=0,得3x2+ 3y2= 0 ,故可取 n 2=(3,-3,2) .2y2+3 z2=0,n 1· n21进而法向量n 1,n 2的夹角的余弦值为cos〈n1,n 2〉=|n1|·|n2|= 8 .37故二面角 B-AF-D 的正弦值为.8AC ⊥BD若图中存在交于一点的三条直线两两垂直,则以该点为原点成立空间直角坐标系.在没有明显的垂直关系时,要经过其余已知条件获得垂直关系,在此基础上选择一个合理的地点建立空间直角坐标系,注意成立的空间直角坐标系是右手系,正确确立坐标轴的名称.例 2、如图,在空间几何体中,平面ACD ⊥平面 ABC , AB = BC = CA = DA = DC = BE=2. BE与平面ABC所成的角为 60°,且点E在平面ABC内的射影落在∠ABC的均分线上.(1)求证: DE ∥平面 ABC ;(2)求二面角 E -BC -A 的余弦值.解:证明:(1) 易知△ABC,△ACD都是边长为 2 的等边三角形,取 AC 的中点 O ,连结 BO, DO ,则 BO⊥ AC , DO ⊥ AC .∵平面 ACD ⊥平面 ABC ,∴DO ⊥平面ABC .作EF⊥平面ABC,则EF ∥ DO .依据题意,点 F 落在 BO 上,∴∠ EBF =60°,易求得EF = DO = 3 ,∴四边形DEFO 是平行四边形,DE ∥OF .∵D E ?平面 ABC , OF ?平面 ABC ,∴ DE ∥平面 ABC .(2) 成立以下图的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n1=(0,0,1)..............可得 C (-1,0,0),B(0,3, 0),E(0,3- 1,3) ,则CB= (1,3,0) ,BE=(0 ,-1, 3) .设平面 BCE 的法向量为 n 2=(x,y,z ),则可得n2· CB =0,n2· BE =0,即( x,y,z)· (1 , 3 , 0)= 0, ( x,y,z)· (0 ,- 1, 3) = 0,可取n2=( - 3,3,1) .n1·n 113故 cos〈n1,n〉=|n 1|·| n2| =13.又由图知,所求二面角的平面角是锐角,2故二面角 E-BC - A 的余弦值为13.13专题训练1.以下图,在多面体ABCD - A 1B1C 1 D1中,上、下两个底面A1B1C1D1和 ABCD 互相平行,且都是正方形,DD 1⊥底面 ABCD , AB ∥A 1 B1, AB =2A1B1=2DD 1= 2a .(1)求异面直线 AB 1与 DD 1所成角的余弦值;(2) 已知F是AD的中点,求证:FB 1⊥平面 BCC 1B 1.解:以 D 为原点, DA , DC , DD 1所在直线分别为x 轴, y 轴, z 轴,成立以下图的空间直角坐标系,则 A (2 a, 0,0) ,B(2 a, 2 a, 0) ,C (0,2 a, 0) , D1 (0,0 , a ), F (a, 0,0) , B 1( a ,a, a ), C 1(0, a ,a ).(1) ∵AB 1=(-a,a,a), DD 1=(0,0,a),∴cos〈 AB 1, DD 1〉=AB1· DD13=,| AB1 | ·| DD1|3所以异面直线 AB 1与 DD13所成角的余弦值为 .3(2)证明:∵ BB 1=(-a,-a,a),BC=(-2a,0,0), FB1=(0,a,a),FB1· BB 1=0,∴∴ FB1⊥BB ,FB⊥BC.11FB1·BC=0.∵ BB 1∩ BC = B,∴ FB 1⊥平面BCC 1 B1.2.如图,在三棱柱ABC-B C中,AA C C是边长为 4 的正方形,平面ABC⊥平面11111AA 1C1C,AB=3, BC =5.(1)求证: AA 1⊥平面 ABC ;(2)求二面角 A1-BC 1-B1的余弦值;.............BD(3) 证明:在线段BC 1上存在点 D ,使得 AD ⊥ A1B ,并求BC1的值.解: (1) 证明:因为四边形AA 1 C 1C为正方形,所以AA1⊥AC.因为平面 ABC⊥平面 AA 1C1 C ,且 AA 1垂直于这两个平面的交线AC ,所以 AA 1⊥平面ABC.(2) 由 (1) 知AA1⊥AC,AA1⊥AB.由题知AB=3,BC=5,AC=4,所以AB⊥AC.如图,以 A 为原点成立空间直角坐标系 A -xyz ,则 B(0,3,0) ,A1 (0,0,4) ,B1(0,3,4),C1(4,0,4),A1 B =(0,3,-4), A1C1= (4,0,0).设平面 A1 BC 1的法向量为n=(x, y, z),n·A1B=0, 3 -4 =0,则即y z令 z=3,则 x=0, y=4,所以 n =(0,4,3).n·A1C1=0.4x= 0.n· m 同理可得,平面B1BC 1 的一个法向量为m =(3,4,0).所以cos〈 n , m 〉=|n||m|=16.2516由题知二面角A1-BC1-B1为锐角,所以二面角A1-BC1-B1的余弦值为25 .(3) 证明:设D (x,y,z)是直线 BC 1上一点,且BD =λBC1.所以 (x,y- 3,z)=λ(4 ,- 3,4) .解得x=4λ,y=3-3λ,z=4λ.所以AD=(4λ3λλ9, 3 -,4).由AD·A1B=0,即 9- 25 λ= 0,解得λ= .25因为 9 ∈ [0,1],所以在线段上存在点,使得⊥.25BC 1D AD A 1 BBD9此时,BC 1=λ=25.3.如图 (1) ,四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=5,AB=AD = 2. 将图 (1) 沿直线BD折起,使得二面角- -C为 60 °,如图 (2) .A BD........... ..(1) 求证: AE ⊥平面 BDC ;(2) 求直线 AC 与平面 ABD 所成角的余弦值.解: (1) 证明:取 BD 的中点 F ,连结 EF , AF ,则 AF =11, EF = ,∠ AFE = 60 °.2由余弦定理知=121 1 3+2 - 2 × 1× cos 60 °= .AE222∵ AE 2 + EF 2 =AF 2,∴ AE ⊥EF .∵ AB =AD ,F 为 BD 中点.∴ BD ⊥ AF .又 BD =2, DC = 1, BC =5,∴ BD 2+ DC 2= B C 2,即 BD ⊥CD .又 E 为 BC 中点, EF ∥ CD ,∴ BD ⊥ EF .又 EF ∩ AF =F , ∴BD ⊥平面 AEF .又 BD ⊥ AE ,∵ BD ∩ EF = F ,∴ AE ⊥平面 BDC .3(2) 以 E 为原点成立以下图的空间直角坐标系,则A 0, 0, ,211C -1, ,0 ,B 1,- ,0 ,2211313 D -1,- 2,0, DB = (2,0,0) , DA = 1, 2,2,AC = -1,2,-2 .设平面 ABD 的法向量为 n = (x , y , z ) ,n · DB 由n · DA2x =0,= 01 3取 z =3 ,得= 0 = 0x + y + , 2z2则 y =- 3,又∵ n = (0 ,- 3 , 3) .n · AC6∴ cos 〈n,AC〉=|n||AC|=-4.10故直线 AC 与平面 ABD 所成角的余弦值为.44.以下图,在矩形ABCD 中, AB =35,AD= 6,BD是对角线,过点A作AE⊥BD ,垂足为 O ,交 CD 于 E,以 AE 为折痕将△ADE 向上折起,使点 D 到点 P 的地点,且PB =41............ ..(1) 求证: PO ⊥平面 ABCE ;(2) 求二面角 E -AP -B 的余弦值.解: (1) 证明:由已知得AB = 3 5 ,AD = 6,∴ BD = 9. 在矩形 ABCD 中,∵ AE ⊥BD ,DO AD∴ Rt △ AOD ∽ Rt △ BAD ,∴ AD = BD ,∴ DO = 4 ,∴ BO = 5.222在△ POB 中, PB =41,PO =4,BO =5,∴PO +BO =PB ,∴PO ⊥ OB .又 PO ⊥ AE , AE ∩ OB =O ,∴ PO ⊥平面ABCE .(2) ∵BO = 5,∴ AO = AB 2-OB 2= 2 5.以 O 为原点,成立以下图的空间直角坐标系,则P (0,0,4) , A (25, 0,0) ,B (0,5,0) ,PA =(25, 0,- 4), PB = (0,5 ,- 4).n 1· PA 设 n 1= (x , y , z )为平面 APB 的法向量.则n 1· PB= 0 ,2 5 x - 4 z = 0 ,即= 0,5 y -4 z = 0.取 x = 2 5得 n 1 = (2 5, 4,5) .又 n 2= (0,1,0) 为平面 AEP 的一个法向量,n 1 ·n24461∴ cos 〈n1, n,2〉=|n 1| · | n 2| = 61× 1 =61故二面角 E -AP -B 的余弦值为 4 61.615.如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面 ABCD ,侧棱 PA = PD = 2,PA ⊥PD ,底面 ABCD 为直角梯形,此中BC ∥AD ,AB ⊥AD , AB =BC =1,O 为 AD 中点.(1) 求直线 PB 与平面 POC 所成角的余弦值;(2)求 B 点到平面 PCD 的距离;6(3) 线段PD 上能否存在一点Q ,使得二面角Q -AC -D 的余弦值为 3 ?若存在,求出PQQD 的值;若不存在,请说明原因.解: (1) 在△PAD中,PA=PD,O为AD中点,所以PO ⊥ AD .又侧面PAD ⊥底面ABCD ,平面 PAD ∩平面 ABCD = AD , PO ?平面 PAD ,所以 PO ⊥平面ABCD .又在直角梯形ABCD中,连结OC ,易得O C ⊥ AD ,所以以O 为坐标原点,OC ,OD , OP所在直线分别为x, y, z 轴成立空间直角坐标系,则P(0,0,1),A (0,-1,0),.............B(1,-1,0), C (1,0,0), D (0,1,0),∴PB =(1,-1,-1),易证OA⊥平面POC,∴ OA =(0,-1,0)是平面POC的法向量,PB ·OA36 cos 〈PB,OA〉== .∴直线 PB 与平面 POC 所成角的余弦值为.| PB|| OA|33(2)PD =(0,1,-1), CP =(-1,0,1).设平面PDC的一个法向量为u =(x, y ,z),u ·CP 则u ·PD =- x+ z=0,取 z =1,得 u =(1,1,1).∴ B 点到平面 PCD的距离为 d == y -z=0,| BP·u |3= .| u|3(3) 假定存在一点Q ,则设PQ =λ(0< λ<1) .∵PD= (0,1 ,- 1) ,PD∴PQ =(0,λ,-λ)= OQ - OP ,∴ OQ =(0,λ,1-λ),∴Q(0,λ,1-λ).设平面 CAQ 的一个法向量为 m =(x, y, z),又AC=(1,1,0), AQ =(0,λ+1,1-λ),m ·AC 则m ·AQ = x+ y=0,取 z=λ+1,得 m =(1-λ,λ-1,λ+1),λ+1y 1 -λz= 0.6,又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为3| m·n |621所以 |cos 〈m,n〉|=|m||n|=3,得 3 λ- 10 λ+ 3= 0,解得λ= 3或λ=3(舍),PQ 1所以存在点 Q,且QD=2 .6.如图,在四棱锥 S-ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面 ABCD , AB 垂直于AD 和 BC ,SA = AB = BC =2,AD =1.M 是棱 SB 的中点.(1)求证: AM ∥平面 SCD ;(2)求平面 SCD 与平面 SAB 所成二面角的余弦值;(3)设点 N 是直线 CD 上的动点, MN 与平面 SAB 所成的角为θ,求sinθ的最大值.解: (1) 以点 A 为原点成立以下图的空间直角坐标系,则 A (0,0,0), B (0,2,0),C(2,2,0), D (1,0,0),S(0,0,2), M (0,1,1).所以AM =(0,1,1), SD =(1,0,-2), CD =(-1,-2,0)............ ..设平面 SCD 的法向量是n = (x , y , z ) ,SD · n = 0,x - 2 z =0 ,则即令 z = 1 ,则 x =2 , y =- 1 ,CD · n = 0,- x - 2 y = 0.于是 n = (2 ,- 1,1) .∵ AM · n = 0 ,∴ AM ⊥ n .又 AM ? 平面 SCD ,∴ AM ∥平面 SCD .(2) 易知平面 SAB 的一个法向量为 n 1 =(1,0,0) .设平面 SCD 与平面 SAB 所成的二面角为 φ,φ =n 1 ·n1,0,02,- 1, 126则 |cos|| · | n |=1 · 6 = 1·63 ,1= | n6即 cos φ= . 36 ∴平面 SCD 与平面 SAB 所成二面角的余弦值为 .3(3) 设 N ( x,2x - 2,0)( x ∈[1,2]) ,则 MN = (x,2x - 3,- 1) .又平面 SAB 的一个法向量为n = (1,0,0) ,1x ,2 x -3,- 11, 0,0x∴ sin θ ===x 22x - 3 21 2·15x 2- 12 x + 1011+10 ·15-12·x 2x=1=1.1131710 x2- 12 x+ 510x -5 2 +513535当x=5,即 x =3时,(sinθ)max=7.7、如图,四边形ABEF 和四边形 ABCD均是直角梯形,∠FAB =∠ DAB =90°, AF =A B = BC =2, AD =1,FA ⊥CD .(1) 证明:在平面BCE 上,必定存在过点 C 的直线l 与直线DF 平行;(2)求二面角 F -CD -A 的余弦值.解: (1) 证明:由已知得,BE∥AF, BC ∥ AD , BE∩ BC = B, AD ∩ AF = A ,∴平面 BCE ∥平面 ADF .设平面DFC ∩平面BCE = l,则 l 过点 C .∵平面 BCE ∥平面 ADF ,平面 DFC ∩平面 BCE =l,平面 DFC ∩平面 ADF = DF ..............∴ DF ∥ l,即在平面BCE 上必定存在过点 C 的直线 l,使得 DF ∥ l.(2)∵ FA ⊥ AB, FA⊥ CD , AB 与 CD 订交,∴ FA⊥平面 ABCD .故以 A 为原点, AD , AB , AF 分别为x 轴, y 轴, z 轴成立空间直角坐标系,如图.由已知得, D(1,0,0), C (2,2,0), F(0,0,2),∴ DF =(-1,0,2), DC =(1,2,0).设平面 DFC的一个法向量为n =( x,y,z) ,n ·DF 则n ·DC = 0,x=2 z,?不如设 z =1.= 0x=-2 y,则 n=(2,-1,1),不如设平面ABCD 的一个法向量为m =(0,0,1).m · n16∴ cos 〈m,n〉=| m ||n | = 6 = 6 ,因为二面角--A为锐角,F CD6∴二面角 F-CD -A 的余弦值为.68、 .如图,在四棱锥P-ABCD 中, PD ⊥平面ABCD ,四边形ABCD 是菱形, AC =2, BD =2 3 ,E是PB上随意一点.(1) 求证:AC⊥DE;15(2) 已知二面角 A -PB -D 的余弦值为5,若E为PB的中点,求EC 与平面PAB 所成角的正弦值.解: (1) 证明:∵PD⊥平面ABCD,AC ? 平面ABCD,∴PD⊥AC,∵四边形ABCD 是菱形,∴ BD ⊥ AC ,又 BD ∩ PD = D ,∴ AC ⊥平面 PBD ,∵DE?平面 PBD ,∴ AC ⊥ DE .(2)在△ PDB 中, EO ∥ PD ,∴ EO ⊥平面 ABCD ,分别以 OA , OB , OE 所在直线为 x轴, y 轴, z 轴成立空间直角坐标系,设PD = t,则 A (1,0,0), B(0,3, 0) ,C (- 1,0,0) ,tE 0 , 0 , 2, P (0 ,-3 , t ) , AB = (- 1 , 3, 0) , AP = ( - 1,-3, t ).由 (1) 知,平面 PBD 的一个法向量为n 1 = (1,0,0) ,设平面 PAB 的法向量为 n 2 =(x , y ,n 2 · AB = 0 ,- x + 3y = 0,2 3得3 ,1, t.z ),则依据n 2 · AP = 0- x - 3y + tz = 0 ,令 y = 1,得 n 2 =15,则 |cos 〈 n 1, n 2〉 | =15∵二面角 A -PB -D 的余弦值为,即55.............3153 或t=- 23( 舍去 ),∴P(0 ,-3,2 3).=,解得 t =25124+t2设 EC 与平面PAB 所成的角为θ,∵EC=(-1,0,-3) ,n2= ( 3 , 1,1) ,2 315则 sin θ= |cos〈EC,n2〉|= 2 × 5 =5 ,∴EC与平面PAB所成角的正弦值为15.59、如图1,A,D分别是矩形 A 1BCD 1上的点, AB =2AA 1=2AD =2, DC =2DD 1,把四边形1 1 沿折叠,使其与平面垂直,如图 2 所示,连结 1 ,1得A ADD AD ABCD AB DC几何体ABA 1-DCD 1.(1) 当点E在棱AB上挪动时,证明:D1 E⊥ A 1 D;π(2) 在棱AB 上能否存在点E,使二面角D1-EC -D 的平面角为?若存在,求出AE 的6长;若不存在,请说明原因.解: (1) 证明,如图,以点 D 为坐标原点,DA , DC , DD 1所在直线为x 轴, y轴, z 轴成立空间直角坐标系D-xyz ,则 D (0,0,0), A (1,0,0), C (0,2,0),A 1(1,0,1), D 1(0,0,1).设 E (1, t, 0),则 D 1 E =(1,t,-1), A 1D =(-1,0,-1),∴ D 1 E · A 1D =1×(-1)+t×0+(-1)×(- 1)=0,∴D1E⊥A1D.(2) 假定存在切合条件的点E.设平面 D 1 EC 的法向量为n=( x,y , z),由(1)知EC=(-1,2-t, 0),n·EC=0,- x2- t y =0,11则得令 y=,则 x=1- t, z=1,n·D1E=0x+ ty - z =0,221 1∴n =1-2t,2,1是平面 D 1 EC 的一个法向量,明显平面ECD 的一个法向量为DD 1=(0,0,1),.............|n·DD1|1π3则 cos 〈n,DD1〉=DD 1== cos,解得t=2-(0 ≤t≤|n||| 1 21+1631 - t+24 2) .故存在点 E,当 AE =2-3π时,二面角 D 1-EC -D 的平面角为 .36工程部维修工的岗位职责 1 、严格恪守企业职工守则和各项规章制度,遵从领班安排,除达成平时维修任务外,有计划地肩负其余工作任务; 2 、努力学习技术,娴熟掌握现有电气设备的原理及实质操作与维修; 3、踊跃协分配电工的工作,出现事故时无条件地快速返回机房,遵从领班的指挥; 4 、款待履行所管辖设施的检修计划,准时按质按量地达成,并填好记录表格;5 、严格履行设施管理制度,做好昼晚班的交接班工作;6 、换班时发生故障,上一班一定共同下一班排队故障后才能下班,配电设施发惹祸故时不得离岗;7 、告假、补休需在一天前报告领班,并由领班安排适合的替班人.欢迎您的莅临,Word文档下载后可改正编写.双击可删除页眉页脚.感谢!让我们共同学习共同进步!学无止境.更上一层楼。

空间向量解决立体几何问题

空间向量解决立体几何问题
z
A1 B1 C1 D1
E D A F x B C y
证明:以A为原点建立如图所示的的直角坐标 系A- xyz, 设正方体的棱长为2,则 E(2,0,1),A1(0,0,2), F(1,2,0),D(0,2,0), AD (0,2,0) 于是 AE (2,0,1) 设平面AED的法向量为n1=(x,y,z)得 1 2 x z 0 x z 2 解之得 y 0 2y 0 取z=2得n1=(-1,0,2) 同理可得平面A1FD的法向量为n2=(2,0,1) ∵n1 · n2 = -2+0+2=0 ∴面AED⊥面A1FD
A B x y
解:建立如图示的直角坐标系,则
A(
,0,0),B(0, ,0) A1( ,0,). C(- ,0, 2a) 设面ABB1A1的法向量为n=(x,y,z) a 3 由 AB ( , a,0), AA (0,0, 2a) 得 2 2 a x 3 y 3 x ay 0 0 2 2 ,解得 , z 0 2az 0 取y= 3 ,得n=(3, 3 ,0) 而 AC (a,0, 2a) | 3a 0 0 | 3a 1 sin | cos n , AC | ∴ 2 3 3a 2 9 3 0 a 0 2a ∴ 30 .
x y 2 z 0 x 2z 得 x y 2 z 0 ,解得 y0
取z =1 得平面OA1D1的法向量的坐标n=(2,0,1).
二.立体几何问题的类型及解法
1.判定直线、平面间的位置关系
(1)直线与直线的位置关系

不重合的两条直线a,b的方向向量分别为a ,b. ①若a∥b,即a=λb,则a∥b. ②若a⊥b,即a· b = 0,则a⊥b

利用空间向量解立体几何问题典例精讲

利用空间向量解立体几何问题典例精讲

利用空间向量解立体几何问题典例精讲1.在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB :AD :AA 1=1:2:4(1)求异面直线EF ,A 1D 所成角的余弦值(2)证明:AF ⊥平面A 1ED (3)求二面角A 1-ED -F 正弦值解:由长方体ABCD -A 1B 1C 1D 1得:AA 1,AB ,AD 两两垂直∴以AA 1,AB ,AD 为轴建立空间直角坐标系(1)E 1,32,0 ,F 1,2,1 ,A 10,0,4 ,D 0,2,0∴EF =0,12,1 ,A 1D =0,2,-4∴cos EF ,A 1D =EF ⋅A 1DEF ⋅A 1D=-354⋅20=-35∴cos θ=35(2)AF =1,2,1 ,设平面A 1ED 的法向量为n =x ,y ,z A 1D =0,2,-4 ,DE =1,-12,0 ∴2y -4z =0x -12y =0⇒x :y :z =1:2:1∴n =1,2,1 ∴AF ∥n∴AF ⊥平面A 1ED(3)设平面EDF 的法向量m=x ,y ,z DE =1,-12,0 ,DF =1,0,1∴x -12y =0x +z =0⇒x :y :z =1:2:-1 ∴m =1,2,-1 ∵n =1,2,1 ∴cos m ,n =m ⋅n m n =46=23∴sin θ=532.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD ,PA =AD =4,AB =2,若MN 分别为棱PD ,PC 上的点,O 为AC 中点,且AC =2OM =2ON (1)求证:平面ABM ⊥平面PCD(2)求直线CD 与平面ACM 所成角的正弦值(3)求点N 到平面ACM 的距离解:∵PA ⊥平面ABCD ∴PA ⊥AB ,PA ⊥AD ∵矩形ABCD∴AB ⊥AD故PA ,AB ,AD 两两垂直以PA ,AB ,AD 为轴建立空间直角坐标系P 0,0,4 ,B 2,0,0 ,C 2,4,0 ,D 0,4,0 ,O 1,2,0AC =2OM =2ON ,且OM ,ON 分别为△AMC ,△ANC 的中线∴AN ⊥PC ,AM ⊥PD设点M x ,y ,z ,因为P ,M ,D 三点共线∴PM =λPD 而PM =x ,y ,z -4 ,PD=0,4,-4 ∴λPD=0,4λ,-4λ∴x =0y =4λz -4=-4λ∴M 0,4λ,4-4λ 而AM ⊥PD ⇒AM ⋅PD=0∴16λ-44-4λ =0⇒λ=12∴M 0,2,2同理,设点N x ,y ,z ,因为P ,N ,C 三点共线∴PN =μPC 而PN =x ,y ,z -4 ,PC=2,4,-4∴μPD=2μ,4μ,-4μ∴x =2μy =4μz -4=-4μ∴N 2μ,4μ,4-4μ 而AN ⊥PC ⇒AN ⋅PC=0∴4μ+16μ-44-4μ =0⇒μ=49∴N 89,169,209(1)设平面ABM 的法向量为n 1=x ,y ,z AB =2,0,0 ,AM =0,2,2 ∴2x =02y +2z =0⇒n 1 =0,1,-1设平面PCD 的法向量为n 2=x ,y ,z PC =2,4,-4 ,DC=2,0,0∴2x +4y -4z =02x =0 ⇒n 2=0,1,1 ∴n 1 ⋅n 2 =0∴n 1 ⊥n 2 ∴平面ABM ⊥平面PCD(2)设平面ACM 的法向量为nx ,y ,z AC =2,4,0 ,AM=0,2,2 ∴2x +4y =02y +2z =0 ⇒n =2,-1,1 而CD=-2,0,0∴设直线CD 与平面ACM 所成角为θ,则sin θ=cos CD ,n=CD ⋅n CD ⋅n=42⋅6=63(3)d N -平面ACM =AN ⋅nn=89⋅2+169⋅-1 +2096=102763.已知在四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2,AB =1,PA ⊥平面ABCD ,E ,F 分别是线段AB ,BC 的中点(1)求证:PF ⊥FD(2)在线段PA 上是否存在点G ,使得EG ∥平面PFD ,若存在,确定点G 的位置;若不存在,请说明理由(3)若PB 与平面ABCD 所成的角为45°,求二面角A -PD -F 的余弦值解:因为PA ⊥平面ABCD ,且四边形ABCD 是矩形∴以PA ,AD ,AB 为轴建立空间直角坐标系,设PA =h∴P 0,0,h ,B 1,0,0 ,D 0,2,0 ,C 1,2,0 ,F 1,1,0 ,E 12,0,0 (1)∴PF =1,1,-h ,FD =-1,1,0 ∴PF ⋅FD =0∴PF ⊥FD(2)设G 0,0,a∴EG =-12,0,a 设平面PFD 的法向量为n=x ,y ,z ∵PF =1,1,-h ,FD=-1,1,0∴x +y -zh =0-x +y =0⇒x =hy =h z =2∴n =h ,h ,2 ∵EG ∥平面PFD ∴EG ⊥n∴EG ⋅n =-12h +2a =0解得a =14h∴存在点G ,为AP 的四等分点(靠近A )(3)∵PA ⊥底面ABCD ∴PB 在底面ABCD 的投影为BA∴∠PBA 为PB 与平面ABCD 所成的角,即∠PBA =45°∴△PBA 为等腰直角三角形∴AP =AB =1即h =1∴平面PFD 的法向量为n=1,1,2平面APD 为yOz 平面,所以平面APD 的法向量为m=0,1,0 设二面角A -PD -F 的平面角为θ,可知θ为锐角∴cos θ=cos m ,n =16=664.四棱锥P -ABCD 中,平面PAB ⊥平面ABCD ,AD ∥BC ,∠ABC =90°,PA =PB =3,BC =1,AB =2,AD =3,O 是AB 中点(1)求证:CD ⊥平面POC(2)求二面角C -PD -O 的平面角的余弦值(3)在侧棱PC 上是否存在点M ,使得BM ∥平面POD ,若存在,求出CMPC的值;若不存在,请说明理由解:过O 在平面ABCD 作AB 的垂线交CD 于Q ∵PA =PB ,O 为AB 中点∴PO ⊥AB∵平面PAB ⊥平面ABCD ∴PO ⊥平面ABCD ∴PO ⊥OB ,PO ⊥OQ ∵OQ ⊥AB∴以PO ,OB ,OQ 为轴建立空间直角坐标系PO =PA 2-OA 2=22∴P 0,0,22 ,B 1,0,0 ,A -1,0,0 ,C 1,1,0 ,D -1,3,0(1)CD =-2,2,0 设平面POC 的法向量为n=x ,y ,z OP =0,0,22 ,OC=1,1,0∴OP ⋅n =0OC ⋅n =0⇒22z =0x +y =0 ∴n =-1,1,0 ∴CD ∥n∴CD ⊥平面POC(2)设平面PCD 的法向量为n 1=x ,y ,z PC =1,1,-22 ,CD=-2,2,0∴PC ⋅n 1=0CD ⋅n 1 =0 ⇒x +y -22z =0-2x +2y =0∴n 1 =2,2,1 设平面PDO 的法向量为n 2=x ,y ,z OP =0,0,22 ,OD=-1,3,0∴OP ⋅n 2=0OD ⋅n 2 =0 ⇒22z =0-x +3y =0∴n 2 =3,1,0 ∴cos n 1 ,n 2 =n 1 ⋅n 2n 1 ⋅n 2=45所以二面角C -PD -O 的平面角的余弦值为45(3)设M x ,y ,z CM =λCPCM =x -1,y -1,z ,CP=-1,-1,22∴x -1=-λy -1=-λz =22λ⇒M 1-λ,1-λ,22λ∴BM =-λ,1-λ,22λ 而平面PDO 的法向量为n 2=3,1,0∵BM ∥平面POD ∴BM ⋅n 2=0⇒-3λ+1-λ=0∴λ=14∴CM PC=145.已知四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是边长为a 的菱形,∠BAD =120°,PA =b(1)求证:平面PBD ⊥平面PAC(2)设AC 与BD 交于点O ,M 为OC 中点,若二面角O -PM -D 的正切值是26,求a :b 的值建系思路一:由PA 与底面垂直,从而以PA 作为z 轴,以AB 为x 轴,由120°的菱形性质可得取CD 中点T ,连结AT 则有AT ⊥AB ,从而建立空间直角坐标系解:取CD 中点T ,连结AT ,可得AT ⊥CD ∴AB ⊥AT∵PA ⊥平面ABCD∴以PA ,AB ,AT 为轴建立空间直角坐标系可得:B a ,0,0 ,C 12a ,32a ,0 ,D -12a ,32a ,0 ,P 0,0,b(1)设平面PBD 的法向量为m=x ,y ,z ∵PB =a ,0,-b ,BD =-32a ,32a ,0 ∴ax -bz =0-32ax +32ay =0⇒x =b y =3b z =a∴m=b ,3b ,a 设平面PAC 的法向量为n =x ,y ,z ∵AP =0,0,b ,AC =12a ,32a ,0 ∴z =012ax +32ay =0⇒x =-3y =1z =0∴n=-3,1,0 ∴m ⋅n =0∴平面PBD ⊥平面PAC(2)O 14a ,34a ,0 ,M 38a ,338a ,0 设平面OPM 的法向量为n 1 =x ,y ,z ∵OP =-14a ,-34a ,b ,OM =18a ,38a ,0 ∴-14ax -34ay +bz =018ax +38ay =0⇒x =-3y =1z =0∴n 1 =-3,1,0设平面PMD 的法向量为n 2 =x ,y ,z ∵PD =-12a ,32a ,-b ,MD =-78a ,38a ,0 ∴-12ax +32ay -bz =0-78ax +38ay =0 ⇒x =3b y =7b z =33a∴n2 =3b ,7b ,33a设二面角O -PM -D 的平面角为θ,则tan θ=26,可得cos θ=15∴cos θ=cos n 1 ,n 2 =4b 252b 2+27a 2=1510b =52b 2+27a 2⇒100b 2=52b 2+27a 2∴a 2b2=4827=169∴a b =4:3建系思路二:由思路一可发现尽管建系思路简单,但是所涉及的点的坐标过于复杂,而导致后面的计算繁杂。

利用空间向量解立体几何(完整版)

利用空间向量解立体几何(完整版)

向量法解立体几何基本思路与方法一、基本工具1.数量积: cos a b a b θ⋅=2.射影公式:向量a 在b 上的射影为a bb⋅ 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离 1.点点距离点()111,,P x y z 与()222,,Q x y z 的距离为222212121()()()PQ x x y y z z =-+-+- 2.点线距离求点()00,P x y 到直线:l 0Ax By C ++=的距离:方法:在直线上取一点(),Q x y ,则向量PQ 在法向量(),n A B =上的射影PQ n n⋅=0022Ax By C A B +++即为点P 到l 的距离. 3.点面距离求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ ,计算平面α的法向量n ,计算PQ 在α上的射影,即为点P 到面α的距离.四、用向量法解空间角 1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角)若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.实例分析一、运用法向量求空间角向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量法解立体几何引言立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。

教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。

一、基本工具1.数量积: cos a b a b θ⋅=2.射影公式:向量a 在b 上的射影为a bb⋅ 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离 1.点点距离点()111,,P x y z 与()222,,Q x y z 的距离为PQ =u u u r2.点线距离求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y ,则向量PQ u u u r在法向量(),n A B =上的射影PQ n n⋅u u u r=即为点P 到l 的距离. 3.点面距离求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ u u u r,计算平面α的法向量n ,计算PQ u u u r在α上的射影,即为点P 到面α的距离.四、用向量法解空间角 1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角)若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.一、运用法向量求空间角向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB u u u r u u u r 和,则角<','AA BB u u u r u u u r>=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅u u u r u u u r u u u r u u u r , 不需要用法向量。

1、运用法向量求直线和平面所成角设平面α的法向量为n r=(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为sin θ= cos(2π-θ) = |cos<AB u u u r , n r >| = AB AB n n••u u u r ru u u r r2、运用法向量求二面角设二面角的两个面的法向量为12,n n u r u u r ,则<12,n n u r u u r >或π-<12,n n u r u u r>是所求角。

这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n u r u u r >是所求,还是π-<12,n n u r u u r>是所求角。

二、运用法向量求空间距离1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =r,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n •u u u r r r略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线,在a 、b 上任取一点A 、B ,过A 作AA'//EF ,交a '于A',则¡¯//AA n u u u u r r ,所以∠BAA '=<,BA n u u u r r >(或其补角)∴异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n •u u u r r r *其中,n r的坐标可利用a 、b 上的任一向量,a b r r(或图中的,AE BF u u u r u u u r ),及n r的定义得n a n a n b n b ⎧⎧⊥•=⎪⎪⇒⎨⎨⊥•=⎪⎪⎩⎩r r r rr r r r① 解方程组可得n r 。

2、求点到面的距离 求A点到平面α的距离,设平面α的法向量法为(,,1)n x y =r,在α内任取一点B ,则A 点到平面α的距离为d =||||AB n n •u u u r rr ,n r 的坐标由n r 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =r,下同)。

3、求直线到与直线平行的平面的距离 求直线a到平面α的距离,设平面α的法向量法为(,,1)n x y =r,在直线a 上任取一点A ,在平面α内任取一点B ,则直线a 到平面α的距离d = ||||AB n n •u u u r r r4、求两平行平面的距离设两个平行设平面α、β的公共法向量法为(,,1)n x y =r,在平面α、β内各任取一点A 、B ,则平面α到平面β的距离d = ||||AB n n •u u u r r r三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n u r u u r,则1a//a n α⇔⊥u r 1a a//n α⊥⇔u u r12////n n αβ⇔u r u u r 12n n αβ⊥⇔⊥u r u u r四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值.解:(I )以A 为原点,1,,AB AD AA u u r u u u r u u u r分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2)于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==-u u u r u u u r u u u r设法向量(,,2)n x y =r与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭r u u u rr u u u r11111(1,1,2),(0,0,2),cos 3||||tan 2n AA CDE n AA C DE C n AA n AA θθθ∴=--=∴--•===⨯∴=Q Q r u u u rru u u rr u u u ru r u u u u r 向量与平面垂直与所成的角为二面角的平面角(II )设EC 1与FD 1所成角为β,则1111cos 14||||EC FD EC FD β•===⨯u u u r u u u r u u u ur u u u r 例2:如图,已知四棱锥P-ABCD ,底面ABCD 是菱形,∠DAB=600,PD ⊥平面ABCD ,PD=AD ,点E 为AB 中点,点F 为PD 中点。

(1)证明平面PED ⊥平面PAB ; (2)求二面角P-AB-F 的平面角的余弦值 证明:(1)∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900,如图建立坐标系D-ECP ,设AD=AB=1,则PF=FD=12,, ∴ P (0,0,1),E0,0),B12,0) ∴PB u u u r =(2,12,-1),PE u u u r =(2,0,-1),平面PED 的一个法向量为DC u u u r=(0,1,0) ,设平面PAB 的法向量为n r=(x, y, 1)由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩r u u u rr u u u r∴nr=∵DCu u u r·nr=0 即DCu u u r⊥nr∴平面PED⊥平面PAB(2)解:由(1)知:平面PAB的法向量为nr=0, 1), 设平面FAB的法向量为nr1=(x, y, -1),由(1)知:F(0,0,12),FBu u u r=,12,-12),FEu u r=0,-12),由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y⎧⎧-•-=-+=⎪⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩r u u u rr u u u r∴nr1=(, 0, -1)∴二面角P-AB-F的平面角的余弦值cosθ= |cos<nr, nr1>|=11nnnn•=•r rr r例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离. 解: (Ⅰ)如图建立坐标系D-ACD 1, ∵棱长为4∴A (4,0,0),B (4,4,0),P (0,4,1)∴AP uuu r = (-4, 4, 1) , 显然DC u u u r=(0,4,0)为平面BCC 1B 1的一个法向量∴直线AP 与平面BCC 1B 1所成的角θ的正弦值sin θ= |cos<AP uuu r,DC u u u r>|=222433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin43333(Ⅲ) 设平面ABD 1的法向量为n r=(x, y, 1),∵AB uuu r =(0,4,0),1AD u u u u r =(-4,0,4)由n r ⊥AB uuu r ,n r ⊥1AD u u u u r 得0440y x =⎧⎨-+=⎩ ∴ n r =(1, 0, 1),∴点P 到平面ABD 1的距离 d = 322AP n n•=u u u r rr例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离。

相关文档
最新文档