汽车制动系统之真空助力器

汽车制动系统之真空助力器
汽车制动系统之真空助力器

浅谈汽车制动系统之真空助力器

摘要:汽车真空助力器是汽车制动系统中一个关键部件,广泛应用在轿车和轻型车上作为制动的助力装置,由于其至关重要,所以一直是汽车制动系统研究的重点项目之一。本文中较详细、系统地说明了汽车真空助力器相关技术在我国内的现状,深刻的反映了其重要性和严峻性,也对其在国内行业提出了一些意见或建议。

关键词:汽车真空助力器制动系统

汽车真空助力器是一个气动部件,由许多不同材质的零件组合而成,除金属件外,活塞体是电木材质,而膜片和密封件及反作用盘都是橡胶件,所以,其工作原理、设计结构和相关技术难度可想而知。

我国对汽车真空助力器的研制和生产始于上世纪八十年代,并且于1987年制定了我国第一部关于汽车真空助力器的汽车行业标准,即zb/t24003-1987《真空助力器技术条件》和zb/t24004-1987《真空助力器实验方法》(现均已被替代),这两个行业标准的出版,有利的刺激了我国汽车真空助力器行业的发展,填补了我国在这项领域的空白,由此,我国汽车真空助力器行业进入了一个新纪元。

可是,由于我国工业基础较为落后,理论基础能力有限,一些重要的学术期刊在上世纪九十年代才出现,而其他大多数还维持在维修和加工工艺层面上的论述和探讨,所以,客观的说,我国现在关于这方面的理论水平和成果以及产品质量,同先进的西方国家相比还相差甚远。

制动主缸与真空助力器结构及原理知识分享

制动主缸与真空助力器结构及原理

真空助力器带制动主缸和比例阀的结构原理及故障分析 真空助力器带制动主缸和比例阀的结构原理及故障分析

一真空助力器与制动主缸的结构及原理 (一)液压管路联接形式 奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。 制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。两个制动管路4、5呈交叉型对角线布置。 这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。此外,这种制动系统结构简单,而且直行时紧急制动的稳定性好。 (二)串联式双腔制动主缸

1 带补尝孔串联式双腔制动主缸 奇瑞轿车采用补尝孔串联式双腔制动主缸,其结构原理如图2所示。 制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克服第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。 解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开始回位,高压制动液顺管路回流入制动主缸。由于活塞回位速度迅速,工作腔内容积相对增大,致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。当活塞完全回到位时,工作腔通过补尝孔

电控动力转向系统(EHPS)介绍

电控动力转向系统(EHPS)介绍 汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员的控制下,借助于汽车发动机产生的液体压力或电动机驱动力来实现车轮转向,所以动力转向系统也称为转向动力放大装置。随着道路条件的不断改善,汽车速度的不断提高,对转向系统操纵的安全性与舒适性提出了更高的要求。动力转向系统由于具有使转向操纵灵活、轻便,设计汽车时对转向器结构形式的选择灵活性大,能吸收路面对前轮产生的冲击等优点,因此已在各国的汽车制造中普遍采用。但是,从易于驾驶和安全性方面考虑,理想的操纵状态是低速时转向始终应当轻快,而在高速时要有适当的手感并且运行平稳,因此,对于传统的液压动力转向器,其固定的放大倍率成为动力转向系统的主要缺点,往往是满足了低速转向轻便的要求便无法满足高速转向时要求的手感,或者满足了高速转向时有良好的手感但低速时又不免转向沉重。 人满意的程度。 向系统(液压式EPS

式电子控制动力转向系统(电动式EPS)。EHPS是在传统的液压动力转向系统的基础上增设了控制液体流量的电磁阀、车速传感器和电子控制单元等装置构成的,电子控制单元根据检测到的车速信号,控制电磁阀的开度,使转向动力放大倍率实现连续可调,从而满足高、低速时的转向助力要求。电动式EPS则是利用直流电动机作为动力源,电子控制单元根据转向参数和车速信号,控制电机输出扭矩。电动机的输出扭矩经由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。 EHPS从控制方式可以分为以下几种类型: 其中,第(1)种和第(2)种类型是EHPS发展初期的控制方式,主要的控制目标都是将系统中的动力泄荷掉一部分以实现高速时减小助力,但这样做的弊病就是浪费了动力,不利于车辆省油,而且,还有急转弯反应迟钝的缺点,需要安装特别装置才能解决,现在已很少采用。第(3)种油压反馈控制式现在使用的比较普遍,其根据车速传感器,控制反力室油压,改变压力油的输入、输出的增益幅度以控制操舵力。操舵力的变化量,按照控制的反馈压力,在油压反馈机构的容量范围内可任意给出,急转弯也没问题,但是其结构复杂,各部分的加工精度要求较高,价格也较高。第(4)种阀特性控制式是近几年开发的类型,是根据车速控制电磁阀,直接改变动力转向控

真空助力制动系统的真空泵技术

真空助力制动系统的真空泵技术 汽油发动机在进气歧管可以产生较高的真空压力,而在柴油发动机和汽油直喷发动机需安装真空泵提供真空来源,满足真空助力制动系统要求。 真空助力制动系统 乘用车和轻型商用车的制动系统主要采用液压作为传动媒介,与可以提供动力源的 气压制动系统相比,其需要助力系统来辅助驾驶员进行制动。真空制动助力系统也称作真空伺服制动系统,伺服制动系是在人力液压制动的基础上加设一套由其他能 源提供制动力的助力装置,使人力与动力可兼用,即兼用人力和发动机动力作为制动能源的制动系。在正常情况下,其输出工作压力主要由动力伺服系统产生,因而 在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。 如图1所示为某轿车的真空助力式(直动式)伺服制动系回路图,它采用了左前轮制动油缸与右后轮制动油缸为一液压回路、右前轮制动油缸与左后轮制动油 缸为另一液压回路的布置,即为对角线布置的双回路液压制动系统。真空助力器气室与控制阀组合的真空助力器在工作时产生推力,也同踏板力一样直接作用在制动 主缸的活塞推杆上。 其中核心部件真空助力器的工作过程是:在非工作的状态下,控制阀推杆回位弹簧将控制阀推杆推到右边的锁片锁定位置,真空单向阀口处于开启状态,控制 阀弹簧使控制阀皮碗与空气阀座紧密接触,从而关闭了空气阀口。此时真空助力器的真空气室和应用气室分别通过活塞体的真空气室通道与应用气室通道经控制阀腔 处相通,并与外界大气相隔绝。发动机起动后,发动机的进气歧

管处的真空度上升,随之,真空助力器的真空气室、应用气室的真空度均上升,并处于随时工作的准 备状态。 当进行制动时,踩下制动踏板,踏板力经杠杆放大后作用在控制阀推杆上。首先,控制阀推杆回位弹簧被压缩,控制阀推杆连同空气阀柱往前移。当控制阀推 杆前移到控制阀皮碗与真空单向阀座相接触的位置时,真空单向阀口关闭。此时,助力器的真空气室、应用气室被隔开。此时,空气阀柱端部刚好与反作用盘的表面 相接触。随着控制阀推杆的继续前移,空气阀口将开启。外界空气经过滤气后通过打开的空气阀口及通往应用气室的通道,进入到助力器的应用气室(右气室),伺 服力产生。由于反作用盘的材质(橡胶件)有受力表面各处的单位压强相等的物理属性要求,使得伺服力随着控制阀推杆输入力的逐渐增加而成固定比例(伺服力 比)增长。由于伺服力资源的有限性,当达到最大伺服力时,即应用气室的真空度为零时(即一个标准大气压),伺服力将成为一个常量,不再发生变化。此时,助 力器的输入力与输出力将等量增长;取消制动时,随着输入力的减小,控制阀推杆后移,真空单向阀口开启后,助力器的真空气室、应用气室相通,伺服力减小,活 塞体后移。就这样随着输入力的逐渐减小,伺服力也将成固定比例(伺服力比)的减少,直至制动被完全解除。 图2为双膜片真空助力器总成图。 对于真空助力系统的真空来源,装有汽油发动机的车辆由于发动机采用点燃式,因此在进气歧管可以产生较高的真空压力,可以为真空助力制动系统提供足够 的真空来源,而对于柴油发动机驱动的车辆,由于发动机采用压燃式CI (Compression Ignition cycle),这样在进气歧管处不能提供相同水平的真空压力,所以需要安装提供真空来源的真空泵,另外,对于为了满足较高的排放环保要求而设计的汽油直喷 发动机GDI(Gasoline Direct Injection),在进气歧管处也不能提供相同水平的真空压力来满足真空制动助力系统的要求,因此也需要真空泵来提供真空来源,真空泵在系统中的位置 如图3所示。

电控助力转向系统

图3-17 与齿轮齿条式转向器配用的动力转向系 1-车速表;2-电控装置;3-储油罐;4-油泵; 5-齿轮齿条式转向器;6-传感器 助力转向系统 第一节 机械转向系统 一、特点 机械转向系很难满足高速轿车转向时既要灵敏又要操纵省力的要求,并且重型载货车及越野车,由于前桥负荷较大,行驶条件较差,机械转向系也满足不了操纵轻便和行车安全的要求。因此,为了减轻驾驶员的疲劳程度,增加驾驶舒适性,保证行车安全,在一些车型中加装了转向加力装置。转向加力装置以发动机输出的动力为能源,在转向时,只有一小部分是驾驶员的体能,大部分是发动机提供的液压能或气压能及电机提供的电能。由于液压系统工作压力高,固其部件尺寸小,并且工作时无噪音,工作滞后时间短,还能吸收来自不平路面的冲击,因此在各类车上液压转向加 力装置广泛应用。 二、工作过程 当汽车直线行驶时,转向控制阀使 得转向动力缸活塞两侧都和低压油路 及转向油罐相通,压力相等,转向动力 缸不动,油泵空转,油液处于低压流动 状态。当驾驶员转动方向盘,通过机械 转向器使流量控制阀处于某一工作位置, 此时,转向动力缸活塞一侧与回油管隔 绝,与油泵相通,压力升高(由于地面转向阻力通过转向传动机构传到动力缸的推杆和活塞上形成较大的油泵输出阻力);另一侧仍然与回油管路相通,压力较低,转向动力缸活塞移动,产生推力。转向盘停止转动后,转向控制阀回到中立位置,动力缸停止工作。由于无论汽车是否处于转向状态,液压系统管路中的油液总是在流动,压力较低,只有在转向时才产生瞬时高压。 第二节 电液控制助力转向系统 一、 系统组成

(一)转向助力油泵 车上使用的都是叶片泵,该泵的供油量为15cm3/每转。系统最大工作压力为125bar。(二)转向机 主要由齿条、小齿轮和支承机构、活塞、转动滑 阀构成。齿条的齿部是采用不同的模数和压力角来制 造的,这样就可在将方向盘的旋转运动转换成为齿条 的往复直线运动的过程中实现可变传动比。这种可变 传动比在转向角度较大时,可以提供更直接的反应。 转动滑阀内的扭杆通过一个万向节直接与转向柱轴直 接相连,扭杆的上端通过销子与转动滑阀刚性相连, 扭杆的下端用销子连在齿条小齿轮和导向衬套上。司 机做出的转向动作会在扭杆上产生作用力,于侧力时 发生的扭转是一样的。转动滑阀与扭杆一同相对于导 向衬套转动。这就会使得转动滑阀和导向衬套上的槽 和过渡孔的相对位置发生变化。因此某些机油道就打开,某些机油道就关闭,这取决于转动滑阀和导向衬套之间的转角变化。

汽车制动真空助力器工作原理

汽车制动真空助力器工作原理 汽车知识真空助力器工作原理 制动助力器,它是一个黑色圆罐,位于驾驶员侧发动机舱后部,固定在车身上,借推杆与制动踏板连接。加力气室由前后壳体组成,其间夹装有膜片和座,它的前腔经单向阀通进气管或真空筒;后腔膜片座毂筒中装有控制阀,其中装有与推杆固接的空气阀和限位板、真空阀和推杆等零件。膜片座前端滑装有推杆,其间有传递脚感的橡胶反作用盘,橡胶反作用盘是两面受力;右面的中心部分要受推杆及空气阀的推力,盘边环部分还要承受膜片座的推力;左面要承受推杆传来的主缸液压反作用力。实际上它是一个膜片,利用它的弹性变形来完成渐进随动,同时使脚无悬空感。单向阀有两个功能:一是保证发动机熄火后有一次有效地助力制动;二是发动机偶尔回火时,保护真空助力室的膜片免于损坏。 一般和刹车总泵一体,助力器成圆筒形状,当中有个皮碗把助力器分成两个腔,当中和前面各有一个单向阀,平时这两个腔全是真空的,当踏下刹车踏板时,前面的单向阀打开,前腔开始进气,但后面的腔还是真空的,当中的单向阀关闭,因为前腔和后腔产生负压,所以皮碗带动顶杆一起推动刹车总泵工作;当收回刹车踏板时当中的单向阀打开,前面的单向阀关闭,前腔的空

气流入后腔,两个腔没有负压,顶杆随着踏板回位弹簧一起回到原来的位置,同时当中的单向阀也关闭。 制动助力器利用发动机真空来增大脚施加给主缸的力,真空助力器是一个含有智能阀和膜片的金属罐。一根杆穿过罐的中央,两头分别连接主缸活塞和踏板连杆。 动力制动系统的另一个关键零件是单向阀。 单向阀只允许将空气吸出真空助力器。如果关闭发动机,或者真空管发生泄漏,则单向阀将确保空气不进入真空助力器。这点很重要,因为在发动机停止运转时,真空助力器必须得提供足够的推进力来让驾驶员再刹几次车。在公路上驾车行驶时,如果汽油耗尽,您当然不希望在此时失去制动功能。 真空助力器的设计非常简单、精致。该装置需要真空源才能运行。汽油动力车的发动机可以提供适用于助力器的真空。在装有真空助力器的汽车上,制动踏板推动一个连杆,该连杆穿过助力器进入主缸,驱动主缸活塞。发动机在真空助力器内的膜片两侧形成部分真空。踩下制动踏板时,连杆打开一个气门,使空气进入助力器中膜片的一侧,同时密封另一侧真空。这就增大了膜片一侧的压力,从而有助于推动连杆,继而推动主缸中的活塞。 释放制动踏板时,阀将隔绝外部空气,同时重新打开真空阀。这将恢复膜片两侧的真空,从而使一切复位

真空助力系统工作原理

真空助力系统工作原理 最近的丰田门让广大车主都关注刹车优先系统已经相关的刹车安全问题,下面部分转帖谈谈真空度与节气门关系,兼谈汽车的刹车系统! 由此涉及到一些真空助力与节气门的关系。相信不少同学和我以前一样迷惑。 为了更清楚地说明真空助力器和油门和节气门的关系,解释如下:大部分的小车采用的是真空液压助力系统,这个是靠发动机的真空助力器和进气歧管这二者共同产生真空压力来工作。 1、真空助力器什么? 答:所谓的助力器,就是利用真空产生压力,有压力才可以把制动液压入四个轮子里的刹车装置,才能推动刹车片掐住刹车盘或顶住刹车鼓,从而达到刹车的目的。真空助力器是在驾驶舱内的制动踏板和制动主缸之间起到放大压力的作用。我觉得如果把“真空助力器”改名叫“压力助力器”可能更容易让人理解。当然了,真空是此助力器形成压力的原因。 2、真空压力哪里来? 答:真空助力器利用发动机进气歧管形成的真空(发动运行才有,发动机熄火就没戏了)与外部大气压力的压力差,借助膜片式动力活塞将制动踏力放大。所以只要你轻轻地踩下刹车踏板,就可以产生数倍的被放

大的压力,减轻了各位同学的刹车压力,推动制动液。当然了,如果没有真空度,你要花费更大的力气才能刹住车(70迈的车大约需要200磅的力量才能刹住,就是90kg的力;而真空助力器大约可以放大刹车力度20倍,所以正常来说只需要10磅的力量就可以刹停车了),但恐怕目前大家都没那么大的力气呢.(注意,只有汽油发动机才是利用发动机进气歧管的产生的真空压力,柴油机没有节气门) 3、进气歧管的真空度与节气门之间的关系 答:进气歧管的真空度真空度由节气门之后的进气管负责。随着节气门的开度变化而变化。 (1)如果节气门开到最大(即油门踩到最大)的时候,因为进气量增大,所以真空度就小了。这就是丰田门的事故原因,即使哪个美国警察开的是手动档,并像一些TX说的,立刻挂了空档,也没办法立刻把车刹停,注意前面所讲的,真空助力可以放大20倍的刹车力量,如果没有这个真空助力,几乎不可能顺利把高速的车很快刹停! (2)如果节气门闭合(即车行驶中踩刹车自动断油且闭合节气门)的时候,因为进气量没有为0,所以真空度就最大。 (3)如果节气门开度不大(即怠速,或空挡滑行,这时发动机只喷少数油,节气门未完全闭合),则因为还是有进气,导致真空度不大。 4、为何说空挡滑行不安全? 答:因为空挡滑行的时候,发动机处于怠速状态,节气门处于怠速开度,

电控液压助力转向系统简介

电控液压助力转向(ECHPS)系统简介 ——反力控制式 反力控制式ECHPS系统是在传统液压助力转向 系统(HPS)的基础上增加一套反力控制装置而构成 的。该系统通过对转向控制阀的阀芯施加随车速而 变化的反作用力,使得转向操纵力矩必须克服施加 在阀芯上的反作用力而引起的转动阻力矩,才能使 阀芯和阀套产生相对转动而产生助力,见图1。目 前,产生反作用力的方式大都采用液压助力转向系 统中的液压力,也有通过电磁方式施加反作用力。 1.液压反力式ECHPS 系统 液压反力式ECHPS 系统是在传统HPS 系统的基础上增加一套液压反力装置而构成,见图2。液压反力装置由电磁阀和活塞等组成。活塞套在阀芯的上部,二者可轴向移动,但不能相对转动。活塞的下端及阀套的上端都加工有V 形槽,槽中放置有滚柱。活塞与转向器壳体上部形成反力腔,反力腔中装有弹簧。反力腔与转向器进油口的通道上安装有电磁阀,电磁阀受车速信号的控制。当车速较低时,电磁阀关死,反力装置不起作用。此时,系统的工作状态与传统HPS 系统相同。随着车速的提高,电磁阀逐渐开启,反作用腔中建立起一定的压力。此时,由于受弹簧力和液压力的共同作用,滚柱受到较大的轴向力,使得产生相同的阀芯和阀套间的相对转角所需的转向盘转矩较大,即转向助力减小。电磁阀开度越大,节流阻力越小,反作用腔中压力越高,产生相同的阀芯和阀套间的相对转角所需的转向盘转矩越大,转向助力越小。 由图2可知,在反作用腔与回油口的通道上安装有单向阀。当转动转向盘而使活塞相对阀芯向上运动时,反作用腔中压力进一步增加,此时单向阀开启,使反作用腔中压力不会超过设定值,也避免转向操纵过于沉重。 另外,反作用腔中的弹簧可提高转向盘中间位置路感。 图1 反力机构原理 1-阀芯;2-扭杆; 3-反力机构;4-阀套

汽车真空助力器压力滞后分析及改善措施

汽车真空助力器压力滞后分析及改善措施 摘要:经济的快速发展与交通运输的大力支持有着密不可分的联系,据不完全统计,我国去年完成了近2000万辆 各类机动车的销售,截止到2016年年底,我国的机动车保 有量已经达到了2.9亿辆的规模,其中汽车保留量达到了约1.94亿辆的规模,在我国汽车刚性需求旺盛的同时,隐藏的是严重的汽车交通安全问题。车辆在行驶的过程中主要是依靠汽车的制动系统完成对于车辆的减速和在停止状态下的 制动,因此汽车制动系统能够高效、稳定地工作对于汽车的行驶安全有着极为重要的意义。在汽车制动系统中真空助力器是一种极为重要的辅助刹车装置,在汽车制动系统中真空助力器压力滞后问题严重影响着制动感受,不利于安全制动。该文在分析汽车真空助力器压力滞后原因的基础上,对如何采取有效的措施来提高汽车真空助力器的工作效率进行了 分析阐述。 关键词:汽车真空助力器效率提升 中图分类号:U463.5 文献标识码:A 文章编号: 1672-3791(2017)04(b)-0124-02 汽车真空助力器是刹车助力器中的一?N,刹车助力器在轻型轿车和中型汽车中都有着广泛的应用,根据刹车助力器

工作形式的不同可以将其分为真空、液压和气压助力三大类。汽车真空助力器是其中极为重要的一种。在汽车真空助力器的应用中又分为真空助力和液压真空助力两种形式,其中真空助力直接将汽车真空助力器所产生的力作用于踏力,因此操控性较强,其所具有的这一特性使其在轻型车辆(如轿车及小型载货车辆)上有着较为广泛的应用,但是其在应用的过程中会受到装配空间的制约从而影响其进一步应用。液压真空助力与真空助力直接作用于踏力的工作形式不同,其是利用主缸所产生的液压力来对踏力进行助力的,因此其受空间制约小,但是相较于真空助力操作感较差。为解决汽车真空助力器操控性差的问题应当对造成汽车真空助力器压力 滞后的原因进行分析并予以改善,以使汽车获得良好的制动性。 1 汽车真空助力器压力滞后的原理分析 在汽车真空助力器的工作过程中大体可以分为输入力 施加和释放两个主要的工作阶段。通过对汽车真空助力器工作中的输入输出性能进行分析后发现,在输入力施加和释放的过程中即汽车真空助力器推杆前进和后退两个过程之间 会存在一定的滞后,即在相同的输入力的条件下,汽车真空助力器在前进的过程中所产生的输出压力相较于推杆在后 退过程中所产生的输出压力要小得多,而汽车真空助力器在前进和后退过程中所产生的压力差则被称之为汽车真空助

制动主缸与真空助力器结构及原理

真空助力器带制动主缸和比例阀的结构原理及故障分析 真空助力器带制动主缸和比例阀的结构原理及故障分析 一真空助力器与制动主缸的结构及原理 (一)液压管路联接形式 奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。 制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。两个制动管路4、5呈交叉型对角线布置。 这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。此外,这种制动系统结构简单,而且直行时紧急制动的稳定性好。 (二)串联式双腔制动主缸 1 带补尝孔串联式双腔制动主缸 奇瑞轿车采用补尝孔串联式双腔制动主缸,其结构原理如图2所示。 制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克服第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。 解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开始回位,高压制动液顺管路回流入制动主缸。由于活塞回位速度迅速,工作腔内容积相对增大,

致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。当活塞完全回到位时,工作腔通过补尝孔与贮液罐相通,这时多余的制动液经补尝孔流回到贮液罐。等待下一次制动,这样往复循环进行。 2 带ABS的中心阀式双腔制动主缸 ABS系统配备于奇瑞豪华轿车,大大提高了整车的安全性和制动稳定性,为了提高ABS系统工作的可靠性,奇瑞轿车采用了中心阀式双腔制动主缸,其结构如图3所示。 其特点是取消了串联式双腔制动主缸的补尝孔,采用中心单向阀来取代它们的作用。该中心单向阀结构安装在第一、二活塞内,其结构如图4所示。 制动时,活塞在助力器的推力作用下开始左移,当中心阀芯5、14脱离控制销8、17时,中心阀芯在中心阀簧作用下将中心阀口关闭,这时工作腔3、12建立起液压并通过出油口传递给制动管路。

刹车真空助力器工作原理

详解真空助力制动系统的真空泵技术 真空助力器是一个直径较大的腔体,内部有一个中部装有推杆的膜片(或活塞),将腔体隔成两部份,一部份与大气相通,另一部份通过管道与发动机进气管相连。它是利用发动机工作时吸入空气这一原理,造成助力器的一侧真空,相对于另一侧正常空气压力的压力差,利用这压力差来加强制动推力。 刹车助力泵跟总泵是2个不同的东西合在一起的..总泵跟助力泵结合处靠2个螺丝固定. 这个需要完全密封吗?就图片红色的地方.如果没密封好会怎么样? 还有.总泵上除了一个蓄液罐 2个孔接油管,还有一个螺丝.这个螺丝是给总泵放 气的吗?不过这个螺丝不像分泵放油螺丝那种是的,要求密封。因为里面就是真空气室,如果泄露就会漏气,造成发动机怠速不稳或者怠速高,刹车真空不够无助力。 追问 总泵上除了蓄液罐之外,2个接油管的空,还有一个带螺丝的孔.这个是总泵放气的嘛?这个螺丝跟分泵放油螺丝不一样 回答 这个螺丝不是放气螺丝,是总泵前活塞限位螺丝。 追问 换了新的助力泵后.刹车轻很多了.但是放了一天以后.没启动前的第一脚 刹车还是硬. 说说明还是漏真空. 是不是助力泵跟总泵直接漏气了? 回答

放了一天刹车变硬了,说明真空室没有真空了,你的真空管路上装了单向阀了吗?看看漏不漏气。 追问 有单向阀.助力泵是新换的.就是会不会总泵跟助力泵之间漏气 回答 怀疑漏气,加一点压力(不要太高)用肥皂水检查一下。

里面实际上是一个膜片弹簧把内部分成左右2个腔室,左边负压腔连接节气门后方的负压。一般踩刹车时候都是在怠速或者行车减速时候,此时的节气门后方负压相对较大会作用在左边腔室克服弹簧和膜片弹簧力有意驱使膜片向箭头方向移动,而箭头方向就是刹车时候踏板的踩动方向以此实现助力的 汽油发动机在进气歧管可以产生较高的真空压力,而在柴油发动机和汽油直喷发动机需安装真空泵提供真空来源,满足真空助力制动系统要求。 真空助力制动系统 乘用车和轻型商用车的制动系统主要采用液压作为传动媒介,与可以提供动力源的气压制动系统相比,其需要助力系统来辅助驾驶员进行制动。真空制动助力系统也称作真空伺服制动系统,伺服制动系是在人力液压制动的基础上加设一套由其他能源提供制动力的助力装置,使人力与动力可兼用,即兼用人力和发动机动力作为制动能源的制动系。在正常情况下,其输出工作压力主要由动力伺服系统产生,因而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。 如图1所示为某轿车的真空助力式(直动式)伺服制动系回路图,它采用了左前轮制动油缸与右后轮制动油缸为一液压回路、右前轮制动油缸与左后轮制动油缸为另一液压回路的布置,即为对角线布置的双回路液压制动系统。真空助力器气室与控制阀组合的真空助力器在工作时产生推力,也同踏板力一样直接作用在制动主缸的活塞推杆上。 其中核心部件真空助力器的工作过程是:在非工作的状态下,控制阀推杆回位弹簧将控制阀推杆推到右边的锁片锁定位置,真空单向阀口处于开启状态,控制阀弹簧使控制阀皮碗与空气阀座紧密接触,从而关闭了空气阀口。此时真空助力器的真空气室和应用气室分别通过活

汽车制动真空助力器带制动主缸总成的轻量化设计

汽车制动真空助力器带制动主缸总成的轻量化设计 作者:葛宏马闯卜凡彬 摘要:从轻量化的概念出发,对汽车制动 真空助力器的轻量化的方法进行总结,并利用计算机的拓补优化,实现真空助力器带制动主缸总成的轻量化设计。 主题词:轻量化真空助力器汽车 0 引言 汽车的轻量化是指在保证汽车的强度和安全性能的前提下,尽可能多地降低整备质量,从而提高汽车的动力性,减少燃料消耗以降低排气污染。研究显示,若汽车整车重量降低10%,燃油效率可提高6%~8%;汽车整备质量每减少100kg,百公里油耗可降低0.3~0.6L,汽车重量降低1%,油耗可降低0.7%。此外,车辆每减重100kg,CO2的排放量可减少约5g/km。 当前,出于环保和节能的需要,汽车的轻量化已经成为世界汽车发展的潮流。 1 汽车真空助力器带制动主缸总成 1.1 汽车真空助力器带制动主缸的主要作用 汽车制动真空助力器总成产品是整车制动系统中的安全件,利用发动机或其他真空源提供的真空,通过控制腔内的真空与大气的压强差,实现对驾驶员制动踏板力的放大,并通过制动主缸转换为制动液压,驱动基础制动部件,实现整车的制动。 1.2 汽车真空助力器带制动主缸总成的主要构成 汽车真空助力器带制动主缸总成根据结构不同,约由40~60个不同零件组成(见图1)。其中助力器的前后壳体和制动主缸缸体的重量约占整体重量的62%~80%,因此,本产品的轻量化设计主要针对这3个零件。

2 汽车真空助力器总成的轻量化设计方法 汽车真空助力器的轻量化设计,绝不是等同于减轻材料,它是在保证产品性能和整车安全性能的前提下,充分利用最新设计技术,新材料以及最先进的分析手段和试验技术对现有产品的优化设计。现阶段,主要从以下方面进行。 2.1 结构设计-利用贯穿杆结构取代传统结构 传统结构的汽车真空助力器的前后壳体,是主要的承力部件;贯穿杆结构的汽车真空助力器的主要承力部件是贯穿杆,助力器的前后壳体是辅助的承力部件(见图2)。由此工作原理的优化,可大幅度减薄前后壳体的材料厚度,从而降低产品重量。

真空助力器及制动总泵故障判断方法

真空助力器及制动总泵故障判断方法 汽车行驶一定里程后,其制动系统任何部件出现问题都可能造成刹车不良或失效。为便于维修服务,本文就其真空助力器+制动总泵总成,介绍如何判断该部件是否存在故障及处理方法。 真空助力器漏气 1、打开发动机,运行1~2分钟后关闭,然后分三次踩踏板。正常工作的真空助力器踩第一脚时,由于真空助力器存在足够真空,其踏板行程正常;第二脚,由于助力器内已损失一些真空,所以踏板行程会减小很多;待踏第三脚时,真空助力器内真空已很少,所以踏板行程也很少,再踏下去就踏不动了。以上即所谓“一脚比一脚高”。这证明助力器无漏气,工作正常。如果每一脚踏板行程都很小,且行程都不变,即所谓的“脚特别硬”,则说明助力器漏气失效。漏气严重的,可听到漏气声音。对于漏气的助力器需予以更换。 2、关闭发动机,踩踏板数次,将真空助力器内真空“放掉”。然后踩住踏板,打开发动机,此时踏板应随着发动机抽真空而自动下降,待下降到正常位置后,关闭发动机,1分钟内踏板的脚应无反弹感觉。若踩踏板脚逐渐被抬起,说明助力器漏气,应予以更换。 这里需要特别注意的是,对于正常的助力器,如果用正常踏板力踩踏板并使踏板停在某处后继续加大力度踩踏板,踏板还会继续往下沉,这种情况决不是助力器漏气,因为漏气的助力器只能使你踏不下去,即所谓“脚硬”,并且会把你的脚向回推(即向上推)。对于这种所谓“脚低”的助力器有两种可能,一是因助力器仍工作在助力状态,只要你再继续加力,踏板肯定会继续往下沉,这时,刹车己经非常可靠,属正常现象。二是主缸漏油,此时能一脚踩到底,且无刹车。 真空助力器异响 不良的助力器会发生异响,有的是“卡嗒”一声,有的是“朴朴”声,异响一般不影响刹车性能,但属于噪声,明显的异响可更换助力器,但不必更换制动总泵。

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

电动真空助力制动系统设计

摘要与传统内燃机汽车相比,电动汽车缺少真空助力制动系统所需的真空源,需增加一个具有足够排气量的电动真空发生系统。现以某型纯电动轿车为例,给出了完整的制动系统的计算参数,对真空助力制动系统的性能进行了分析计算,并根据计算结果,设计了间歇性工作的真空发生系统。整车道路试验表明,所设计的电动真空助力制动系统合理。 主题词电动汽车制动系统电动真空泵 前言 目前,为了解决能源危机与环境污染问题,发展电动汽车在我国已达成共识,但由于技术上的制约及现实国情的因素,我国对电动汽车的各种研究,绝大多数只能在现有内燃机汽车的基础上进行改装。 绝大多数的轿车采用真空助力伺服制动系统,使人力和动力并用。传统内燃机轿车的制动系统真空助力装置的真空源来自于发动机进气歧管,真空度负压一般可达到0.05~0.07 MPa。对于由传统车型改装的纯电动车或燃料电池汽车,发动机总成被拆除后,制动系统由于没有真空动力源而丧失真空助力功能,仅由人力所产生的制动力无法满足行车制动的需要,因此需要对制动系统真空助力装置进行改制,而改制的核心问题是产生足够负压的真空源。 本文以基于某车型研发的纯电动轿车为例,对其真空助力制动系统进行计算分析,在保证制动性能的前提下,设计了间歇性工作的真空发生系统,为电动真空助力制动系统的设计提供理论依据。 1 真空助力制动系统性能分析与计算 1. 1 性能分析与计算方法 原车制动系统采用双管路液压-真空助力制动系统,前制动器采用双膜片式真空助力器、4轮缸对称式制动钳和盘式制动器。真空助力器安装于制动踏板和制动主缸之间,由踏板通过推杆直接操纵。助力器与踏板产生的力叠加在一起作用在制动主缸推杆上,以提高制动主缸的输出压力。真空助力器的真空伺服气室通过带有橡胶膜片的活塞分为常压室与变压室,一般常压室的真空度为60~80kPa,即真空泵可以提供的真空度大小。真空助力器所能提供助力的大小取决于常压室与变压室气压差值。当变压室的真空度达到外界大气压时,真空助力器可以提供最大的制动助力。 在保持制动系统其他结构不变的情况下,只用电动真空泵替代原发动机驱动的真空泵,在满足制动性能要求的前提下,对所需最小真空度数值进行分析计算。 利用真空助力器的输入、输出特性,可以求得踏板力与液压输出特性,继而求得制动轮缸对制动块施加的力及盘式制动器的制动力矩,最后计算出真空助力制动系统所需要的最小真空度值,计算流程如图1所示。对于不同车型所装备的不同类型的制动器,需要选择不同的计算公式。以下计算流程是以车轮上的盘式制动器为例;对于鼓式制动器,计算流程相同,只是计算制动轮缸对鼓式制动器力的计算公式的选择不同。

乘用车真空助力器安装点刚度分析规范

精选文档 Q/JLY J711 -2009 乘用车真空助力器安装点刚度 CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二〇〇九年二月

精选文档 前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本规范。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。 本规范主要起草人:郭明涛。 本规范于2009年2月14日发布并实施。

1 范围 本规范规定了乘用车真空助力器安装点刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车真空助力器安装点刚度CAE分析。 2 软硬件设施 a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 3.1 白车身有限元模型 乘用车真空助力器安装点刚度分析的输入条件主要指白车身有限元模型,一个完整的白车身有限元模型其中含内容如下: a)白车身各个零件的网格数据; b)白车身焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车真空助力器安装点刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型真空助力器安装点刚度分析报告》(“车型”代表车型代号,如:车型为GC-1,则分析报告命名为《GC-1真空助力器安装点刚度分析报告》)。 5 分析方法 5.1 分析模型 乘用车真空助力器安装点刚度分析的有限元模型可以用整车模型,但是为了节省求解时间,要求截取白车身模型车头部分。 5.2 分析模型截取 a)截取车头部分,截取面垂直于x轴; b)截面距A柱400mm;如图1所示:

真空助力器的基本结构

真空助力器的基本结构是怎样的? 真空助力器结构示于图3-39,固定在驾驶室仪表板下方的脚制动踏板前方,踏板推杆1与制动踏板杠杆联接.后端以螺栓与制动主缸相联接,真空助力器中心的推杆l2顶在制动主缸的第一活塞杆上.因此真空助力器在制动踏板与制动主缸之间起助力作用。 在真空助力器中,由膜片座6将气室分为加力气室前腔A和加力气室后腔B,前腔A经过管接头和进气管相通,制动时利用发动机进气管的真空度的吸力作用产生助力.膜片座的前端用橡胶反作用盘8与踏板推杆1相联,橡胶反作用盘的弹力与脚感压力相当,橡胶反作用盘的后部装有空气阀5,空气阀5的开度与橡胶反作用盘的弹力也就是脚踏板力相当,踏板力大,反作用力大,阀门开度大,真空加力作用大;反之,踏板力小,真空加力作用小。当发动机熄火或真空管路漏气时,真空助力器不起助力作用,踏板推杆通过空气阀5直接推动膜片座6和推杆12动作,直接作用在制动主缸的第一活塞杆上,产生制动作用,由于此时无助力,制动力靠踏板压力产生。 当发动机工作,真空助力器起作用.制动时,踏下制动踏板,踏板推杆l和空气阀5向前推,压缩橡胶反作用盘,消除间隙,推动推杆12向前移,使制动主缸压力升高并传至各制动器,此时动作力由司机给出;同时,真空阀16和空气阀5起作用,空气进入B腔,推动膜片座6前移,产生助力作用,助力由进气管真空度和空气压力差决定;强力制动时,踏板力可直接作用在踏板推杆并传至推杆上,真空助力与踏板力同时起作用,强力建立制动主缸压力,强力制动维持制动时,踏板可停留在踏下的某个位置,真空助力起作用,维持制动作用。

解除制动时,放松制动踏板,真空助力器恢复原始位置,等待下一次制动的到来. 图3—39真空助力器 1-踏板推杆2-空气滤芯3-真空阀座4-真空通道5-空气阀6-膜片座7-密封垫8-橡胶反作用盘9-回位弹簧10-前加力室罩ll-密封垫12-推杆l3一后加力室罩l4-通气道l5-空气阀座16-真空阀17-回位弹簧A-加力气室前腔B-加力气室后腔

刹车真空助力器工作原理

详解真空助力制动系统的真空泵技术 真空是一个直径较大的腔体,内部有一个中部装有的(或活塞),将腔体隔成两部份,一部份与大气相通,另一部份通过管道与发动机相连。它是利用发动机工作时吸入空气这一原理,造成的一侧真空,相对于另一侧正常空气压力的压力差,利用这压力差来加强制动推力。 刹车助力泵跟总泵是2个不同的东西合在一起的..总泵跟助力泵结合处靠2个螺丝固定. 这个需要完全密封吗就图片红色的地方.如果没密封好会怎么样 还有.总泵上除了一个蓄液罐2个孔接油管,还有一个螺丝.这个螺丝是给总泵放气的吗不过这个螺丝不像分泵放油螺丝那种是的,要求密封。因为里面就是真空气室,如果泄露就会漏气,造成或者怠速高,刹车真空不够无助力。 追问 总泵上除了蓄液罐之外,2个接油管的空,还有一个带螺丝的孔.这个是总泵放气的嘛这个螺丝跟分泵放油螺丝不一样 回答 这个螺丝不是放气螺丝,是总泵前活塞限位螺丝。 追问 换了新的助力泵后.刹车轻很多了.但是放了一天以后.没启动前的第一脚刹车还是硬. 说说明还是漏真空. 是不是助力泵跟总泵直接漏气了 回答 放了一天刹车变硬了,说明真空室没有真空了,你的真空管路上装了单向阀了吗看看漏不漏气。 追问

有单向阀.助力泵是新换的.就是会不会总泵跟助力泵之间漏气 回答 怀疑漏气,加一点压力(不要太高)用肥皂水检查一下。 里面实际上是一个膜片弹簧把内部分成左右2个腔室,左边负压腔连接后方的负压。一般踩刹车时候都是在或者行车减速时候,此时的后方负压相对较大会作用在左边腔室克服弹簧和膜片弹簧力有意驱使膜片向箭头方向移动,而箭头方向就是刹车时候踏板的踩动方向以此实现助力的 汽油发动机在进气歧管可以产生较高的真空压力,而在柴油发动机和汽油直喷发动机需安装真空泵提供真空来源,满足真空助力制动系统要求。 真空助力制动系统 乘用车和轻型商用车的制动系统主要采用液压作为传动媒介,与可以提供动力源的气压制动系统相比,其需要助力系统来辅助驾驶员进行制动。真空制动助力系统也称作真空伺服制动系统,伺服制动系是在人力液压制动的基础上加设一套由其他能源提供制动力的助力装置,使人力与动力可兼用,即兼用人力和发动机动力作为制动能源的制动系。在正常情况下,其输出工作压力主要由动力伺服系统产生,因而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。 如图1所示为某轿车的真空助力式(直动式)伺服制动系回路图,它采用了左前轮制动油缸与右后轮制动油缸为一液压回路、右前轮制动油缸与左后轮制动油缸为另一液压回路的

汽车制动真空助力器工作原理

汽车知识——真空助力器工作原理汽车知识——真空助力器工作原理 制动助力器,它是一个黑色圆罐,位于驾驶员侧发动机舱后部,固定在车身上,借推杆与制动踏板连接。加力气室由前后壳体组成,其间夹装有膜片和座,它的前腔经单向阀通进气管或真空筒;后腔膜片座毂筒中装有控制阀,其中装有与推杆固接的空气阀和限位板、真空阀和推杆等零件。膜片座前端滑装有推杆,其间有传递脚感的橡胶反作用盘,橡胶反作用盘是两面受力;右面的中心部分要受推杆及空气阀的推力,盘边环部分还要承受膜片座的推力;左面要承受推杆传来的主缸液压反作用力。实际上它是一个膜片,利用它的弹性变形来完成渐进随动,同时使脚无悬空感。单向阀有两个功能:一是保证发动机熄火后有一次有效地助力制动;二是发动机偶尔回火时,保护真空助力室的膜片免于损坏。 一般和刹车总泵一体,助力器成圆筒形状,当中有个皮碗把助力器分成两个腔,当中和前面各有一个单向阀,平时这两个腔全是真空的,当踏下刹车踏板时,前面的单向阀打开,前腔开始进气,但后面的腔还是真空的,当中的单向阀关闭,因为前腔和后腔产生负压,所以皮碗带动顶杆一起推动刹车总泵工作;当收回刹车踏板时当中的单向阀打开,前面的单向阀关闭,前腔的空气流入后腔,两个腔没有负压,顶杆随着踏板回位弹簧一起回到原来的位置,同时当中的单向阀也关闭。 制动助力器利用发动机真空来增大脚施加给主缸的力,真空助力器是一个含有智能阀和膜片的金属罐。一根杆穿过罐的中央,两头分别连接主缸活塞和踏板连杆。 动力制动系统的另一个关键零件是单向阀。 单向阀只允许将空气吸出真空助力器。如果关闭发动机,或者真空管发生泄漏,则单向阀将确保空气不进入真空助力器。这点很重要,因为在发动机停止运转时,真空助力器必须得提供足够的推进力来让驾驶员再刹几次车。在公路上驾车行驶时,如果汽油耗尽,您当然不希望在此时失去制动功能。 真空助力器的设计非常简单、精致。该装置需要真空源才能运行。汽油动力车的发动机可以提供适用于助力器的真空。在装有真空助力器的汽车上,制动踏板推动一个连杆,该连杆穿过助力器进入主缸,驱动主缸活塞。发动机在真空助力器内的膜片两侧形成部分真空。踩下制动踏板时,连杆打开一个气门,使空气进入助力器中膜片的一侧,同时密封另一侧真空。这就增大了膜片一侧的压力,从而有助于推动连杆,继而推动主缸中的活塞。 释放制动踏板时,阀将隔绝外部空气,同时重新打开真空阀。这将恢复膜片两侧的真空,从而使一切复位

电控动力转向系统(EHPS)介绍

电控动力转向系统(EHPS )介绍 汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员的控制下,借助于汽车发动机产生的液体压力或电动机驱动力来实现车轮转向,所以动力转向系统也称为转向动力放大装置。 随着道路条件的不断改善,汽车速度的不断提高,对转向系统操纵的安全性与舒适性提出了更高的要求。动力转向系统由于具有使转向操纵灵活、轻便,设计汽车时对转向器结构形式的选择灵活性大,能吸收路面对前轮产生的冲击等优点,因此已在各国的汽车制造中普遍采用。但是,从易于驾驶和安全性方面考虑,理想的操纵状态是低速时转向始终应当轻快,而在高速时要有适当的手感并且运行平稳,因此,对于传统的液压动力转向器,其固定的放大倍率成为动力转向系统的主要缺点,往往是满足了低速转向轻便的要求便无法满足高速转向时要求的手感,或者满足了高速转向时有良好的手感但低速时又不免转向沉重。 人满意的程度。电子控制动力转向系统(系统(液压式EPS ,又作

子控制动力转向系统(电动式EPS)。EHPS是在传统的液压动力转向系统的基础上增设了控制液体流量的电磁阀、车速传感器和电子控制单元等装置构成的,电子控制单元根据检测到的车速信号,控制电磁阀的开度,使转向动力放大倍率实现连续可调,从而满足高、低速时的转向助力要求。电动式EPS 则是利用直流电动机作为动力源,电子控制单元根据转向参数和车速信号,控制电机输出扭矩。电动机的输出扭矩经由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。 EHPS从控制方式可以分为以下几种类型: 其中,第(1)种和第(2)种类型是EHPS发展初期的控制方式,主要的控制目标都是将系统中的动力泄荷掉一部分以实现高速时减小助力,但这样做的弊病就是浪费了动力,不利于车辆省油,而且,还有急转弯反应迟钝的缺点,需要安装特别装置才能解决,现在已很少采用。第(3)种油压反馈控制式现在使用的比较普遍,其根据车速传感器,控制反力室油压,改变压力油的输入、输出的增益幅度以控制操舵力。操舵力的变化量,按照控制的反馈压力,在油压反馈机构的容量范围内可任意给出,急转弯也没问题,但是其结构复杂,各部分的加工精度要求较高,价格也较高。第(4)种阀特性控制式是近几年开发的类型,是根据车速控制电磁阀,直接改变动力转向控制阀的油压增益(阀灵敏度)以控制油压的新方法。这种控制方式使来自油

相关文档
最新文档