万有引力定律ppt

合集下载

万有引力定律完美版课件

万有引力定律完美版课件

07
总结与展望
Chapter
课件内容回顾与总结
万有引力定律的表述和数学公式
01
详细阐述了万有引力定律的定义、公式和适用范围,使学生全
面理解该定律。
引力常量的测定及意义
02
介绍了引力常量的历史背景、测定方法和在科学研究中的重要
性,加深了学生对引力常量的认识。
万有引力定律在天体运动中的应用
03
通过实例分析了万有引力定律在天体对万有引力定律的验 证不仅加深了我们对宇宙的认识和理解, 同时也为未来的空间探测和科学研究提 供了重要的理论支持和技术手段。
广义相对论对万有引力定律修正与发展
广义相对论简介
广义相对论是爱因斯坦在1915年提出 的一种描述引力的理论,它认为引力是 由物质和能量在时空中弯曲而产生的几 何效应。这一理论对万有引力定律进行 了修正和发展,为我们提供了更深刻、 更全面的引力理论。
了学生运用该定律解决实际问题的能力。
万有引力定律在科学和技术中重要性
天文学领域
万有引力定律为天文学提供了基础理论支持,是研究天体运动和 宇宙演化的关键。
航天工程领域
万有引力定律是航天工程设计和实施的重要依据,如卫星轨道计 算、太空探测等。
其他领域
万有引力定律还对地理学、地质学等其他领域产生了深远影响, 推动了相关学科的发展。
公式
F=G(m1m2)/r^2,其中F为两物体之
间的引力,m1和m2分别为两物体的
质量,r为两物体之间的距离,G为万
有引力常数。
科学家牛顿与万有引力定律
牛顿的生平与成就 牛顿是英国著名的物理学家、数学家和天文学家,他在物 理学领域取得了举世瞩目的成就,其中最为著名的就是万 有引力定律。

7.2万有引力定律的应用课件(共25张PPT)

7.2万有引力定律的应用课件(共25张PPT)

力的作用是相互的,行星与太阳的引 力也应与太阳的质量m太成正比。
F m太 r2
G与太阳、行星都没有关
F
m太m r2
F=G
m太m r2
r
系。太阳与行星间引力的
方向沿着二者的连线。
1 行星与太阳间的引力
行星与太阳的引力与行星的质量成正比,
与太阳的质量成正比,与太阳与行星间距离的 二次方成反比
牛顿 (1643—1727) 英国著名的物理学家
ห้องสมุดไป่ตู้
使行星沿圆或椭圆运动,需要指向圆心或椭圆焦点 的力,这个力应该就是太阳对它的引力
我们跟从牛顿发现万有引力定律的过程来研究行星与太阳间的引力。
太阳与行星的物理模型
太阳
行星
a
简化
理想化模型
行星
太阳 r
• (1)匀速圆周运动模型:
由于行星绕太阳做椭圆运动的轨迹的两个焦点靠得很近,行星的运动轨迹非常 接近圆,所以将行星的运动看成匀速圆周运动。
注意:在分析一般物体受力时,物体间的万有引力一般也可忽略不计。
万有引力定律的推论:
内容:在匀质球壳的空腔内任意位置处,质点受到球

壳的万有引力为零。
例 如图所示,r 虽然大于两球的半径,但两球的半径不能忽略,而球的质量分布均 匀,大小分别为m1与m2,则两球间万有引力的大小为 ( )
r1
r2
r
A、
• (2)质点模型:
由于天体间的距离很远,研究天体间的引力时将天体看成质点,即天体的质量 集中在球心上。
1 行星与太阳间的引力
方向:太阳与行星间引力的方向沿着二者的连线。
大小:
m太
m
F=m v2 r
v 2r

万有引力定律ppt

万有引力定律ppt

旳引力大小相等时,这个飞行器距地心旳距离与距月
心旳距离之比为

【答案】9:1
第一节 万有引力定律
【例题】太阳系中旳九大行星均在各自旳轨道上绕太 阳运动,若设它们旳轨道为圆形,若有两颗行星旳轨
道半径比为R1 :R2=2 :1,他们旳质量比为 M1 :M2=4 :1,求它们绕太阳运动旳周期比T1: T2
地心说是长久盛行于古代欧洲旳宇宙学说。它最初由古希腊 学者欧多克斯在公元前三世纪提出,后来经托勒密进一步发 展而逐渐建立和完善起来。
第一节 万有引力定律 2.日心说:哥白尼(1473-1543) Nicolaus Copernicus
哥白尼
——波兰天文学家哥白尼经过近四年旳观察 和计算,于1543年出版了“天体运营论”正 式提出“日心说”。
第一节 万有引力定律
二.万有引力定律旳发觉
苹果为何会落地?
月球为何不会落到 地球上来呢?
假如苹果树长到月球那么高,苹果还会
落到地面吗?
月球为何不会落到地球上呢?是因为不 受到地球旳作用力吗?
假如月球不受力,它将做直线运动,
假如月球受重力,它将直接落到地面。
实际上,月球绕地球做圆周运动需要 向心力,正是地球对月球旳引力提供 了这个向心力
1、把行星绕太阳旳运动近似看成是匀速圆周运动,太
阳对行星旳万有引力是行星做圆周运动所需旳向心力
F
m
v2 r
又v
2r
T
F
4
2
(
r T
3 2
)
m r2
2、据开普勒第三定律知
r3 T2
k得F
4 2k
m r2
F
m r2
牛顿以为k是一种与行星

万有引力定律(高中物理教学课件)

万有引力定律(高中物理教学课件)

提示:割补法
答案:
G
Mm (2R)2
F剩
G
M'm (1.5R)2来自M M'
4 R3
3
4(R
32
M
)3
'
1 8
M
F剩
7 36
G
Mm R2
五.重力与万有引力的关系
1.若不考虑地球自转:
G
Mm R2
mg
2.实际上万有引力的一部分提供物体做圆
周运动的向心力,重力是万有引力的另一
个分力,故:mg
2.大小:
vF= 2mTrv力与的rT2r32太的质 k作阳量F用的mTm太是引2 4成T力相2r2k正3r互也比的应。F,与常太行4量阳星2k 没行沿rmG2 与有星着太关间二FF阳系引者、。力的mrrm太22行太的连星阳方线都与向。FF=Gmmr太r2太m2m
一.行星与太阳间的引力
F=G m太m ,方向在两者连线上。 r2
三.万有引力定律
1.内容:自然界中任何两个物体都相互吸引,引
力的方向在它们的连线上,引力的大小与物体的
质量m1和m2的乘积成正比、与它们之间距离r的
二次方成反比,即:F=G
m1m2 r2
它于1687年发表在牛顿的传世之作《自然哲学 的数学原理》中。
三.万有引力定律
2.对万有引力的理解
①普遍性:任何两个物体之间都存在引力(大到 天体小到微观粒子),万有引力是自然界中物体 间的基本相互作用之一。 ②相互性:万有引力具有相互性,符合牛顿第三 定律。 ③宏观性:只有在质量巨大的天体间或天体与物 体间它的存在才有宏观的物理意义。在微观世界 中,万有引力可以忽略不计。地球表面物体受力 时,也不考虑万有引力。

万有引力定律的应用(共11张PPT)

万有引力定律的应用(共11张PPT)

宇宙速度的计算
第一宇宙速度
根据万有引力定律,可以 计算出环绕地球运行的最 大速度,即第一宇宙速度。
第二宇宙速度
通过万有引力定律,还可 以计算出逃离地球引力的 最小速度,即第二宇宙速 度。
第三宇宙速度
利用万有引力定律,可以 计算出逃离太阳系所需的 最小速度,即第三宇宙速 度。
03
万有引力定律在地球科学中的应 用
万有引力定律的公式
总结词
万有引力定律的公式是F=G(m1m2)/r²,其中F表示两物体之间的万有引力,G 是自然界的常量,m1和m2分别表示两个物体的质量,r表示两物体之间的距 离。
详细描述
这个公式是万有引力定律的核心内容,它精确地描述了两个物体之间万有引力 的数量关系。根据这个公式,我们可以计算出任意两个物体之间的万有引力的 大小。
桥梁和建筑物的稳定性分析
桥梁和建筑物的稳定性分 析
万有引力定律可以用来计算建筑物或桥梁的 支撑结构所受的重力,从而评估其稳定性。
桥梁和建筑物的抗震设计
通过分析地震发生时地面运动对建筑物的影 响,利用万有引力定律计算出建筑物在地震
中的受力情况,进而优化抗震设计。
物体落地速度的计算
物体落地速度的计算
THANKS
感谢观看
统研究提供基础。
04
万有引力定律在物理实验中的应 用
重力加速度的测量
总结词
通过测量物体自由落体的时间,可以计 算出重力加速度的值。
VS
详细描述
在重力加速度的测量实验中,通常使用自 由落体法。通过测量物体下落的时间,结 合已知的高度和重力加速度的公式,可以 计算出当地的重力加速度值。这种方法简 单易行,是物理学中常用的实验方法之一 。

《万有引力定律 》课件

《万有引力定律 》课件

02
详细描述
万有引力是一种自然现象,存在于任何两个物体之间,无论它们的质 量大小、距离远近,都存在相互吸引的力。这个力的大小与两个物体 的质量成正比,与它们之间的距离的平方成反比。
万有引力定律的公式
总结词
万有引力定律的公式是F=G(m1m2)/r^2。
详细描述
万有引力定律的公式是描述两个物体之间相互吸引的力的数学表达式。其中,F 表示两物体之间的万有引力,G是自然界的常量,m1和m2分别表示两个物体的 质量,r表示它们之间的距离。
现代科学的万有引力推导方法
广义相对论
在现代科学中,爱因斯坦的广义 相对论提供了另一种理解万有引 力的方式。它描述了质量如何弯 曲空间和时间,从而产生引力。
量子力学
尽管量子力学与万有引力理论在一 些基本原则上存在冲突,但它也为 理解宇宙的基本结构提供了框架。
宇宙学模型
现代宇宙学模型,如大爆炸理论和 暗物质模型,都基于万有引力定律 ,帮助我们理解宇宙的起源和演化 。
地球重力的计算
总结词
地球重力是万有引力定律在地球表面的具体表现,通过计算地球重力,可以了解地球的质量、赤道半 径、地球自转角速度等重要参数。
详细描述
地球重力是指地球对地球表面物体的吸引力,它是万有引力的一个分力。通过测量地球表面不同位置 的重力加速度,结合地球的几何参数,可以计算出地球的质量、赤道半径、地球自转角速度等重要参 数,这些参数对于地球科学、气象学、海洋学等领域的研究具有重要意义。
05
万有引力定律的影响
对科学发展的影响
01
02
03
促进天文学发展
万有引力定律解释了天体 运动规律,为天文学的发 展奠定了基础。
推动物理学进步

《万有引力》课件

《万有引力》课件

行星轨道偏心率
行星轨道的偏心率表示轨 道形状的离心率,偏心率 为0表示轨道为圆形,偏心 率为1表示轨道为椭圆形。
04
万有引力与生活
万有引力对地球的影响
维持地球自转
万有引力提供向心力,使地球能 够保持稳定的自转。
维持地球轨道
万有引力使地球能够沿椭圆轨道绕 太阳运行,保持稳定。
形成气候
万有引力影响大气层的分布和运动 ,形成不同气候带和天气系统。
03
万有引力与天体运动
天体运动的规律
01
02
03
地球自转
地球绕自身轴线旋转一周 ,周期为24小时,形成昼 夜交替现象。
地球公转
地球绕太阳旋转一周,周 期为一年,形成四季交替 现象。
天体轨道
天体按照椭圆、抛物线或 双曲线等轨道运动,遵循 开普勒三定律。
月球与地球的相互作用
月球引潮力
月球引潮力引起地球潮汐现象,对地 球上的海洋、湖泊、河流等产生周期 性涨落。
VS
万有引力
万有引力是指任何两个物体之间相互吸引 的力。根据牛顿的万有引力定律,这个力 与两个物体的质量成正比,与它们之间的 距离的平方成反比。万有引力是宇宙中最 重要的力之一,它对天体运动和宇宙演化 起着重要作用。
探索宇宙的未知领域
宇宙微波背景辐射
宇宙微波背景辐射是指充溢于整个宇宙的微 波辐射,它是宇宙大爆炸后留下的余辉。通 过对宇宙微波背景辐射的研究,科学家们可 以了解宇宙早期的状态和演化过程。
暗能量
暗能量是一种充溢于空间的能量,它占据了宇宙中大部分的能量密度。暗能量的作用机制也尚不清楚 ,但它对宇宙的加速膨胀起着关键作用。科学家们正在研究暗能量的性质和作用机制,以揭示宇宙加 速膨胀的奥秘。

物理人教版(2019)必修第二册7.2万有引力定律(共25张ppt)

物理人教版(2019)必修第二册7.2万有引力定律(共25张ppt)

观察与思考
利用已知行星与太阳间引力公式推导月球加速度
1.已知月心到地心的距离约为地球半径的60倍,则月球绕地球做圆周运
动的加速度与物体在地面附近下落时的加速度比值是多少?
月球受地球引力为: =
地月

2


月 =
= 2


苹果受地球引力为: =
地 苹

2


苹 =
= 2
观察与思考
思考1:生活中的匀速圆周运动遵从怎样的动力学规律?
合力提供向心力,即合 =
2
4π2
= 2 =2


思考2:行星绕太阳可看做匀速圆周运动,什么力提供
向心力?
太阳对行星的引力提供行星做圆周运动的向心力
观察与思考
思考3:太阳对行星的引力提供向心力,那么这
3
由开普勒三定律: 2
6.67×10-11 m2/kg2。
卡文迪什
4.对万有引力定律的理解
普遍性 宇宙间任何两个有质量的物体之间都存在着相互吸引的力
相互性 两个有质量的物体之间的万有引力是一对作用力和反作用力
宏观性
地面上的一般物体之间的万有引力比较小,与其他力比较可忽略不计,但在
质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用
m太m
(2)太阳与行星间的引力公式 F=G 2 中,G与太阳、行星都没有关
r
系。( √ )
(3)太阳对行星的引力大小等于行星对太阳的引力大小。(
√)
(4)太阳对行星的引力与行星的质量成正比,与太阳质量无关。
(
×)
月—地检验
观察与思考
如图甲所示秋天苹果成熟后会从树上落下来;如图乙所示为月球绕着地

《高一物理万有引力》课件

《高一物理万有引力》课件
雷达测距
向月球或更远的天体发射雷达信 号,通过测量信号的往返时间可 以精确计算出天体与地球之间的 距离。
计算天体的质量
环绕天体运动
通过测量环绕天体的运动轨道和周期 ,利用万有引力定律可以计算出中心 天体的质量。
重力加速度法
在地球上测量不同纬度处的重力加速 度,结合地球半径和地球质量,可以 推算出其他天体的质量。
详细描述
牛顿出生于1643年,他是一位英国物 理学家、数学家、天文学家和哲学家 。他在科学领域做出了卓越的贡献, 其中最著名的就是万有引力定律。
万有引力定律的发现过程
总结词
万有引力定律的发现过程是一个漫长而复杂的过程,涉及到许多科学家和他们的研究成 果。从开普勒行星运动三定律,到牛顿万有引力定律的提出,人类对宇宙的理解不断深
宇宙的起源与万有引力
大爆炸理论
大爆炸理论认为宇宙起源于一个极度高温和高密度的状态,被称为 大爆炸。在此之前,物理定律可能不再适用。
宇宙的演化
根据大爆炸理论,宇宙经历了急剧的扩张和冷却过程。万有引力在 宇宙演化中起着重要作用,它影响了星系的形成和宇宙的扩张速度 。
宇宙的未来
由于宇宙的加速扩张,未来宇宙的命运仍不确定。万有引力与宇宙的 其他基本力之间的关系仍需进一步研究。
助人类理解宇宙的运行规律。
天文观测
通过研究万有引力,人类能够更准 确地预测天体的位置和运动轨迹, 提高天文观测的精度。
宇宙演化
万有引力还影响了宇宙的演化过程 ,通过对它的研究,人类可以更深 入地了解宇宙的起源和演化历程。
对人类生活的影响
地球自转
航天工程
地球自转是由于地球自身受到的万有 引力作用,这种自转导致了昼夜交替 的现象,影响人类的生活节奏。

万有引力定律ppt课件

万有引力定律ppt课件
量子引力理论 尝试将万有引力定律与量子力学相结合,发展出 量子引力理论,如弦论、圈量子引力等。
3
修改引力理论
通过对万有引力定律进行修正,以适应不同尺度 和环境下的引力现象,如MOND理论、f(R)重力 理论等。
未来研究方向和前景展望
深入研究暗物质与暗能量 揭示暗物质和暗能量的本质,以及它 们与万有引力的关系。
定律的公式
• F=(G×m1×m2)/r^2。两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=(G×m1×m2)/r^2,即 万有引力 等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位, N·m2/kg2。为英国物理学家、化学家亨利·卡文迪许通过扭秤实验测得。
定律中各物理量的含义
• G为引力常量,m1和m2分别为两个物体的质量,r为两个物 体间的距离。万有引力定律公式适用于质点间的相互作用, 在宏观物体间由于距离远大于物体本身的大小,所以通常把 物体看做质点,此时该公式适用。而当两个物体间的距离小 于物体本身的大小时,此公式就不适用了。
03
CATALOGUE
相对论揭示了时间、空间、物质 和能量之间的深刻联系,为原子 能、宇宙学、粒子物理等领域的
研究提供了理论基础。
相对论的提出和发展对于推动现 代科学技术的进步具有不可估量
的作用。
06
CATALOGUE
万有引力定律的挑战和发展前景
定律面临的挑战和问题
弱引力问题
01
在极弱引力环境下,万有引力定律的预测与观测结果存在偏差。
卫星轨道设计
万有引力定律是卫星轨道设计的 基础,通过计算地球对卫星的引 力,可以确定卫星的轨道参数。
太空探测任务

万有引力定律ppt课件

万有引力定律ppt课件
星的质量m成正比,与r2成反比。
m
F 2
r
2.行星对太阳的引力
m
F 2
r


F
F′


M
F 2
r
'
太阳和行星的引力是相互的,行星和太阳的地
位对等的,太阳对行星的引力与行星质量成正
比,由类比法可得行星对太阳的引力与太阳的
质量成正比。
m
F 2
r
类 牛

法 三
M
F 2
r
牛三
Mm
F 2
r
Mm
当时,已能准确测量的量有:(即事实)地球表面附近的重力加速度:
g = 9.8m/s2,地球半径:
R = 6.4×106m,月亮的公转周期:T =27.3天
≈2.36×106s,月亮轨道半径: r =3.8×108m≈ 60R
2
4

r
2
a r
T
a 2.69 10 3 m / s 2
1
该就是太阳对它的引力。
知识点二:行星与太阳间的引力
行星
行星
太阳
太阳
a
r
简化
(1)匀速圆周运动模型:
行星绕太阳做椭圆运动的轨迹的两个焦点靠得很近,行星的运动轨迹非常接
近圆,所以将行星的运动看成以太阳为圆心的匀速圆周运动。
(2)太阳对行星的引力提供行星做圆周运动的向心力。
1.太阳对行星的引力
行星绕太阳的运动看做匀速圆周运动,行
F=G 2
r
'
F 和F ′是一对作用力和反作用力,所以F的大小既
和太阳质量M成正比、也和行星质量m成正比。

《万有引力定律》PPT课件

《万有引力定律》PPT课件
(因物体不再受地球自转影响!)
mg h
G
Mm (R地 h)2
②重力随高度的增大而减小。
对于质量为m1和质量为m2的两个物体间的万有引力
的表达式F=Gmr1m2 2,下列说法正确的是
()
• A.公式中的G是引力常量,它是由实验 得出的,而不是人为规定的
• B.当两个物体间的距离r趋于零时,万有 引力趋于无穷大
(4)特殊性:两个物体之间的万有引力只与它 们本身的质量和它们间的距离有关,而与所 在空间的性质无关,也与周围是否存在其他 物体无关。
三、万有引力与重力之间的关系
1.在地球表面,重力只是万有引力 的一个分力.
F mg G Mm r2
①重力随纬度的减小而减小。 g赤 g极
2.在地球高空,重力就是万有引力.
B.
G
m1m2 r12
D. G m1m2
(r r1 r2 ) 2
r1
r2
r
图7-9
它在数值上等于质量都是1kg的物体相距1m时的相 互作用力。
4.万有引力定律公式的适用条件
(1) F G m1m2 适用于计算两个质点间相互作用. r2
(2)两个质量分布均匀的球体间的相互作用,可 用公式计算,其中r是两个球体球心的距离。
(3)一个均匀球体与球外一个质点间的万有引力, 可用公式计算,其中r是球心到质点间的距离。
有椭圆的一个焦点上。
第二定律:
开普勒
行星和太阳的连线,在相等的时间内
(面积定律) 扫过相同的面积。
同一颗行星在近 日点的速率大于 远日点的速率.
第三定律: 行星绕太阳公转的周期的平方和轨道半 (周期定律) 长轴的立方成正比
注:1)K与行星无关, 只与“中心天体”--太阳质量有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 3 球的体积 V π R 3
温馨提示:请做笔记!
例题:地面上的重力加速度是9.8N/kg,地球 的半径为6400km。请问地球的质量是多少? 地球的平均密度是多少?
m R地
M地
想一想:为什么说卡文迪许是可称出地球质量的人。
2 、某宇航员驾驶航天飞机到某一星球,他使航天飞机 贴近该星球附近飞行一周,测出飞行时间为 4.5103s,
A.飞船的轨道半径 C.飞船的运行周期
B.飞船的运行速度 D.行星的质量
天体之间的引力主要是万有引力,万有引力的 发现对天文学的发展起到了巨大的作用。
转动天体m 轨道半经r
中心天体M
天体半经R
m1 m2 F G 2 中r的含义: r
(1)对于两个质点,r表示两个 质点之间的距离
(2)对于两个均匀球体, r表示 表示两球心的距离 (3)对于均匀球体与质点,r表 示球心与质点的距离
温馨提示:请做笔记!
万有引力定律的应用
温馨提示:请做笔记!
基本思路:
4 r M 2 GT
2 3
r
T
M
开普勒第三定律:
r GM 2 2 T 4 π
3
【例题】设地球表面的重力加速度为g,物体在距地心 4R(R是地球半径)处,由于地球的引力作用而产生的 重力加速度g',则g'/g为( D ) A、1; B、1/9; C、1/4; D、1/16
【例题】火星的质量和半径分别约为地球的1/10和1/2, 地球表面的重力加速度为g,则火星表面的重力加速度 约为( B ) A、0.2 g B、0.4 g C、2.5 g D 、5 g
温馨提示:请做笔记!
11 例、 把地球绕太阳公转看作是匀速圆周运动,轨道半径约为1.5×10 km,已 知引力常量G=6.67×10-11 N·m2/kg2,则可估算出太阳的质量约为多少?
解:地球绕太阳公转周期:T=365×24×60×60=3.15×107s 地球绕太阳做匀速圆周运动的向心力由万有引力提供。


M 4R 3 3

3 GT 2
M
M
r
2
3
G
2

3 r 4GR 3
2 3
2
若m在M表面附近 运动,有r=R,则:
3 2 4G
v r 3v r G 4R 3G
3v 2 4R 2G
M
g轨r 2 G

3g 轨 r 2 4R 3G

3g 轨 4RG
典型例题
宇航员在某一行星上把一石块以速度v0竖直 向上抛出,测出它从抛出到落回原处所经历 的时间为t,若已知此行星的半径为R,试计算 这颗行星的质量.
明确物理量:
转动天体m 轨道半经r
中心天体M
天体半经R
4 M R 3 (2)测量中心天体密度: 3
4 2 r 3 3r 3 M 2 GT GT 2 R 3
万有引力定律 自然界中任何两个物体都是相互吸引的,引力的 大小跟这两个物体的质量的乘积成正比,跟它们 的距离的平方成反比。
m1 m2 F G 2 r
G—引力常量。G=6.67×10-11Nm2/kg2
向心力公式
v F m r
2
F mr
2
2 F mr T
2
明确物理量:
Mm 2 G 2 mr r T
2 3 4 r 解得: M GT 2
2
代入数据得:
M 2 1030 kg
解题时经常需要引用一些常数,如地球自转、公转周期、月球公转周期 等。
说明:无法直接求出运动天体(环绕天体)本身的质量,只能 求中心天体的质量!
天体质量:
C
m 2 r
2 mr T
2
M G 3 r
r3 T 2 GM
温馨提示:请做笔记!
一、有关天体的计算和分析 1、求地球(或星球)表面及某一高度h处的重力加速 度 思路:万有引力等于重力(忽略自转) Mm 星球表面重力引力定律
3.3 万有引力定律的应用
知识回顾 1、物体做圆周运动的向心力公式是什么?分别写出向 心力与线速度、角速度、周期的关系式 2、万有引力定律公式:
m1m2 F G 2 r
3、万有引力和重力的关系是什么?
重力是地球对地面上物体的万有引力引起的, 重力近似等于地球对地面上物体的万有引力。
θ
M
G R
w
式中M是地球的质量,R是地球的半径,也就是物体到地心 的距离。
拓展:
M 星球 m G m g 星球 2 R
温馨提示:请做笔记!
2、分析天体运动、求解未知量(把环绕天体的运动都 看作匀速圆周运动) 思路:万有引力提供向心力
Mm v2 4 2 G 2 m m 2 r m 2 r r r T
(1)测量中心天体的质量:
m r M
(r r )
Mm m4 2 r 4 2 r 3 G 2 M 2 r T GT 2
Mm 2r 2 G 2 m r M G r
Mm v2 v2r G 2 m M r r G
3
G
Mm m g轨 M 2 r
g轨r 2 G
将行星(或卫星)的运动看成是匀速圆周运动
分类:
1、万有引力充当向心力:F引=F向
2、在星球表面及附近:F引=G重
“天上”
“星球表面及附近”
v
基本方程: 万有引力 = 向心力 辅助方程:
重力近似 = 万有引力
ma
Mm G 2 r
v2 m r
M aG 2 r
v G M r
B
Main Idea A
距星球地表某一高度h处重力加速度:
Mm G mg 2 ( R h) g G M ( R h) 2
R2 g g 2 ( R h)
若不考虑地球自转的影响,地面上质量为m的物体所受的 重力mg等于地球对物体的引力,即: m
r F 向
F 引
黄金代换公式:
Mm G 2 mg R
则该星球的平均密度是多少?
解:航天飞机绕星球飞行,万有引力提供向心力,所以
Mm 2 G 2 mr r T
2
近地飞行时,r = R星
该星球的平均密度为: 联立上面三式得: 代入数值:

M M 4 V R 3 星 3
3. 一飞船在某行星表面附近沿圆形轨道绕该行星飞行,假设行星是质量分 布均匀的球体.要确定该行星的密度,只需要测量( C )
相关文档
最新文档