无刷直流电机控制系统的设计(一)
无刷直流电动机控制系统
![无刷直流电动机控制系统](https://img.taocdn.com/s3/m/2c91aee7ba4cf7ec4afe04a1b0717fd5360cb297.png)
目录简介错误!未定义书签。
第一章直流无刷电机的工作原理71.根本工作原理72.无刷直流电动机的组成10第二章无刷直流电机的控制121.无刷直流电机的控制原理122.转子的控制143.速度的控制15第三章电机的反应151.电流测量152. RPM转速测量16第四章硬件设计161. LPC2141的使用方法16小结17电气与信息工程系课程设计评分表错误!未定义书签。
简介直流无刷电机:又称"无换向器电机交一直一交系统〞或"直交系统〞。
是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。
无刷直流电动机Brushless Direct CurrentMotor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机。
无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最正确选择。
目前,在微小功率畴直流无刷电动机是开展较快的新型电机。
由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。
大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机构造,小型通风机用外转子电机构造,家电用多极磁场构造及装式构造,电动自行车用多极、外转子构造等等。
上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。
为了满足大批量、低本钱的市场需要,直流无刷电动机的生产必须要形成规模经济。
因此,直流无刷电动机是一种高投入、高产出的行业。
无刷直流电机控制系统设计与实现
![无刷直流电机控制系统设计与实现](https://img.taocdn.com/s3/m/eed4c47b0a4c2e3f5727a5e9856a561253d32149.png)
无刷直流电机控制系统设计与实现一、本文概述随着科技的不断进步和电机技术的快速发展,无刷直流电机(Brushless Direct Current, BLDC)因其高效率、低噪音、长寿命等优点,在电动工具、航空航天、汽车电子、家用电器等多个领域得到了广泛应用。
然而,要实现无刷直流电机的高效、稳定运行,离不开先进且可靠的控制系统。
本文旨在对无刷直流电机控制系统的设计与实现进行深入探讨,分析控制策略、硬件构成和软件编程,并结合实例,详细阐述控制系统在实际应用中的表现与优化方向。
通过本文的研究,希望能够为相关领域的学者和工程师提供有价值的参考,推动无刷直流电机控制系统技术的进一步发展和应用。
二、无刷直流电机基本原理无刷直流电机(Brushless DC Motor, BLDCM)是一种采用电子换向器代替传统机械换向器的直流电机。
其基本工作原理与传统的直流电机相似,即利用磁场与电流之间的相互作用产生转矩,从而实现电机的旋转。
但与传统直流电机不同的是,无刷直流电机在结构上取消了碳刷和换向器,采用电子换向技术,通过电子控制器对电机内部的绕组进行通电控制,从而实现电机的旋转。
无刷直流电机通常由定子、转子、电子控制器和位置传感器等部分组成。
定子由铁芯和绕组组成,负责产生磁场;转子则是由永磁体或电磁铁构成,负责在磁场中受力旋转。
电子控制器是无刷直流电机的核心部分,它根据位置传感器提供的转子位置信息,控制电机绕组的通电顺序和通电时间,从而实现电机的连续旋转。
位置传感器则负责检测转子的位置,为电子控制器提供反馈信号。
在无刷直流电机的工作过程中,当电机绕组通电时,会在定子中产生一个旋转磁场。
由于转子上的永磁体或电磁铁与定子磁场之间存在相互作用力,转子会在定子磁场的作用下开始旋转。
当转子旋转到一定位置时,位置传感器会向电子控制器发送信号,电子控制器根据接收到的信号控制电机绕组的通电顺序和通电时间,使定子磁场的方向发生变化,从而驱动转子继续旋转。
无刷直流电机控制系统的设计与优化
![无刷直流电机控制系统的设计与优化](https://img.taocdn.com/s3/m/aa056bb2cd22bcd126fff705cc17552706225e7d.png)
无刷直流电机控制系统的设计与优化无刷直流电机(Brushless DC Motor,BLDC Motor)是一种采用电子对换器(Electronic Commutator)而不是机械换向器的直流电机。
相比传统的刷式直流电机,无刷直流电机具有体积小、效率高、噪音低和寿命长等优点,因此在工业、汽车、无人机等领域得到了广泛应用。
本文将就无刷直流电机控制系统的设计与优化展开讨论。
一、无刷直流电机的基本原理无刷直流电机由电机本体和电子对换器组成,电机本体通常由定子、转子和永磁体构成。
电子对换器主要由功率电子器件(如MOSFET、IGBT等)和驱动电路组成。
无刷直流电机的控制是通过改变转子绕组的电流来实现的。
传感器通常被用来测量电机的速度或位置,并将这些信息反馈给控制器,控制器根据反馈信息做出相应的电流调整。
二、无刷直流电机控制系统的设计1. 选择合适的传感器传感器对于控制系统的稳定性至关重要。
常见的传感器类型包括霍尔传感器、编码器传感器和反电动势传感器。
选择合适的传感器类型取决于具体的应用需求,其中编码器传感器通常可以提供更准确的位置信息。
2. 设计合适的控制算法控制算法的设计对于无刷直流电机的运行效果具有重要影响。
常见的控制算法包括PID控制、模糊控制和神经网络控制等。
PID控制是最常用的控制算法之一,其基本原理是通过比较期望值和实际值之间的差异来调整控制参数,使得系统能够达到稳定状态。
3. 优化电机驱动器电机驱动器的设计对于电机性能的优化至关重要。
可以通过调整电机驱动器的电流限制、PWM调制频率以及温度保护等参数来实现优化。
此外,适当选择驱动器的电源电压和电流大小也能够提高系统性能。
4. 降低电机的功率损耗降低电机的功率损耗是提高无刷直流电机控制系统效率的重要手段。
可以通过减少电机导线的电阻、改善电机的冷却系统以及优化电子对换器的工作方式来实现功率损耗的降低。
三、无刷直流电机控制系统的优化1. 提高系统效率提高系统效率是优化无刷直流电机控制系统的关键目标之一。
基于c8051的直流无刷电机控制系统的设计
![基于c8051的直流无刷电机控制系统的设计](https://img.taocdn.com/s3/m/f199a268f11dc281e53a580216fc700abb685228.png)
基于c8051的直流无刷电机控制系统的设计
设计一个基于c8051的直流无刷电机控制系统,可以按照以下步骤进行:
1. 选择合适的c8051单片机芯片,建议选择具备PWM输出和
高速计数器功能的型号。
2. 设计电机驱动电路,包括功率电路和驱动电路。
功率电路通常由MOSFET H桥组成,负责将电机驱动电压转换为驱动电流。
驱动电路负责根据单片机控制信号控制MOSFET开关,
控制电机的起停和运动方向。
3. 编写单片机的控制程序。
需要实现以下功能:
- 设定电机转速或转矩的目标值;
- 读取电机的实际转速或转矩;
- 根据目标值和实际值进行比较,计算出控制电压;
- 生成PWM信号,控制电机驱动电路。
4. 调试和测试控制系统。
连接电机和单片机,进行测试和调试,确保系统正常工作。
5. 优化系统性能。
可以根据需要进行性能优化,例如增加闭环控制、采用磁编码器等。
以上步骤仅供参考,根据实际需求和资源可以进行适当调整和修改。
希望能对你有所帮助!。
直流无刷电机的控制系统设计方案
![直流无刷电机的控制系统设计方案](https://img.taocdn.com/s3/m/1048d55afad6195f302ba600.png)
直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。
与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。
基于这么多的优点无刷直流电机有了广泛的应用。
比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。
1.2 国内外研究状况目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。
外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。
当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。
近些年来,计算机和控制技术快速发展。
单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。
经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。
所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。
1.3 课题设计的主要内容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。
选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。
本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要内容。
无刷直流电机控制系统设计
![无刷直流电机控制系统设计](https://img.taocdn.com/s3/m/fbc69c741711cc7931b716d8.png)
s i g n a l s a r e a d j u s t e d t o r e a l i z e t h e c l o s e l o o p c o n t r o l f o t h e mo t o r w i t h a p p r o p r i a t e P I a r i t h m e t i c .
P WM 信 号 实现 电机 转 速 闭环 控 制 。 关键词 : d s P I C3 O F 4 0 1 1 , 无刷 直 流 电机 , I M1 4 4 0 0, 闭环 控 制
Ab s t ac t T hi s p ape r i n t r o duc e s a br u sh t es s di r ec t c ur r e n t mo t or c on t r o l s y s t em , a n d r ea l i l Th e s y s t em
co ns i s t s o f br u s hl es s di r ec t cu r r en t mo t o r , ds PI C3 0F 4 01 1 m i cr oc on t r o l l er , I M1 4 40 0 dr i v e ci r c ui t 。 et c S y s t e m c om p l e t e s a c qui s i 。 t i on o f h al l p os i t i on s e ns or si gn al , ou t pu t o f mot or c o mmu t a t i o n s i gn a l s , me a su r emen t o f mot or S s pee da nd t h e di gi t al P W M
永磁无刷直流电机控制系统设计
![永磁无刷直流电机控制系统设计](https://img.taocdn.com/s3/m/c725d1be7d1cfad6195f312b3169a4517623e547.png)
永磁无刷直流电机控制系统设计1.电机模型的建立:建立电机的数学模型是进行控制系统设计的第一步。
永磁无刷直流电机可以使用动态数学模型来描述其动态特性,常用的模型包括简化的转子动态模型和电动机状态空间模型。
简化的转子动态模型以电机的电磁转矩方程为基础,通过建立电机的电流-转速模型来描述电机的动态响应。
这个模型通常用于低频控制和电机启动阶段的设计。
电动机状态空间模型则是通过将电机的状态变量表示为电流和转速变量,用微分方程的形式描述电机的动态特性。
这个模型适用于高频控制和电机稳态响应分析。
2.控制器设计:经典的控制方法包括比例积分控制器(PI)和比例积分微分控制器(PID)。
比例积分控制器是最简单的控制器,通过调节电流的比例增益和积分时间来控制电机的速度。
这种控制器适用于低精度控制和对动态响应要求不高的应用。
比例积分微分控制器在比例积分控制器的基础上增加了微分项,通过调节微分时间来控制系统的阻尼比,提高系统的稳定性和动态响应。
3.参数调节:在控制器设计中,参数调节和整定是非常重要的环节,主要包括根据系统的要求选择合适的控制器参数,并进行优化。
参数调节可以通过试探法、经验法和优化算法等方法进行。
其中,试探法和经验法是相对简单的方法,通过调整控制器的参数值来达到稳定运行或者较好的控制性能。
优化算法可以通过数学模型和计算机仿真的方式进行,通过优化目标函数和约束条件,得到最合适的控制器参数。
总结起来,永磁无刷直流电机控制系统设计主要包括电机模型的建立、控制器设计和参数调节。
在设计过程中,需要根据系统的要求选择合适的控制器,通过参数调节和优化算法来提高系统的稳定性和动态性能。
无刷直流电机控制系统的设计
![无刷直流电机控制系统的设计](https://img.taocdn.com/s3/m/0c46c6ba4a7302768f99396d.png)
无刷直流电机控制系统的设计Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。
现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。
另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。
国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。
本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。
从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。
无刷直流电机的发展概况无刷直流电动机是由有刷直流电动机的基础上发展过来的。
19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。
1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。
在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。
20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。
1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。
目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。
无刷直流电机控制系统设计与优化研究
![无刷直流电机控制系统设计与优化研究](https://img.taocdn.com/s3/m/88da6459fbd6195f312b3169a45177232f60e420.png)
无刷直流电机控制系统设计与优化研究摘要:无刷直流电机(BLDC)具有高效、高功率密度和长寿命等优点,在工业自动化和电动交通工具中得到广泛应用。
本文主要研究无刷直流电机控制系统的设计与优化。
首先介绍了无刷直流电机的工作原理及其在工业自动化和电动交通工具中的应用。
然后,详细阐述了无刷直流电机控制系统的组成和工作原理。
接着,结合实例分析了无刷直流电机控制系统的性能指标和优化方法。
最后,总结了无刷直流电机控制系统设计与优化的研究成果,并对未来的研究方向提出了建议。
关键词:无刷直流电机,控制系统,工作原理,性能指标,优化方法1. 引言无刷直流电机(BLDC)是一种电磁设备,由于其高效、高功率密度和长寿命等特点,广泛应用于工业自动化和电动交通工具中。
无刷直流电机的控制系统设计和优化对于提高其性能指标具有重要意义。
本文旨在研究无刷直流电机控制系统的设计和优化方法,以进一步提高其性能。
2. 无刷直流电机工作原理和应用无刷直流电机由永磁体和驱动器组成,它利用电极之间的磁场极性变化来实现转动。
其在工业自动化和电动交通工具中的应用越发普遍,包括机械制造、汽车行业、电动车辆等。
无刷直流电机具有高效率、高功率密度和长寿命等优点,因此备受青睐。
3. 无刷直流电机控制系统的组成和工作原理无刷直流电机控制系统主要由传感器、控制器和电源组成。
传感器用于检测电机的位置和速度,控制器则根据传感器所提供的信息来控制电机的运行。
电源为控制系统提供所需的电能。
无刷直流电机控制系统的工作原理是通过控制器对电机的绕组进行适时地通断,以实现控制电机的转动。
4. 无刷直流电机控制系统的性能指标无刷直流电机控制系统的性能指标主要包括响应时间、转速调节范围、效率和稳定性等。
响应时间是指电机从静止状态到达稳定运行状态所需的时间。
转速调节范围是指电机能够在一段时间内连续调节转速的范围。
效率是指电机输出功率与输入功率之比,稳定性是指电机在长时间运行中是否保持稳定的性能。
无刷直流电机控制系统的设计——毕业设计
![无刷直流电机控制系统的设计——毕业设计](https://img.taocdn.com/s3/m/226a87e769dc5022aaea00e2.png)
无刷直流电机控制系统的设计——毕业设计学号:1008421057本科毕业论文(设计)(2014届)直流无刷电机控制系统的设计院系电子信息工程学院专业电子信息工程姓名胡杰指导教师陆俊峰陈兵兵高工助教2014年4月摘要无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。
现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。
自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。
现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。
本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。
关键词:控制系统;DSPIC30F2010芯片;无刷直流电机AbstractBrushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention.Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth.The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop.Keywords: Control system; dspic30f2010 chip; brushless DC motor目录摘要 (I)Abstract (III)目录 (IV)1 引言 01.1 研究背景及意义 01.2 国内外研究现状 (1)1.3 设计任务与要求 (1)2 基本理论 (1)2.1 无刷直流电机的结构以及基本原理 (1)2.2 无刷直流电机的运行特性 (4)2.3 无刷直流电机的应用 (5)3 直流无刷直流电机控制系统的设计 (6)3.1 无刷直流电动机系统的组成部分 (6)3.2 无刷直流电机控制系统的设计 (8)4 直流无刷电机的电路设计 (9)4.1 开关电路的设计 (9)4.2 保护电路的设计 (9)4.3 驱动电路的设计 (10)4.4 反馈电路的设计 (10)4.5 电源电路的设计 (11)5 直流无刷电机控制系统的软件设计 (11)5.1 系统功能的实现 (12)5.2 软件流程图 (12)6 实物成果及展望 (13)致谢 (16)参考文献 (16)附录 (19)1 引言近年来随着微电子技术自动控制技术和新型永磁材料的发展,无刷直流电机的应用越来越广泛。
三相直流无刷电机DSP控制系统的设计
![三相直流无刷电机DSP控制系统的设计](https://img.taocdn.com/s3/m/cf5cf94803020740be1e650e52ea551810a6c999.png)
1、实现电机的平稳启动和停止; 2、对于不同的负载,电机速度能自动调整; 3、电机位置能够准确跟踪给定位置;
4、在电机运行过程中,能够实时监测电机电流、电压等参数。
参考内容
引言
随着电力电子技术的发展,直流无刷电机(DC Brushless Motor,简称 BLDC)因其高效、节能、维护方便等特点在许多领域得到了广泛应用。而数字信 号处理器(Digital Signal Processor,简称DSP)作为一种强大的实时信号处 理工具,为直流无刷电机控制系统的设计提供了新的解决方案。本次演示旨在探 讨基于DSP的直流无刷电机控制系统的设计与研究。
相关技术综述
直流无刷电机控制系统中,无位置传感器技术和全数字化控制技术日益受到。 无位置传感器技术通过算法估算出电机转子的位置,从而控制电机运转。全数字 化控制技术则利用DSP进行数字化处理,实现电机的精确控制。这两种技术的应 用大大提高了直流无刷电机的性能和可靠性。
系统设计
1、硬件设计
本系统的硬件部分主要包括电源模块、驱动模块、信号调理模块和DSP模块。 其中,电源模块为整个系统提供稳定的工作电压;驱动模块负责驱动电机的三相 绕组;信号调理模块负责采集电机转速等信号,并进行必要的调理;DSP模块作 为主控单元,负责实现各种控制算法。
三相直流无刷电机DSP控制系统的 设计
01 引言
03 参考内容
目录
02 需求分析
引言
随着电力电子技术和微控制器的发展,数字信号处理器(DSP)在电机控制 领域的应用越来越广泛。三相直流无刷电机作为一种先进的电机类型,具有效率 高、维护少、调速性能好等优点,被广泛应用于各种工业领域。本次演示将介绍 如何设计一个基于DSP的三相直流无刷电机控制系统,并对其进行详细阐述。
无刷直流电机控制系统的设计及仿真
![无刷直流电机控制系统的设计及仿真](https://img.taocdn.com/s3/m/bac1effa02020740bf1e9bda.png)
目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。
无刷直流电机控制系统设计
![无刷直流电机控制系统设计](https://img.taocdn.com/s3/m/b4de94c305a1b0717fd5360cba1aa81144318f21.png)
无刷直流电机控制系统设计随着技术的不断发展,无刷直流电机(BLDC)在许多领域的应用越来越广泛。
相比有刷直流电机,无刷直流电机具有更高的效率和更长的使用寿命。
因此,设计一种高效、稳定、可靠的无刷直流电机控制系统至关重要。
本文将介绍无刷直流电机控制系统的设计思路和实现方法。
关键词:无刷直流电机、控制系统、系统架构、电路设计、软件设计。
无刷直流电机控制系统主要由电机、驱动器、传感器和控制器等组成。
电机是系统的核心,其性能直接影响整个系统的表现。
驱动器的作用是驱动电机运转,同时需要满足系统的动态性能和稳定性要求。
传感器主要用于反馈电机的位置和速度信息,以便控制器可以精确地控制电机。
控制器是无刷直流电机控制系统的核心,它负责处理传感器反馈的信息,并输出控制信号来控制电机的运转。
系统架构方面,无刷直流电机控制系统可以采用基于数字信号处理(DSP)或微控制单元(MCU)的方案。
数字信号处理(DSP)具有运算能力强、速度快的优点,但价格较高。
微控制单元(MCU)具有价格低、易于编程的优势,但运算能力较弱。
在电路设计方面,主要需要考虑功率电路、控制电路和传感器的接口。
功率电路需要满足电机的功率需求,同时需要考虑到过流、过压等保护措施。
控制电路需要实现控制算法的硬件实现,同时需要提供必要的接口与上位控制器进行通信。
传感器的接口需要满足不同传感器的数据采集需求,并需要处理好信号的同步和传输问题。
在软件设计方面,无刷直流电机控制系统需要实现控制算法的软件实现。
一般而言,控制算法可以采用PID(比例-积分-微分)控制算法或模糊控制算法等。
PID控制算法是一种线性控制算法,通过调整比例、积分和微分三个参数,可以实现对电机的精确控制。
模糊控制算法则是一种非线性控制算法,它通过模糊逻辑和规则实现对电机的控制,具有适应性强、鲁棒性好的优点。
为了验证无刷直流电机控制系统的稳定性和有效性,我们进行了一系列实验。
实验结果表明,该系统可以在不同负载和不同转速下稳定运行,并且电机的位置和速度可以精确地被控制。
永磁无刷直流电机控制系统设计
![永磁无刷直流电机控制系统设计](https://img.taocdn.com/s3/m/4e507ad618e8b8f67c1cfad6195f312b3069eb45.png)
永磁无刷直流电机控制系统设计永磁无刷直流电机控制系统设计一、引言永磁无刷直流电机(Permanent Magnet Brushless DC Motor,简称BLDC)是一种新型的电动机,具有结构简单、运行可靠、效率高等优点,在工业、交通、家电等领域得到广泛应用。
为了实现对BLDC电机的精确控制,设计一个高效稳定的控制系统成为必要之举。
本文将分析和论述永磁无刷直流电机控制系统设计的一些关键要素和方法。
二、永磁无刷直流电机基本原理BLDC电机是通过控制电流通与断,使电机的一组定子绕组提供恒定的磁场,从而推动转子转动的一种电动机。
根据转子上磁极的个数,可以分为两极、四极、六极等型号的BLDC电机。
当定子绕组中的三个相位依次通断电流时,电机能够顺利运转。
三、BLDC电机控制系统设计要素1. 传感器信号获取为了控制BLDC电机的运行,需要获取电机运行状态的反馈信号。
常用的传感器有霍尔效应传感器和位置传感器。
霍尔效应传感器可以感知电机转子磁场的变化,提供转子位置的信息。
位置传感器则提供更加精确的转子位置反馈,用以计算电机的转速和角度。
2. 电机控制算法在BLDC电机控制系统中,常用的控制算法有直接转矩控制(Direct Torque Control,简称DTC)和磁场定向控制(Field Oriented Control,简称FOC)等。
DTC算法通过对电流和磁通矢量进行控制,能够在实时动态调整电机的转矩和速度。
FOC算法则是通过调整控制电流的矢量方向,实现对电机转矩和速度的精确控制。
3. 电机驱动器选型电机驱动器是BLDC电机控制系统中的一个重要组成部分,其功能是将控制信号转化为实际电机转子的驱动电流。
在选择电机驱动器时,要考虑电机的功率、电压范围、控制接口等因素。
常见的驱动器类型有电流型和电压型两种,根据电机的实际需求进行选择。
四、永磁无刷直流电机控制系统设计方法1. 系统硬件搭建首先需要根据电机的参数和要求,选取合适的传感器和驱动器,并进行硬件搭建。
基于STC单片机无刷直流电机控制系统的设计
![基于STC单片机无刷直流电机控制系统的设计](https://img.taocdn.com/s3/m/e59d401dbc64783e0912a21614791711cc797922.png)
基于STC单片机无刷直流电机控制系统的设计本文将介绍基于STC单片机的无刷直流电机控制系统的设计。
无刷直流电机具有高效率、低噪音、长寿命等优点,在工业自动化、家用电器等领域得到广泛应用。
本设计采用了STC12C5A60S2单片机,通过PWM控制器实现了对无刷直流电机的速度和转向控制。
一、硬件设计1.主控芯片:STC12C5A60S2单片机STC12C5A60S2是一款高性能8位单片机,具有强大的计算能力和丰富的外设资源。
它具有多个定时器/计数器、多路ADC、UART等功能模块,适合于各种应用场合。
在本设计中,该芯片作为主控芯片,负责实现对无刷直流电机的速度和转向控制。
2.驱动模块:L298NL298N是一款双全桥驱动芯片,可实现对直流电机或步进电机的驱动。
它具有较高的输出功率和较低的内部电阻,适合于需要大功率输出的应用场合。
在本设计中,L298N作为无刷直流电机驱动模块,负责将主控芯片输出的PWM信号转化为电机驱动信号。
3.无刷直流电机无刷直流电机具有高效率、低噪音、长寿命等优点,在各种应用场合得到广泛应用。
在本设计中,选择了一款12V、2000rpm的无刷直流电机,作为实验对象。
4.其他元件除上述元件外,还需要使用一些电容、电阻、二极管等元件,以及连接线、面包板等辅助材料。
二、软件设计1.系统框图本设计采用了STC12C5A60S2单片机,通过PWM控制器实现了对无刷直流电机的速度和转向控制。
系统框图如下所示:2.程序流程(1) 初始化各个模块:包括IO口初始化、定时器/计数器初始化等。
(2) 设置PWM占空比:通过改变PWM占空比来实现对电机的速度控制。
(3) 改变输出口状态:根据需要改变输出口状态,实现正反转控制。
(4) 延时:为了保证电机能够正常工作,需要进行适当的延时操作。
(5) 循环执行上述步骤:不断地改变PWM占空比和输出口状态,以实现对电机的控制。
三、实验结果本设计的实验结果表明,采用STC单片机控制无刷直流电机,可以实现精确的速度和转向控制。
无刷直流电机控制系统设计
![无刷直流电机控制系统设计](https://img.taocdn.com/s3/m/a1ecd4fdd4bbfd0a79563c1ec5da50e2524dd139.png)
无刷直流电机控制系统设计无刷直流电机控制系统设计一、引言近年来,无刷直流电机由于其高效、低噪音和长寿命等特点,被广泛运用在各种领域,如电动汽车、无人机、工业机器人等。
无刷直流电机的控制系统是整个系统的核心,其设计的优劣直接影响到系统的性能和稳定性。
因此,对无刷直流电机控制系统的研究具有重要意义。
二、无刷直流电机基本原理无刷直流电机是一种将交流电转换成直流电的电机,其工作原理和普通直流电机基本相同。
传统的直流电机是通过换向器将直流电源提供的直流电转换成交流电,再通过电刷与换向器进行配合,使得电机能够正常转动。
然而,无刷直流电机通过内部的传感器,能够实时检测转子位置,在合适的时机切换相序,从而实现电机的转动。
其与直流电机相比,具有结构简单、寿命长、噪音低等特点。
三、无刷直流电机控制系统的组成无刷直流电机控制系统主要由传感器、电机驱动器和控制算法三部分组成。
1. 传感器传感器主要用于检测转子位置和转速等信息,常见的传感器有霍尔传感器、编码器等。
通过传感器获得的信息可以提供给控制系统,以便实时控制电机的工作状态。
2. 电机驱动器电机驱动器作为控制系统的核心部件,主要用于控制电机的转速和方向。
电机驱动器通常由功率放大器和控制电路组成,通过接收控制信号,控制电机的运行。
3. 控制算法控制算法是无刷直流电机控制系统的关键,常见的控制算法有电流反馈控制、速度反馈控制和位置反馈控制等。
通过对传感器获得的信息进行处理和分析,控制算法能够准确地控制电机的运行状态,实现所需的功能。
四、无刷直流电机控制系统设计无刷直流电机控制系统的设计需要考虑多个方面的因素,如控制精度、稳定性、响应速度等。
1. 选择合适的传感器传感器的选择直接影响到控制系统的精度和稳定性。
根据实际需求,选择适用的传感器,并进行合理的安装和校准。
2. 电机驱动器的设计电机驱动器需要根据电机的功率和转速等参数进行选择和设计。
选用合适的功率放大器和控制电路,确保电机能够正常工作,并满足系统的要求。
基于单片机的无刷直流电动机的控制系统设计
![基于单片机的无刷直流电动机的控制系统设计](https://img.taocdn.com/s3/m/14f7d5996e1aff00bed5b9f3f90f76c660374c76.png)
文章标题:基于单片机的无刷直流电动机的控制系统设计一、引言在现代工业生产和民用设备中,无刷直流电动机(BLDC)的应用越来越广泛。
它具有高效率、高功率密度、响应速度快等特点,在电动汽车、家电、医疗器械等领域都有着重要地位。
而基于单片机的无刷直流电动机控制系统设计,正是为了更精准地控制电动机的运行,以满足不同领域的需求。
二、无刷直流电动机的原理和特点1. 无刷直流电动机的工作原理及结构无刷直流电动机是一种能够将直流电能转换为机械能的电动机,它的结构简单、维护成本低、寿命长。
其工作原理是利用永磁铁和定子电磁绕组之间的磁场相互作用,通过改变转子上的磁场来实现电动机的转动。
2. 无刷直流电动机的特点高效率:相比传统的直流电动机,无刷直流电动机具有更高的能量转换效率。
响应速度快:由于无需使用机械换向装置,无刷直流电动机转速响应速度快。
寿命长:由于无刷直流电动机少了机械换向装置,因此减少了摩擦,提高了机械寿命。
三、基于单片机的无刷直流电动机控制系统设计1. 电机驱动器在基于单片机的无刷直流电动机控制系统中,选择合适的电机驱动器至关重要。
常见的电机驱动器包括晶闸管驱动器、电子换向驱动器等。
通过合理选择电机驱动器,可以实现对电动机的高效控制,提高电动机的性能和稳定性。
2. 控制算法控制算法是影响电动机性能的关键因素之一。
在基于单片机的控制系统设计中,PID控制算法是常用的一种。
通过对电机转速、转矩进行实时调节,可以使电机在不同工况下获得良好的控制效果。
3. 硬件设计在基于单片机的无刷直流电动机控制系统设计中,硬件设计包括单片机选型、外围电路设计等。
根据具体的应用场景和要求,选择合适的单片机,并设计与之匹配的外围电路,保证整个系统的稳定性和可靠性。
四、个人观点和理解在基于单片机的无刷直流电动机控制系统设计中,我认为需要充分考虑电机的工作环境和要求,选择合适的控制算法和电机驱动器,并进行合理的硬件设计。
对系统进行充分的测试和验证,以确保控制系统设计的可靠性和稳定性。
直流无刷电机的控制系统设计方案
![直流无刷电机的控制系统设计方案](https://img.taocdn.com/s3/m/1519a1e431126edb6f1a10e2.png)
直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。
与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。
基于这么多的优点无刷直流电机有了广泛的应用。
比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD VCD空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。
1.2 国外研究状况目前,国无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规。
外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。
当新型功率半导体器件:GTR、MOSFETIGBT 等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。
近些年来,计算机和控制技术快速发展。
单片机、DSR FPGA CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。
经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。
所以对无刷直流电机控制系统的研究学习仍是国的重要研究容[2]。
1.3 课题设计的主要容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。
选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。
本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要容。
毕业论文--无刷直流电动机控制系统设计方案
![毕业论文--无刷直流电动机控制系统设计方案](https://img.taocdn.com/s3/m/a3e826150a4e767f5acfa1c7aa00b52acfc79cf9.png)
无刷直流电动机控制系统设计方案摘要无刷直流电动机是在有刷直流电动机的基础上发展起来的。
现阶段,虽然各种交流电动机和直流电动机在传动应用中占主导地位,但无刷直流电动机正受到普遍的关注。
自20世纪90年代以来,随着人们生活水平的提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都越来越趋向于高效率化、小型化及高智能化,作为执行元件的重要组成部分,电机必须具有精度高、速度快、效率高等特点,无刷直流电机的应用也因此而迅速增长。
本设计是把无刷直流电动机作为电动自行车控制系统的驱动电机,以PIC16F72单片机为控制电路,单片机采集比较电平及电机霍尔反馈信号,通过软件编程控制无刷直流电动机。
关键词无刷直流电动机单片机霍尔位置传感器AbstractBrushless DC motor in a brush DC motor developed on the basis of. At this stage, although exchanges of all kinds of DC motors and motor drive in the application of the dominant, but brushless DC motor is under common concern。
Since the 1990s,as people's living standards improve and modernize production, the development of office automation, household appliances, industrial robots and other equipment are increasingly tend to be high efficiency,small size and high intelligence, as the implementation of components An important component of the motor must have a high accuracy, speed, high efficiency, brushless DC motor and therefore the application is also growing rapidly.This design is the brushless DC motor as the electric bicycle motor—driven control system, PIC16F72 microcontroller for control circuit, SCM collection and comparison—level electrical signal Hall feedback, software programming through brushless DC motor control . Key words bldcm the single chip processor hall position sensor 摘要 (I)Abstract (II)第1章概述 (1)1。
无刷直流电机控制系统设计
![无刷直流电机控制系统设计](https://img.taocdn.com/s3/m/fb2fe6d2b9f67c1cfad6195f312b3169a451eaae.png)
无刷直流电机控制系统设计随着科技的发展,越来越多的机械设备需要使用电机来驱动其运转。
而在众多电机中,无刷直流电机因为其高效、高精度、低功耗等优点而备受瞩目。
无刷直流电机的使用范围越来越广泛,从工业控制,到航模、改装等领域都可以见到无刷直流电机的身影。
本文将围绕无刷直流电机控制系统设计展开分析和探讨。
一、无刷电机的结构和工作原理无刷直流电机(Brushless DC motor)是一种将交流电转化为直流电供给电机使用的设备。
无刷电机的核心部分是转子和定子。
转子由永磁体构成,定子上则包覆着三个交替排布的电枢,能够使电流依次通过A、B、C三路,控制转子的运转。
工作原理是,当电流通过A电极的时候,将产生一个磁场,这个磁场是与转子上的永磁体相互作用的。
这样,便会使转子转动,那么电流经过B、C电极的时候,也是如此。
在三种电极依次通过电流之后,便完成了一次转子的旋转。
从工作原理上看,无刷直流电机控制主要就是控制三路电流,以便控制电机输出功率。
二、无刷电机控制模式1. 直流切换模式这种控制模式是将DC电压用硅控整流器进行整流后,施加到电机上的模式。
主要存在一个问题,就是每转过一定角度,电流就会进行交替。
这就需要对控制进行改进。
因此,直流切换模式下,最多只能适用于控制力矩较小的场合,如四轮小车、飞行器等。
2. 方波控制模式(交错控制模式)方波控制模式下,电机的控制通过利用切换模式中交替电流的配合,进行控制。
方波控制模式的特点是,控制方法简单易操作,是广泛使用的控制方式。
同时适用于各种正反转、调速等控制模式。
只不过转速误差较大,适用于中小功率的无刷电机。
3. 正弦波控制模式正弦波控制模式是通过推导正弦函数来进行控制。
这种控制方式非常适用于BEMF(反电势)功能模块。
当转子转动的时候,会产生“反电动势”(BEMF),这个反电动势正好可以反向控制电流。
所以使用正弦波控制模式的话,能够更加精确的掌控转速和力矩。
到这里,我们已经讲述了无刷电机的控制模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无刷直流电机在家用电机中的应用:家用电气电子驱动电机每年约30%的增幅发展,现代电器朝着节能、低噪音、智能化与高可靠性方向发展。空调与冰箱中都有压缩机电机,传统的压缩机一般就是异步电机,其效率与功率因数较低,采用变频技术以后,情况有所改善。VCD、DVD、CD机等家用电器的主轴驱动电机也使用无刷直流电机,这类电机一般采用盘式无铁心电机结构,现已经大规模生产,价格便宜。无刷直流电机不仅能克服传统家用电机的部分缺点,给人们的居家生活带来更高的舒适性,还能降低能源耗损,更好的实现能源的可持续利用。
1、3 无刷直流电机的应用
近年来,我国中小型电机与微特电机行业发展迅速,就是由于其本身具有高效率、寿命长、低噪音与较好的转矩-转速特性的优点。特别在汽车、航空、家用电器等行业中发展较好[15]。
车用无刷直流电机:电机可以作为驱动的核心部件,而且还可以用在汽车空调、雨刮器、电动车门、安全气囊、电动座椅等驱动上。
1 引言
无刷直流电机最本质的特征就是没有机械换向器与电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种就是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为就是永磁同步电机。另一种就是方波/梯形波直流电机与正弦波直流电机都就是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以就是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高与现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。
在20世纪60年代初,霍尔元件等位置传感器与电子换向线路的发现,标志着真正的无刷直流电机的出现。
20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。
1987年,在北京举办的德国金属加工设备展览会上,西门子与博世两公司展出了永磁自同步伺服系统与驱动器,引起了我国有关学者的注意,自此我国开始了研制与开发电机控制系统与驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。
1、1 无刷直流电机的发展概况
无刷直流电动机就是由有刷直流电动机的基础上发展过来的。
19世纪40年代,第一台直Байду номын сангаас电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。
1955年,美国的D、Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。
如图1、2 无刷直流电机转动原理
如图1、2所示为无刷直流电机的转动原理示意图,定子的线圈一端接电源,其余三相接功率管,位置传感器导通时功率管的G极接+12V,功率管导通,对应的相线圈通电。三个位置传感器随转子转动,依次导通,对应线圈也依次通电,从而定子产生的磁场不断地变化,电机转子也转动起来,这就就是无刷直流电机的转动原理。
无刷直流电机在办公自动化中的应用:计算机外设与办公自动化设备用电机,绝大部分为先进制造技术与新兴微电子技术相结合的高档精密无刷直流电机,就是技术密集化产品。这种高性能无刷直流电机伺服控制系统的采用能大大改善产品的质量,提高产品的价值。无刷直流电机在数码相机上也得到广泛的应用,如日本TOSHIBA与SANYO公司已生产出无刷直流电机驱动的相机。无刷直流电机驱动的激光打印机产品也已经有了较长的历史,它的转速可以在每分钟几千到几万转的范围内精确控制,具有很好的技术与市场竞争力。另外,无刷直流电机在计算机、录音机与CD影碟机等设备产品中也有很好的应用[7~10]。
由于无刷直流电机的广泛使用,无刷直流电机的理论也不断得到修改完善。1986年,H、R、Bolton对无刷直流电机作了系统的总结,这样标志着无刷直流电机在理论上走向成熟。
1、2 无刷直流电机
1、2、1 无刷直流电机的结构
无刷直流电机主要由用永磁材料制造的转子、带有线圈绕组的定子与位置传感器组成。它与有刷直流电机有着很多共同点,定子与转子的结构相似(原来的定子变为转子,转子变为定子),绕组的接线一样[3]。然而,结构上有明显的区别:无刷直流电机没有有刷直流电机中的换向器与电刷,取而代之的就是位置传感器。这样,电机结构简单,减少了电机的制造与维护成本,但无刷直流电机不会自动换相,这使的电机控制器成本的提高。
图1、1 无刷直流电机模型
图1、1所示为小功率的三相、星形连接无刷直流电机,定子在内,转子在外,结构与直流电机很相似。另一种无刷直流电机的结构刚好相反,转子在内,定子在外。
1、2、2 无刷直流电机的工作原理
无刷直流电机的定子就是线圈绕组,转子就是永磁体。检测电机转子的位置,根据转子的位置给电机的相应线圈通电,使定子产生方向均匀变化的旋转磁场,转子才可以跟着磁场转动起来。
1、2、3 无刷直流电机的磁路结构与定子绕组
磁路就是指磁通能通过的路径,无刷直流电机中,转子上安装永磁体,作为磁极,电机转子磁极多就是4个或6个永磁体。转子数目增加,相应的定子绕组也增加,但不需要增加驱动电路数目。主磁场一般由转子永磁体产生,从S极回到N极而闭合。
绕组就是指按照一定规律连接起来的一组线圈总体。绕组导电以后,与转子产生的磁场相互作用,产生力或力矩,将电能转换成机械能,故又将定子绕组称为电枢绕组。
无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料与驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停留在实验阶段,无法推广到实际中使用,1970年以后,半导体的快速发展,许多新型的全控型半导体功率器件(如MOSFET、IGBT等)不断出现,而且高性能的永磁材料(如SmCo、NsFeB)陆续出现[2],这些都为无刷直流电机广泛应用提供了有利的条件。