天线第一讲-引言20110328

South China University of Tech 第

Research Institute of Antennas & RF Techniques

School of Electronic & Information Engineering

1

2

Research Institute of Antennas & RF Techniques S o u t h C h i n a U n i v e r s i t y o f T e

天线的下一个突破是由戴柏(Diogenes Dipole)发

?

以人工方式调整,达到平衡(匹配)。

Research Institute of Antennas & RF Techniques

赫兹

马可尼

无线电之父赫兹的天线系统

寄生天线,是由日本人八木秀次教授和宇田新太

二战德国潜艇雷达二战英军地面雷达

动通信、广播电视、雷达、

4

Research Institute of Antennas & RF Techniques

Research Institute of Antennas & RF Techniques

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

基站天线选型

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

传输线理论射频电路与天线褚庆昕

South China University of Technology 2.2 无耗传输线的特解 特解是指在特定边界条件下,传输线上电 压电流的解。 对于传输线,通常的边界条件有:终端条 件、源端条件和电源、阻抗条件。 I z ?l 0U L U I g I l l 0U g z E g Z g

South China University of Technology 1. 终端边界条件 已知代入通解,为 022 e j β l = U l + Z c I l e - j β l = U l - Z c I l U +U - 得到 U( z = l ) = U l ,I( z = l ) = I l l 0 0 l 00I =1(U +e - j β l -U -e j β l )U = U +e - j β l + U -e j β l Z c

South China University of Technology 为了简化解的形式,采用坐标变换 计及复数Euler 公式,最后得 z ' = l - z U( z ' ) = U l cos β z ' + jZ c I l sin β z ' I( z ' ) =j U l sin β z ' +I cos β z ' l Z c 于是 U( z ) = 1 (U + Z I )e j β ( l - z ) + 1 (U - Z I )e - j β ( l - z ) 22112Z 2Z l c l l c l I( z ) = (U + Z I )e j β ( l - z ) -(U - Z I )e - j β ( l - z ) l c l l c l c c

2.4G 天线设计完整指南(原理、设计、布局、性能、调试)

本文章使用简单的术语介绍了天线的设计情况,并推荐了两款经过测试的低成本PCB天线。这些PCB天线能够与PRoC?和PSoC?系列中的低功耗蓝牙(BLE)解决方案配合使用。为了使性能最佳,PRoC BLE和PSoC4 BLE2.4GHz射频必须与其天线正确匹配。本应用笔记中最后部分介绍了如何在最终产品中调试天线。 1、简介 天线是无线系统中的关键组件,它负责发送和接收来自空中的电磁辐射。为低成本、消费广的应用设计天线,并将其集成到手提产品中是大多数原装设备制造商(OEM)正在面对的挑战。终端客户从某个RF产品(如电量有限的硬币型电池)获得的无线射程主要取决于天线的设计、塑料外壳以及良好的PCB布局。 对于芯片和电源相同但布局和天线设计实践不同的系统,它们的RF(射频)范围变化超过50%也是正常的。本应用笔记介绍了最佳实践、布局指南以及天线调试程序,并给出了使用给定电量所获取的最宽波段。

图1.典型的近距离无线系统 设计优良的天线可以扩大无线产品的工作范围。从无线模块发送的能量越大,在已给的数据包错误率(PER)以及接收器灵敏度固定的条件下,传输的距离也越大。另外,天线还有其他不太明显的优点,例如:在某个给定的范围内,设计优良的天线能够发射更多的能量,从而可以提高错误容限化(由干扰或噪声引起的)。同样,接收端良好的调试天线和Balun(平衡器)可以在极小的辐射条件下工作。 最佳天线可以降低PER,并提高通信质量。PER越低,发生重新传输的次数也越少,从而可以节省电池电量。 2、天线原理 天线一般指的是裸露在空间内的导体。该导体的长度与信号波长成特定比例或整数倍时,它可作为天线使用。因为提供给天线的电能被发射到空间内,所以该条件被称为“谐振”。 图2. 偶极天线基础 如图2所示,导体的波长为λ/2,其中λ为电信号的波长。信号发生器通过一根传输线(也称为天线馈电)在天线的中心点为其供电。按照这个长度,将在整个导线上形成电压和电流驻波,如图2所示。 输入到天线的电能被转换为电磁辐射,并以相应的频率辐射到空中。该天线由天线馈电供电,馈电的特性阻抗为50Ω,并且辐射到特性阻抗为377Ω的空间中。

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

射频电路与天线(华工)试卷及答案

一、填空题 1、无耗传输线终端短路,当它的长度大于四分之一波长时,输入端的输入阻抗为容抗,将等效为一个电容。[见P19段路线输入阻抗公式1-45] 2、无耗传输线上驻波比等于1时,则反射系数的模等于0。 3、阻抗圆图上,|Γ|=1的圆称为单位圆,在单位圆上,阻抗为纯电抗,驻波比等于无限大。 4、只要无耗传输终端接上一个任意的纯电阻,则入射波全部被吸收,没有反射,传输线工作在匹配状态。[ZL=ZC才能匹配] 5、在传输线上存在入射波和反射波,入射波和反射波合成驻波,驻波的最大点电压值与最小点上的电压值的比即为传输线上的驻波比。 6、导纳圆图由等反射系数圆、等电抗圆和等电阻圆组成,在一个等电抗圆上各点电抗值相同。 7、圆波导的截止波长与波导的截面半径及模式有关,对于TE11模,半径越大,截止波长越短。[无论是矩形波导,还是圆波导,截止波长都与a(矩形时为宽边,圆时为半径)成正比。圆波导主模TE11,次模TM10] 8、矩形波导的工作模式是TE10模,当矩形波导传输TE10模时,波导波长(相波长)与波导截面尺寸有关,矩形波导截面的窄边尺寸越小,波导波长(相波长)越长。[见P45-相波长(波导波长)的公式,可知其只与某一频率和截止波长有关,且与截止波长(=2a)成反比,与窄边b无关。矩形波导主模TE10,次模TE20] 9、在矩形谐振腔中,TE101模的谐振频率最小。[矩形谐振腔主模TE101] 10、同轴线是TEM传输线,只能传输TEM波,不能传输TE或TM波。[都能传,但大多数场合用来传TEM波] 11、矩形波导传输的TE10波,磁场垂直于宽边,而且在宽边的中间上磁场强度最大。[P46倒数第三行,磁场平行于波导壁面。电场沿x轴正弦变化,在x=a/2处电场最大。] 12、圆波导可能存在“模式简并”和“极化简并”两种简并现象。 13、矩形波导中所有的模式的波阻抗都等于377欧姆。[矩形波导在TE模式>η,TM模式<η,η为TEM在无限大媒质中的波阻抗,在空气中则为377。注意:矩形波导不能传输TEM。] 14、矩形谐振腔谐振频率和腔体的尺寸与振荡模式有关,一般来讲,给定一种振荡模式,腔体的尺寸越大,谐振频率就越高。[P50] 15、两段用导体封闭的同轴型谐振腔,当它谐振在TEM模时,其长度等于半波长的整数倍。[P99,同轴型谐振腔分三种类型,半波长、1/4波长、电容负载式] 16、对称振子天线上的电流可近似看成是正弦分布,在天线的输入端电流最大。 17、对称振子天线既可以作发射天线,也可以作接收天线,当它作为发射天线时,它的工作带宽要比作为接收天线时大。 18、天线阵的方向性图相乘原理指出,对于由相同的天线单元组成的天线阵,天线阵的方向性图可由单元天线的方向性图与阵因子相乘得到。 19、螺旋天线的工作模式有法向模、轴向模和边射模三种,其中轴向模辐射垂直极化波。 20、在相同的辐射场强条件下,定向天线与无方向性天线相比可节省输入功率,所节省的倍数等于天线的方向性系数。 二、选择题 1、已知传输线的特性阻抗为50Ω,在传输线上的驻波比等于2,则在电压驻波波节点上的输入阻抗等于:()(4)[直接由P22公式1-54算出,不用P18公式1-36算出反射系数,再由P23公式1-38算出负载阻抗] (1)、100Ω (2)、52Ω (3)、48Ω (4)、25Ω

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

2.4 GHz天线的选择和选择标准

Options and Selection Criteria for 2.4 GHz Antennas 2.4 GHz is a sweet spot for modern-day RF design can be demonstrated by mentioning a few well-known names: Bluetooth, ZigBee, Wi-Fi and WLAN. One can also toss cellular applications into the mix. Clearly, this unlicensed band allows a variety of handheld, mobile, and fixed base station designs that communicate either point-to-point, or are routed through a cellular or mesh network. Popularity, however, brings technical issues. Even with channel s egmentation, one standard’s signal can step on another and clog up throughput. Fortunately, frequency allocations, algorithms, time-slicing, and back-off timers, among other techniques, help let everyone share the band and play nicely together. Even so, achieving optimum performance and meeting reliability goals calls for superior antenna design and close attention to the associated components that keep everything resonant. What is more, whether balanced or single ended, the transmit gain and receive sensitivity depend on the physical nature of the antenna and its radiation pattern. This article takes a look at 2.4 GHz antennas and the coupling networks that make them work. It examines commercially available single-chip antennas that are designed to work in the 2.4 GHz ISM band. It discusses antenna types, RF distribution patterns, and range and design issues associated with using a single-chip antenna, as opposed to a connector- mounted external antenna or PCB antenna. All parts, datasheets, development kits and training modules referenced here are available on Digi-Key’s website. The signal path Key in making your antenna perform as desired is the signal path to the antenna. While most RF chips have good output stages, matching, filtering, and splitting still may be needed, especially if a single antenna is used for more than one communications standard. As such, the typical RF output stages must still connect to either a single ended, balanced, or diplexed matching network (Figure 1).

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

天线原理笔记

1天线原理 1.1.天线的作用 任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。 天线的第一个作用就是辐射和接收电磁波。当然能辐射或接收电磁波的东西不一定都能用来作为天线。例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。 天线的另一个作用是“能量转换”。大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程。即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射;反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。显然这里有一个转换效率问题:天线增益越高,则转换效率就越高。 1.2.天线的工作原理 天线本身就是一个振荡器,但又与普通的LC振荡回路不同,它是普通振荡回路的变形。 1.2.1.辐射原理 LC是发信机的振荡回路。电场集中在电容器的两个极板之中,而磁场则分布在电感线圈的有限空间里,电磁波显然不能向广阔空间辐射。如果将振荡电路展开,使电磁场分布于空间很大的范围,这就创造了有利于辐射的条件。下图示出了它的演变过程。

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。如由于两导线的距离很近,且两导线所产生的感应电动势几乎可以抵消,因而辐射很微弱。如果将两导线张开,这时由于两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而辐射较强。于是,来自发信机的、已调制的高频信号电流由馈线送到天线上,并经天线把高频电流能量转变为相应的电磁波能量,向空间辐射。 谐波转换为振子动态图.gif 当导线的长度L远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。通常将上述能产生显著辐射的直导线称为振子。 1.2.2.接收原理 电磁波的能量从发信天线辐射出去以后,将沿地表面所有方向向前传播。若在交变电磁场中放置一导线,由于磁力线切割导线,就在导线两端激励一定的交变电压——电动势,其频率与发信频率相同。若将该导线通过馈线与收信机相连,在收信机中就可以获得已调波信号的电流。因此,这个导线就起了接收电磁波能量并转变为高频信号电流能量的作用,所以称此导线为收信天线。 无论是发信天线还是收信天线,它们都属于能量变换器,“可逆性”是一般能量变换器的特性。同样一副天线,它既可作为发信天线使用,也可作为收信天线使用,通信设备一般都是收、发共同用一根天线。因此,同一根天线既关系到发信系统的有效能量输出,又直接影响着收信系统的性能。天线的可逆性不仅表现在发信天线可以用作收信天线,收信天线可以用作发信天线,并且表现在天线用作发信天线时的参数,与用作收信天线时的参数保持不变,这就是天线的互易原理。为便于讨论,常将天线作为发信天线来分析,所得结论同样适用于该天线用作收信天线的情况。 1.3.天线辐射单元

天线原理与设计期中考试资料

西南交通大学2012-2013 学年第( 2 )学期期 中考试试卷 课程代码 3143373 课程名称 天线原理与设计 考试时间 90分钟 阅卷教师签字: 一. 判断题:(20分)(正确标√,错误标?,每题2分) 1. 元天线的方向性系数为1.5。(√) 2. 元天线的远区辐射场是平面波。(?) 3. 在功率方向图中,功率为主瓣最大值一半对应两点所张的 夹角就是主瓣宽度。(√ ) 4. 侧射式天线阵须满足各单元馈电幅度和相位均相等。(√ ) 5. 坡印亭矢量法可以求出天线的辐射阻抗。(? ) 6. 对称振子的平均特性阻抗愈小,其频率特性就愈好。(√ ) 7. 对称振子的谐振长度总是略大于0.25和0.5。(? ) 8. 右旋圆极化天线可以接收左旋圆极化天线发射的信号。 (? ) 9. 要使接收天线接收到的功率达到最大,需满足阻抗匹配和 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

极化匹配。(√ ) 10.笼形天线设计增加了阻抗频带宽度。(√ ) 二. 填空题:(30分,每空2分) 1.在场强方向图中,主瓣宽度是指场强大小下降到最大值的( 0.707 )倍处对应的两点之间的夹角。 2. 在功率方向图中,主瓣宽度是指功率大小下降到最大值的( 0.5 )倍处对应的两点之间的夹角。 3. 在分贝方向图中,主瓣宽度是指场强的分贝值下降到(-3 )dB 处对应的两点之间的夹角。 4.当2/(1.44)l λ≤时,对称阵子的最大辐射方向在0 90m θ=。 5.当2/ 1.44l λ≤时,对称阵子的最大辐射方向在 (90)m θ=。 6.半波天线的归一化方向图()cos cos 2( )sin F πθθθ ?? ???=, 方向性系数(1.64)D =,输入阻抗(73.142.5)Z j =+Ω。 7.间距为 d 的二元等幅同相(1,0)m α==阵因子 ()cos ,(2cos )a d f πθ θ?λ =。 8.间距为d 的二元等幅反相(1,)m απ==阵因子 ()cos ,(2sin )a d f πθ θ?λ =。 9. 间距为d 的均匀直线式N 元天线阵的阵因子

天线原理与设计 讲义

第八章 口径天线理论基础 在第七章以前我们讨论的是线状天线,其特点是天线呈直线、折线或曲线状,且天线的尺寸为波长的几分之一或数个波长。所构成的基本理论称之为线天线理论。既使是第七章的开槽缝隙天线,在分析时也是借助了缝隙天线的互补天线—金属线天线来分析。 在实际工作中,还将遇到金属导体构成的口径天线和反射面天线。有时我们统称为口面天线。它们包括:喇叭天线、透镜天线、抛物面天线、双反射面的卡塞格伦天线等。见P169图8-1。它们的尺寸可以是波长的十几到几十倍以上。 口面天线的分析模型如图8-1所示: 图8-1 口面天线的分析模型 S ′为天线金属导体面,为开口面,S S ′+构成一个封闭面,封闭面内有一源。 S 对这样一个分析模型,要求解空间某点p 处的电磁场E P 、H P 。它们可描述为由两部分组成:一部分是源的直达波,一部分是由天线导体面上感应电流产生的散射场。这种分析方法我们称之为面电流法。面电流法对反射面天线有效,它是分析反射面天线的方法之一。但是,面电流法对喇叭天线、波导口天线一类的口径天线无效,或者说处理很难。我们可采用口径场法。 口径场法步骤: 1、解内问题,即由场源求得口面上的场分布; 2、解外问题,即由口面上场分布求解远区辐射场。 由此可见,反射面天线也可用口径场法分析。 喇叭天线一类:口径场法; 反射面天线一类:口经场法,面电流法。(近似方法) 有的反射面天线如抛物环面,由于口径场不易确定,还只得用面电流法。 口径场法和面电流法都是近似的方法,它们只能求出口径面前方半空间的辐射场,口面后方半空间的场无法求得。实际上口面天线的外表面及口径边缘L 上均有感应电流。这部分电流就是对口面天线后向辐射的主要贡献。但通常的做法是采用几何绕射理论,求由边缘L 产生的绕射。 值得说明的是,口面天线的边缘绕射场与前方半空间的场相比是微不足道的。 如果采用口径场法,那么,现在的问题是:能否用口径天线口面上的场分布来确定天线辐射场?回答是肯定的,这就须由惠更斯—菲涅尔原理来说明。

天线的种类及选型

1.天线的基本原理 天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。因此,网络优化也就自然与天线密切相关。 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。 为了便于介绍,先从天线的几个基本特性谈起。(见下图)

天线原理与设计习题集解答-第2章

第二章 天线的阻抗 (2-1) 由以波腹电流为参考的辐射电阻公式:220 30 (,)sin r R d f d d π π ?θ?θθ?π = ? ? 计算对称半波天线的辐射电阻。(提示:利用积分201cos ln(2)(2)x dx C Ci x πππ-=+-?,式中,0.577, 023.0)2(-=πCi ) 解:半波振子天线的辐射方向图函数为 cos(cos ) 2(,)sin f π θθ?θ =, 则 2222000cos (cos )301cos(cos )2sin 60(cos )sin 2(1cos ) r R d d d ππππθπθ?θθθπθθ+==--??? 011130()[1cos(cos )](cos )21cos 1cos d ππθθθθ=+++-? 01cos(cos )1cos(cos )15[](cos )1cos 1cos d ππθπθθθθ++=++-? 01cos[(1cos )]1cos[(1cos )]15(cos )1cos 1cos d ππθπθθθθ -+--=++-? 1cos[(1cos )] 15[(1cos )](1cos )d ππθπθπθ-+=++? 01cos[(1cos )]15[(1cos )](1cos )d ππθπθπθ--+--? 20 1cos 215x dx x π -=?? 30[ln(2)(2)]C Ci ππ=+- 73.1()=Ω (2-2) 利用下式求全波振子的方向性系数 r R f D ) ,(120),(2?θ?θ= , θβθβ?θsin cos )cos cos(),( -=f 若全波振子的效率为5.0=a η,求其最大增益的分贝数和3/πθ=时的方向性系数。 解:(1) 求增益(即最大辐射方向上的方向性系数与效率的积) 全波振子半长度为/2l λ=,则 cos(cos )1()sin f πθθθ +=,max /2()|2f f θπθ===,199r R =Ω 2 max 1201204 2.41199 r f D R ?=== 0.5 2.41 1.205A G D η=?=?= (0.8)

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。 RXI-P RXI-N 900M RXQ-P RXQ-N 1800M VCC 频率取样 13M CLK 功 DAT 率 RST 样 取 发射频率取样 信 号 TXI-P TXI-N 射频电压 TXQ-P TXQ-N 等级 (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波, 天 线 开 关 接收解调 频 率 合 成 R X VCO 鉴相 调制 功 率 放大器 TX VCO 功控 分频 发射互感器

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。 1、 该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 900M 1800M SYN-VCC 频率取样 13M SYN-CLK SYN- DAT SYN- RST (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图) 由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套 天 线 开 关 接收解调 频 率 合 成 R X VCO O CPU (音频) 分频 数字 处理 音频放大

射频电路与天线 教学大纲

射频电路 课程名称:射频电路 英文名称:Radio Frequency Circuits 学分:3 课程总学时:48 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:□基础课□专业基础课?专业课 面向专业:信息工程、电子科学与技术(物理电子学)、电子科学与技术(微电子技术) 、集成电路设计与系统集成 先修课程:电磁场与电磁波 一、教学信息 课程的性质: 《射频电路》课程是电子与通信工程等专业的一门重要的专业课。其任务是学习射频信号的产生、传输、变换、检测、测量技术及电磁波的辐射与接收。《射频电路》主要讲述射频电路的内容。 课程的目的与教学基本要求: 课程的目的是通过这门课程的学习,学生可以掌握射频电路与天线的基本原理,并具备分析能力与初步的设计能力,为无线通信、光纤通信、移动通信等课程提供技术基础。 通过这门课的学习,要求学生熟练掌握传输线理论,了解波导和谐振腔的基本知识,掌握微波网络理论,了解各种射频电路的工作原理,掌握天线的辐射原理和天线的基本参数,了解各种线天线和面状天线的工作原理。 考核方式: 总分数100分,平时作业考勤占总分数30% ,期末闭卷考试占总分数70%。 二、教学资源

教材 [1]李绪益著,《微波技术与微波电路》,广州:华南理工大学出版社,2007.3。 [2]褚庆昕著,《射频电路与天线》(讲义),2008。 多媒体教学资源(课程网站、课件等资料) 教学课件,教学视频,精品课程网站http://202.38.193.234/rf1/。 三、教学内容、要求与学时分配 按各章节列出主要内容,注明课程教学的难点和重点,对学生掌握知识的要求,以及学时的分配 1 第一部分、传输线理论 (1)传输线的纵向问题-传输线理论(8学时) 主要内容:传输线方程及其解、无耗传输线上的行波与驻波、驻波比、反射系数、不同负载时无耗传输的工作状态、圆图及其应用。 基本要求:理解长线的概念,理解传输线方程及其解的意义,熟练掌握传播常数、特性阻抗、反射系数、驻波比的物理意义,熟练掌握无耗传输线上反射系数、驻波比、输入阻抗的特点与相互关系,掌握不同负载时无耗传输线的工作状态,掌握阻抗圆图和导纳圆图的构成,熟练应用传输线理论解决传输线问题,熟练应用圆图求解传输线问题。 重点:无耗传输线上反射系数、驻波比、输入阻抗的意义、特点和相互关系,无耗传输线问题的求解,圆图计算。 (2)传输线的横向问题(8学时) 主要内容:传输线横向问题与纵向问题的分解,几种常用传输线的横向问题分析方法和特征参数公式,包括矩形波导、圆波导、同轴线、带状线、微带线等。 基本要求:了解等效电压、等效电流的意义,了解横向问题的场方程,了解纵向分量法,掌握导波系统中模式、传播常数、相位常数和传输条件,掌握导波系统截止波长、波导波长、相速度、群速度、波阻抗的概念及其特点,了解矩形

相关文档
最新文档